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Spectral properties of two superconducting
artificial atoms coupled to a resonator in the
ultrastrong coupling regime

A. Tomonaga 1,2,6 , R. Stassi2,3, H. Mukai 1,2, F. Nori 2,4, F. Yoshihara1,5 &
J. S. Tsai1,2

Weexperimentally investigate a superconducting circuit composedof twoflux
qubits ultrastrongly coupled to a common LC resonator. Owing to the large
anharmonicity of the flux qubits, the system can be described well by a gen-
eralized Dicke Hamiltonian containing spin–spin interaction terms. In the
experimentally measured spectrum, we observed two key phenomena. First,
an avoided level crossing provides evidence of the exotic interaction that
allows the simultaneous excitation of two artificial atoms by absorbing one
photon from the resonator. Second, we identified a pronounced spectral
asymmetry that is a clear signature of light-matter decoupling. Thismulti-atom
ultrastrongly coupled system opens the door to studying novel processes for
quantum optics and quantum-information tasks on a chip.

Superconducting circuits provide a versatile and flexible platform for
modeling various quantum systems1–6. In this platform, artificial
atoms can be designed to have tailored energy transitions and
controllable interactions with microwave photons2. Moreover,
superconducting circuits have also become one of the main plat-
forms for scalable quantum information processing and quantum
simulation2–6.

Taking advantage of the high electromagnetic field in a one-
dimensional resonator and the huge dipolemoment of artificial atoms,
these systemsachieve a stronger light–matter interaction than thoseat
bare atomic or resonator frequencies7–13. This ultrastrong (deep-
strong) interactionmight lead to promising applications, such as high-
speed and high-efficiency quantum information processing
devices14–19. In this coupling regime, several unique physical phenom-
ena have been predicted, and now, some of these are realized
experimentally.

Important theoretical predictions include, for example, quantum
vacuum radiation and entanglement from the ground state20–24; multi-
excitation exchanges between qubits and resonators25; or physical pro-
cesses analogous to parametric down-conversion26,27. In 2016, a

theoretical work showed that one photon can simultaneously excite two
atoms28,29. This effect should beobservable if the atoms are ultrastrongly
coupled with a cavity mode and the parity symmetry of the atoms is
broken. Similar toRabi oscillations, this is a coherent andunitaryprocess
where the atoms can jointly absorb or emit one photon27,28.

The first realization of the ultrastrong coupling regime in circuit
QED7 was evidenced by an avoided level crossing, indicating the
exchange of excitations between the qubit and two cavity modes;
namely, the multi-excitation exchange between one flux qubit and a
waveguide resonator. Later, it was shown30,31 that, when the parity
symmetry is broken in anatom-light system in the ultrastrong coupling
regime, the light field acquires a coherence in the ground state that
induces symmetrybreaking in an ancillaryfluxqubitweakly coupled to
the same field.

Here, we experimentally investigate a circuit composed of two
flux qubits ultrastrongly coupled to a common LC resonator. Flux
qubits,which formartificial atoms, share the same inductorwith the LC
resonator, consequently they interact with each other. This system is
described by the Dicke Hamiltonian, generalized to include atomic
longitudinal couplings and spin–spin interaction terms.
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In the measured spectrum, away from the flux qubit optimal
point (where the parity symmetry of the system is broken), we
observe an energy-level anticrossing, which indicates hybridization
between the states ∣gg1

�
and ∣ee0i, where ∣g

�
(∣ei) and ∣0i respec-

tively indicate the atomic ground (excited) and zero photon states.
This is the fingerprint of the interaction that allows one photon to
simultaneously excite two atoms, as well as the reverse process.
Here, when the system is set up in the one-photon state, the artificial
atoms and the resonator can exchange excitations exhibiting Rabi-
like oscillations.

Since the atom–light and atom–atom interactions are very
strong, the system states should be strongly hybridized, and the clear
observation of the “one–photon–exciting–two–atoms” effect would
not be straightforward. However, by studying the generalized Dicke
Hamiltonian, we found (i) a partial suppression of the transverse
interaction given by a competition between the spin–spin interaction
and the spins–light interaction and (ii) the “decoupling” of the
longitudinal interaction that depends on the sign of the external flux
bias. The decoupling justifies the asymmetry in the measured
spectrum.

While a multimode cavity coupled to a single atom, as in7, allows
frequency-selective interactions, its photon conversion capability is
limited by mode spacing. In contrast, multiple atoms coupled to a
single cavity (as in our work) can facilitate the conversion of a single
photon into multiple lower-frequency excitations. Despite superficial
similarities, these two circuits are different in configuration and serve
distinct roles.

