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EEG-based brain-computer interface enables
real-time robotic hand control at individual
finger level

Yidan Ding 1, Chalisa Udompanyawit2, Yisha Zhang1 & Bin He 1,2,3

Brain-computer interfaces (BCIs) connect human thoughts to external devices,
offering the potential to enhance life quality for individuals with motor
impairments andgeneral population.NoninvasiveBCIs are accessible to awide
audience but currently face challenges, including unintuitive mappings and
imprecise control. In this study, we present a real-time noninvasive robotic
control system using movement execution (ME) and motor imagery (MI) of
individual finger movements to drive robotic finger motions. The proposed
system advances state-of-the-art electroencephalography (EEG)-BCI technol-
ogy by decoding brain signals for intended finger movements into corre-
sponding roboticmotions. In a study involving 21 able-bodied experiencedBCI
users, we achieved real-time decoding accuracies of 80.56% for two-finger MI
tasks and 60.61% for three-finger tasks. Brain signal decoding was facilitated
using a deepneural network, withfine-tuning enhancingBCIperformance.Our
findings demonstrate the feasibility of naturalistic noninvasive robotic hand
control at the individuated finger level.

Brain-computer interfaces (BCIs) have showngreatpromises inproviding
an alternative communication or control method for individuals with
motor disabilities by bridging human thoughts with external devices
without natural muscular outputs1,2. Both invasive and noninvasive BCI
systemshavebeendeveloped forbiological limbmanipulation3–6, robotic
device control7–11, and linguistic communication12–15. Invasive BCI systems
have achieved more sophisticated and intuitive robotic device control
compared with noninvasive approaches due to higher signal-to-noise
ratio and spatial resolution of recorded neural signals16,17. However, the
requirements for surgical implantation and long-term maintenance
highly limit the target populations of this approach. On the other hand,
electroencephalography (EEG)-basednoninvasive BCI systemshavebeen
demonstrated to achieve control of external devices in both able-bodied
populations and individuals with motor impairments18–22. The noninva-
siveness, low-cost, and portability of EEG promise to promote the prac-
tical applicability of BCI systems in both clinical and home settings.

As a promising alternative to implantable brain-controlled robotic
systems, research efforts in EEG-based BCI control of upper extremity
robotic devices have been ongoing for years. Meng et al.11

demonstrated EEG-based motor imagery (MI) BCI control of a robotic
arm for reach and grasp tasks in three-dimensional space. Edelman
et al.10 demonstrated continuous control of the reach of a robotic arm
using an EEG-based MI-BCI with the aid of EEG source imaging. How-
ever, the aforementioned paradigms utilize nonintuitive mappings
between the user’s intention and the external robotic control com-
mands, and the control is still limited to largemuscle and joint groups.
In those paradigms, multi-dimensional translational motions of the
robotic devices are controlled by limb motor imagery tasks, resulting
in a gap between the movement intentions and the desired robotic
motions. This contrasts with the natural muscle outputs through the
neuromuscular pathway. Additionally, using motor intention at the
limb level to actuate robotic devices also limits the precision and
complexity of the systems. It therefore has driven researchers in
noninvasive BCI to investigatemore naturalistic control systemswith a
focus on more dexterous human motions.

Among various physiological functions, restoring or augmenting
hand and arm function is the most desired by both motor-impaired
and able-bodied populations, as even partial functional improvement

Received: 21 January 2025

Accepted: 8 June 2025

Check for updates

1Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. 2Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA. 3Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA. e-mail: bhe1@andrew.cmu.edu

Nature Communications |         (2025) 16:5401 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0003-9363-7755
http://orcid.org/0009-0003-9363-7755
http://orcid.org/0009-0003-9363-7755
http://orcid.org/0009-0003-9363-7755
http://orcid.org/0009-0003-9363-7755
http://orcid.org/0000-0003-2944-8602
http://orcid.org/0000-0003-2944-8602
http://orcid.org/0000-0003-2944-8602
http://orcid.org/0000-0003-2944-8602
http://orcid.org/0000-0003-2944-8602
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61064-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61064-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61064-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61064-x&domain=pdf
mailto:bhe1@andrew.cmu.edu
www.nature.com/naturecommunications