On the other hand, a recent experiment32 based on many-body
localization (MBL), not studied in our work, shows the suppression of
the photon down-conversion, due to MBL. This is in stark contrast to
our system, which is designed to actively promote both down- and up-
conversion processes. Moreover, ref. 32 operates in what they call
superstrong coupling regime, which arises when the atomic linewidth
exceeds the cavity mode spacing. The resulting three-wave mixing
interaction inducesmultiphoton processes acrossmanymodes, which
is not our case.

Furthermore, ultrastrong coupling, as realized in our work,
occurs in a different regime: when the light-matter coupling
strength exceeds 10% of the cavity photon energy. This system is
described by a generalized Dicke Hamiltonian including counter-
rotating terms, leading to strong hybridization of the qubits with a
cavity mode.

Results
Device
Figure 1a shows an optical microscopy image of the artificial-
atom–resonator circuit. The LC resonator is composed of an inter-
digital capacitor and a line inductor made of a superconducting thin
film33,34. The twofluxqubits are inductively coupled to the LC resonator
via a Josephson junction (Fig. 1b), which increases the strength of
couplings to the ultrastrong regime. Small dots around the two qubits
are flux traps that prevent vortex fluctuations during the
measurements35. The energies of the flux qubits36 can be changed by
applying an external magnetic flux to the loop from a global coil and
using an on-chip bias line. Figure 1c shows the equivalent circuit with
lumped elements and Josephson junctions.

The Hamiltonian of the entire system is37–39

Ĥtot = Ĥq1 + Ĥq2 + Ĥr + Ĥint , ð1Þ

where Ĥqk (k = 1, 2), Ĥr, and Ĥint represent the qubits, resonator, and
atom–resonator plus atom–atom couplings, respectively. The Hamil-
tonian of the resonator is Ĥr =ℏωrðâyâ+ 1=2Þ, where ωr � 1=

ffiffiffiffiffiffiffiffiffiffi
LrCr

p
is

the resonance frequency, â � ðϕ̂r � iZ rq̂rÞ=
ffiffiffiffiffiffiffiffiffiffiffi
2ℏZ r

p
is the annihilation

operator, Z r =
ffiffiffiffiffiffiffiffiffiffiffiffi
Lr=Cr

p
is the characteristic impedance of the LC

resonator, and q̂r is the conjugate variable of ϕ̂r =Φ0φ̂r. Here,Φ0 is the
flux quantum and the flux φr is defined in Fig. 1c. The Hamiltonian of
the k-th artificial atom is

Ĥqk � 4Eck q̂
T
kM

�1
k q̂k + ELrφ̂

2
βk + Û Jk , ð2Þ

where Eck is the charging energy of the Josephson junction ak (see
Fig. 1b and 1c),φβk represents the phase differences in each β-junction
of qubits,Mk is the normalized mass matrix, ELr =Φ

2
0=ð2LrÞ, and Û Jk is

Fig. 1 | Device. a Optical microscopy image of the measured sample. The sample
holder has a coil to bias a uniformmagnetic field from the back surface of the chip.
Qubit 1 has a local bias line that changes the magnetic flux of the qubit loop. The
spectrum is measured using a vector network analyzer (VNA) for probing and
reading from the transmission line shown below the circuit. b False-color SEM
images of qubits 1 and 2. The design parameters of both qubit junctions are the
same.Different colors represent different layersof aluminumdepositedviadouble-
angle shadow evaporation. c Equivalent circuit diagramof the sample. The symbols
αi, βi, ai, and bi (i∈ {1, 2}) label each Josephson junction, while φ denotes the phase
difference across a circuit component.
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the qubit potential energy of Josephson junctions:

Û Jkðφ̂ekÞ= � EJk βk cosðφ̂βkÞ + cosðφ̂akÞ + cosðφ̂bkÞ
h

+αk cosðφek � φ̂ak � φ̂bk � φ̂βkÞ
i
:

ð3Þ

Here, EJk is the current energy of the Josephson junction ak, φik (i =
α, a, b) are the phase differences in each junction αk, ak, and bk, andφek

represents the external flux for the loop of each atom. The interaction
Hamiltonian

Ĥint = � ELrðφ̂β1φ̂r � φ̂β2φ̂r + φ̂β1φ̂β2Þ ð4Þ

is obtained from the boundary condition (Kirchhoff’s voltage law) of
the loop forming the resonator with the elements Lr and Cr.

By approximating each atom as a two-level system40 on the basis
of persistent currents of the superconducting loop, we obtain the total
Hamiltonian in Eq. (1) as

Ĥtot=ℏ ’ ωrâ
yâ +

ε1
2
σ̂z1 +

Δ1

2
σ̂x1 +

ε2
2
σ̂z2 +

Δ2

2
σ̂x2

� ðg1σ̂z1 � g2σ̂z2Þðây + âÞ � 2g1g2

ωr
σ̂z1σ̂z2 ,

ð5Þ

where εk is the persistent current energy of each qubit, Δk is the qubit
energy gapwhen εk = 0, while σ̂zk and σ̂xk are the Pauli matrices for the
k-th qubit. We define εk >0 when the qubit current flows anticlockwise
and vice versa.

After a unitary transformation that diagonalizes the atomic
Hamiltonians Ĥqk, we obtain a generalized Dicke Hamiltonian41 with

spin–spin interaction:

Ĥtot=ℏ ’ ωrâ
yâ+

ωq1

2
σ̂z1 +

ωq2

2
σ̂z2

� ðg1Λ̂1 � g2Λ̂2Þðây + âÞ � 2g1g2

ωr
Λ̂1Λ̂2 ,

ð6Þ

where ωqk = sgnðεkÞðε2k +Δ2
kÞ

1=2
is the qubit frequency and

Λ̂k = ðcos θk σ̂xk + sinθk σ̂zkÞ gives the direction of the interaction, with
θk ’ � arctanðεk=ΔkÞ (see Methods for more details). For
θk =0 (εk = 0), the interaction is purely transverse. When θk ≠ 0, the
interaction has a longitudinal component and the
one–photon–exciting–two–atoms effect is allowed.

Energy spectrum
Figure 2a shows the raw data of the measured spectrum as a function
of the persistent current energy ε1 of qubit 1, which are obtained after
fixing the value of ε2/2π at −3.22 GHz when ε1 = 0. In Fig. 2b, the
spectrum is fitted with the numerically calculated transition fre-
quencies ωij between the i-th and j-th eigenstates of the total Hamil-
tonian Ĥtot. The persistent current energy for qubit 2 and the
resonator frequency are affected by the externalmagnetic flux applied
to qubit 18. Thus, to derive the transition frequencies ωij, we substitute
ε2 → ε2 +Aε1 and ωr → ωr(1 + B±ε1) in Eq. (5), where A and B± are small
fitting parameters listed in Table 1. We use two different values for B±
because the spectrum is asymmetric with respect to the sign of ε1, i.e.,
B+ is used when ε1≥0 and vice versa. Including A and B±, we use 11
parameters in total for the fit. These also include the bias current offset
Ib0, when ε1 = 0, and the persistent current coefficient ~ε0 to derive
ℏε1 = IpΦ0ðφe1 � 0:5Þ=ℏ~ε0ðIb � Ib0Þ, where Ip is the persistent current
of qubit 1, and Ib is the bias current from the room-temperature current
source. We use a photo-processing technique to obtain peak points
from the spectrum37,42,43 and the quantum toolbox in Python for
numerical calculations44,45.

Fig. 2 | Transmission spectra. Pump frequency ωp from the vector network
analyzer versus the persistent current energy ε1 of qubit 1. a Raw data of the
observed single-tone spectrum of the sample shown in Fig. 1. b Observed single-
tone spectrum with fitted curves corresponding to the state transition fre-
quencies ωij between the i-th and j-th eigenstates of Hamiltonian (6). The fit

parameters are g1/2π = 3.33, g2/2π = 3.45, Δ1/2π = 1.31, Δ2/2π = 1.27, ωr/2π = 5.15,
and ε2/2π = −3.22 GHz. At aroundωp/2π = 5.09 GHz and 5.57 GHz, parasitic modes
can be seen, which originate from, for example, sample ground planes and/or the
measurement environment, which includes the sample holder and microwave
components coupled to the system.
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Flux qubits 1 and 2 are almost identical except for the loop size;
consequently, they have similar fitting parameters; i.e.,
Δq1 ≃ Δq2 ≃ 0.25ωr. We find atom-resonator coupling rates of g1/
ωr = 0.67 and g2/ωr = 0.69, indicating that the artificial atoms are
ultrastrongly coupled with the resonator.

One photon simultaneously excites two atoms
We indicate with ∣ψi

�
the eigenstate of the system Hamiltonian Ĥtot

with eigenenergies ℏωi0. The ωqiσ̂zi=2 terms in Eq. (6) define the
ground ∣g

�
and excited ∣ei atomic bare states.

In Fig. 3a, which is an enlarged view of the red dashed rectangle in
Fig. 2b, the black arrow indicates the anticrossing between the

eigenstates ∣ψ3

�
and ∣ψ4

�
(see Fig. 3b), with eigenfrequencies ω30 and

ω40. In agreement with this anticrossing, Fig. 3c shows the numerically
calculated projection PðiÞ

j � j ψijj
� �j2 of the third and fourth eigenstates

∣ψi

� ði= 3, 4Þ on the bare states ∣j
�
= f∣gg1�, ∣ee0ig as a function of ε1.

Here, it is possible to see that the third and fourth eigenstates are the
approximate symmetric and antisymmetric superpositions of ∣gg1

�
and

∣ee0i, respectively. Considering also that the sum of the dressed qubit
frequencies is nearly equal to the dressed resonator frequency, the
anticrossing is the signature of the one–photon–exciting–two–atoms
effect (seeMethods formoredetails).Half of theminimumsplit between
ω30 and ω40 in the spectrum gives the effective coupling between ∣gg1

�
and ∣ee0i, that is 22.8 MHz (see Supplementary Information).

With respect to the theoretical prediction in ref. 28 (g/ωr≃0.1–0.2),
our system has amuch larger coupling (g/ωr≃ 0.7). This implies that the
system eigenstates should have a strong dressing, and in principle we
could not observe a clean “one–photon–exciting–two–atoms” effect. On
the contrary, Fig. 3c shows that the dressing is low for those states, and,
as shown in Fig. 5, our system can still be considered formed by two
separated two-level atoms and one cavity mode with shifted eigen-
frequencies. This behavior is heuristically justified by the fact that
spin–spin and spins–light couplings are competing interactions and that
the longitudinal interaction “decouples” for specific valuesof the signsof
ε1 and ε2. The signature of this “longitudinal decoupling” is given by the
asymmetry in the spectrumwith respect to the sign of ε1. Assuming that
there are only longitudinal couplings, in the interaction part of Eq. (6),
the operator ðây + âÞ should generate coherent states of light in the
ultrastrong coupling regime46. However, considering ε1 < 0 and ε2 <0,
the atomic states are not associated with coherent states if
M=m1 − m2 =0, where mk= ± 1 is the eigenstate of σ̂zk ðk = 1, 2Þ (see
Methods for more details). As a result, the ground ∣gg

�
and excited ∣eei

states, which haveM = 0, have no coherent states associated with them.
Nevertheless, the transverse interactions still affect our system, gen-
erating a small dressing that reduces the projections Pð4Þ

gg1 and Pð3Þ
ee0 to

almost 0.8 at ε1/2π=−2.4 GHz.

Table 1 | List of the fitting parameters used in Figs. 2 and 3

Name Symbol Value Unit

Resonator frequency ωr/2π 5.15 GHz

Coupling constant of Q1 g1/2π 3.33 GHz

Coupling constant of Q2 g2/2π 3.45 GHz

Energy gap of Q1 Δ1/2π 1.31 GHz

Energy gap of Q2 Δ2/2π 1.27 GHz

Persistent current energy
of Q2

ε2/2π −3.22 GHz

Persist current coefficient ~ε0=2π 201.6 GHz/mA

Bias current offset Ib0 0.547 mA

Crosstalk coefficient A −9.43 ×10−3

Res. freq. modifica-
tion ε1 > 0

B+ 0.78 ×10−3

Res. freq. modifica-
tion ε1 < 0

B− 0.73 ×10−3

We use the first eight listed parameters for an initial fit. Afterwards, we add the last three
parameters to slightly modify the fit. The initial parameters ωr, ~ε0, and Ib0 can be obtained from
the spectrum.Also, thequbit parametersgi andΔi canbeestimated from thedesignparameters.

Fig. 3 | Anticross between ∣gg1
�
and ∣ee0i. a Enlarged view of the central part of

the spectrum in Fig. 2b with fitting curve. The fitting reproduces the spectrumwell.
b Enlarged image of the anticrossing between ω30 and ω40. The white lines repre-
sent the eigenmodes of ∣gg1

�
and ∣ee0i in the non-interacting Hamiltonian (see

Methods for more details). c Projection of the third and fourth eigenstates calcu-
lated using Hamiltonian in Eq. (6) with the fitting parameters to the bare states
∣gg1

�
and ∣ee0i.
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Discussion
Wemeasured the spectrumof a circuit composed of two artificial atoms
ultrastrongly coupled to an LC resonator. The generalized Dicke
Hamiltonian with spin–spin interaction correctly describes the mea-
sured spectrum. At the energy where the sum of the atomic energies
almost matches that of the resonator, we observed one anticrossing
between the states ∣gg1

�
and ∣ee0i. This experimentally confirms the

recent theoretical prediction that one photon can simultaneously excite
two atoms28, opening a new chapter in quantum nonlinear optics.

Clearly, only the avoided-level crossing and not the excitation
process itself have been experimentally observed, because our
experiment was not designed to observe Rabi oscillations. However,
our spectroscopic observations prove the existence of this excitation.
Future work will involve reading out the qubit and photon states47 as
well as observing the one–photon–exciting–two–atoms dynamics.
Theoretically, the reduction of dressing and the asymmetry in the
spectrum could be further investigated. These studies could also be
extended to explore, for example, photon down- and up-
conversions27,48 and ultrafast two-qubit gates14,17.

Methods
Circuit Hamiltonian
Here, we describe the circuit Hamiltonian calculation in detail. The
branchfluxes across thecircuit elements,whichare Josephson junctions,
the inductanceLr, and thecapacitanceCr, followKirchhoff’s voltage laws:

φβ1 +φα1 +φa1 +φb1 =φe1 , ð7Þ

φβ2 +φα2 +φa2 +φb2 =φe2 , ð8Þ

φcr +φr +φβ1 � φβ2 =0 , ð9Þ

where φcr and φℓr represent fluxes between the resonator capacitor
and the inductor. The total Lagrangian of the circuit is

Ltot =KJ1 +KJ2 � U J1 � U J2 +Lr , ð10Þ

where

KJk =
CJ

2
β _ϕ

2
βk + _ϕ

2
ak + _ϕ

2
bk

h

+αið _ϕβk + _ϕak + _ϕbkÞ
2
i
,

ð11Þ

U Jk = � EJ βi cosðφβkÞ+ cosðφakÞ+ cosðφbkÞ
h

+αi cosðφek � φβk � φak � φbkÞ
i
,

ð12Þ

Lr =
Cr
2
_ϕ
2
cr � 1

2Lr
ðϕcr +ϕβ1 � ϕβ2Þ2 : ð13Þ

Here, k ∈ {1, 2} indicates the qubit, and the sub-index cr indicates the
capacitor of the resonator. The qubit kinetic energy part of the
Lagrangian in Eq. (10) becomes

KJi =
1
2
_ϕTM _ϕ , ð14Þ

where ϕk � ϕβkϕakϕbk

� �T
and the mass matrix is given by

Mk =CJ

βk +αk αk αk

αk 1 +αk αk

αk αk 1 +αk

0
B@

1
CA : ð15Þ

Using the canonical conjugate qi =∂Ltot=∂ _ϕi for _ϕi, where
i ∈ {βk, ak, bk}, we can rewrite Eq. (14) as

KJk =
1
2
qT
kM

�1qk : ð16Þ

Then, we obtain the total Hamiltonian of the circuit as

Htot =
X
k

qT
k
_ϕk � Ltot

=
X
k

ð4Ec~q
T
k
~M

�1
k ~qk + ELrφ

2
βk +U JkÞ

+Hr +Hint ,

ð17Þ

where 2e~q= q and CJ
~M=M. The term ELrφβk originates from Eq. (13)

since we define

Hr � Cr
2
_ϕ
2
cr +

1
2Lr

ϕ2
cr ð18Þ

as a bare LC resonator. We now replace the canonical values with the
operatorsφ ! φ̂ and q ! q̂ and impose their relation ½φ̂, q̂�= i. For the
resonator, we introduce the creation and annihilation operators.
Thereafter, we expand the quantized total Hamiltonian using the
eigenvectors ∣iii (i 2 N) of the atom Hamiltonians (Ĥtot � Ĥr � Ĥint),

Ĥtot =ℏ
X
i

ðΩð1Þ
i ∣ii1 ih ∣1 +Ωð2Þ

i ∣ii2 ih ∣2Þ+ Ĥr

� ℏ
X
i, j

ðgð1Þ
ij ∣ii1 j

�
∣1 � gð2Þ

ij ∣ii2 j
�

∣2Þðâ
y + âÞ

� EL

X
i, j

gð1Þ
ij g

ð2Þ
ij ∣ii1∣ii2 j

�
∣1 j
�

∣2 ,

ð19Þ

whereℏΩðkÞ
i is the i-th eigenenergyof atom k andℏgðkÞ

ij = IzpfΦ0 ih ∣φ̂βk ∣ j
�

is the coupling matrix element (Izpf =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωr=2Lr

p
). After truncating the

higher state of the flux qubits, we obtain the Hamiltonian of two two-
level atoms and a resonator, Eqs. (5) and (6). In Eqs. (5) and (6), the

Fig. 4 | Comparison between the lowest eigenstates of the Hamiltonian in Eq.
(6) and thenon-interactingHamiltonian (light pinkcurves).Thenon-interacting
Hamiltonian is derived from Eq. (6) with g1 = g2 = 0, shifting the atom frequencies.
The shifts are chosen such that Δ1, 2 ! Δ1, 2 exp�2ðg1, 2=ωrÞ2. For simplicity, we
ignore the qubit bias current crosstalk, A = 0.
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spin–spin interaction reduces the current flowing in the resonator
loop, which in this system is the ferromagnetic coupling.

One–photon two–atoms energy exchange
Figure 4 shows numerically calculated transition frequencies of the
systemusing thefit parameters over awider range. For comparison,we
overlaid the eigenvalues of the Hamiltonian in Eq. (6) with the eigen-
values calculated when g1 = g2 = 0. In the latter case, we shifted the
atoms and cavity frequencies to consider the dressing effect. From
Fig. 4, it is possible to notice that the eigenvalues of the interacting and
non-interacting (g1 = g2 = 0) Hamiltonians almost coincide, proving
that our system, operating in the ultrastrong coupling regime, can still
be considered composed of two independent atoms and a resonator
that interact in the crossing points. Figure 5a is an enlarged image of
Fig. 4, with the range around the anticrossing between ω30 and
ω40(ε1 < 0). In our circuit, ω01 and ω02 are the frequencies of dressed
qubits 1 and 2, respectively. From the enlarged image of the

anticrossing in Fig. 5a, b, it is possible to see that the transition fre-
quency of ∣gg1

�
at the anticrossing point is 5.312GHz, which is close to

the sumof the frequencies of the dressed qubits,ω01 +ω02 = 5.318GHz.
It has been shown that when an atom interacts longitudinally with

light, the atomic states are associatedwith coherent states of light46. In
our system, the generation of coherent states, given by the long-
itudinal coupling of the atoms with the resonator, depends on the
signs of ε1 and ε2. In the following derivation, we show that when ε1 < 0
and ε2 < 0, the atomic states ∣ge

�
and ∣eg

�
are associated with the

coherent states of light, while states ∣gg
�
and ∣eei are not associated

with those.
Considering the system Hamiltonian [Eq. (6)] with Δk =0,

g1 = g2 = g, and substituting σzkwith its eigenvaluemk = ± 1, we canwrite
the following:

Ĥs=ℏ=
jε1j
2

m1 +
jε2j
2

m2 +ωrâ
yâ+ gMðây + âÞ , ð20Þ

with M = sgnðε2Þm2 � sgnðε1Þm1. Performing the substitution
â= b̂�Mg=ωr, we obtain

Ĥs=ℏ=ωrb̂
y
b̂+

jε1j
2

m1 +
jε2j
2

m2 �M2 g
2

ωr
, ð21Þ

which is the Hamiltonian of a harmonic oscillator. By applying the
annihilation operator b̂ to its ground state ∣0iM (i.e., b̂∣0iM =0), we
have

â∣0iM = �M
g
ωr

∣0iM : ð22Þ

From Eq. (22), we see that atomic states withM = 0 are associated with
the zero-photon state; while atomic states with M = ±2 are associated
with photonic coherent states ∣±αi. In turn,M depends on the signs of
ε1 and ε2. If ε1 < 0 and ε2 < 0, thenM− ≡M =m1 −m2. If ε1 > 0 and ε2 < 0,
thenM+ ≡M = − (m1 +m2). Table 2 shows the eight possible states as a
function of the sign of ε1 when the interaction is longitudinal. This
explains the asymmetry of the spectra with respect to the sign of ε1.

Data availability
All figures and results in this study can be reproduced using the CSV
data and code provided in the supplementary information. All data are
available in themain text or supplementary information, including the
relevant CSV and TXT files.

Code availability
All custom codes used in this study are provided as text files in
the Supplementary Information.
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