can significantly extend their physical abilities23,24. The dexterity of the
human hand allows individuals to perform precise, diverse, and flex-
ible actions in awide range of everyday tasks25,26. Its disproportionately
large representation in the sensorimotor cortex underscores the
hand’s versatility, motivating research into decoding individual finger
movements and controlling robotic devices at the finger level27.
Impairments in upper extremity function, particularly affecting the
hand, are among the most common consequences of stroke, with
deficits observed in nearly half of all stroke patients28. These impair-
ments significantly hinder daily living activities that demand precise,
individual finger control, which conventional rehabilitation tools and
grossmotor BCIsoften fail to address. This gapunderscores theurgent
need for BCI-driven robotic devices capable of decoding and restoring
finger-level dexterity, thereby enabling patients to regain functionally
critical fine motor skills. However, the substantial overlap in neural
responses associated with individual fingers presents a key challenge
for implementing precise finger-level control in such systems29. Efforts
have been made for years to enable dexterous finger control through
the use of intracortical brain signals. Hotson et al.30 reported an elec-
trocorticography (ECoG)-based individual finger movement real-time
decoding system. Nason et al.31 reported that the independent move-
ments of two finger groups, the index finger and themiddle-ring-small
fingers combined, can be reproduced in real-time using intracortical
neural signals in non-human primates. Willsey et al.32 introduced a
shallow feed-forward neural network to further improve the real-time
decoding performance of the two-degree-of-freedom finger move-
ments. Guan et al.33 reported neural control of individual prosthetic
fingers from both contralateral and ipsilateral sides in two tetraplegic
patients with an implanted 96-channel array in the left posterior par-
ietal cortex. Intracortical BCIs for quadcopter control and typing have
been recently proposed using finger decoding34,35. Additionally, there
have been attempts to noninvasively separate individual finger
movements and movement intentions. Alazrai et al.36 reported the
feasibility of offline decoding of individual finger movement tasks
from scalp EEG signals. The same group further explored the offline
classification of finger-relatedmotor imagery tasks from EEG signals of
both able-bodied and transradial amputated subjects37. Lee et al.38

used ultra-high-density EEG to perform offline decoding of the
movement of individual finger pairs. Sun et al.39 decoded non-
repetitive finger flexion and extension from offline low-frequency
time-domain amplitude. Alsuradi et al.40 assessed the offline classifi-
cation of individual-finger motor imagery using a data-driven
approach with Shapley-informed augmentation. However, these stu-
dies relied on lengthy EEG segments and computationally intensive
feature extraction processes for accurate decoding, which hindered
online decoding and real-time control. Despite the promising progress
in controlling individual prosthetic fingers through implantable devi-
ces, real-time control of robotic hands at the individual finger level
using noninvasive neural signals has not yet been demonstrated. To
bridge this critical gap, our study demonstrates the capability of real-
time robotic hand control at the individual finger level utilizing a deep-
learning-based EEG-BCI decoder.

Decoding individual finger movements noninvasively within the
same hand presents significant challenges. Firstly, finger movements
within the same hand activate relatively small and highly overlapping
regions within the sensorimotor cortex, complicating the differentia-
tion between them from noninvasive recordings29. Secondly, as EEG
signals travel from their cerebral origin to the scalp surface, their
spatial resolution and signal-to-noise ratio are significantly attenuated
due to volume conduction effects and other factors, further impeding
the precise decoding of neural activities41,42. These factors collectively
pose a substantial bottleneck for effective noninvasive decoding of
finger movements. However, the emergence of deep learning appli-
cations in BCI has boosted decoding performance by automatically
learning hierarchical and dynamic representations from raw signals,

which holds promise for recognizing nuances in noninvasive brain
signals induced by finger movements within the same hand. The
benefits of deep learning techniques over conventional methods have
been investigated in BCI decoding43–45. Lawhern et al.46 designed
EEGNet, a convolutional neural network optimized for EEG-based BCI
systems. EEGNet and its variants show high versatility in various EEG-
BCI applications46,47. By leveraging EEGNet with a fine-tuning
mechanism, we were able to continuously decode single-finger
movement execution (ME) and imagination of the same hand from
scalp EEG signals and convert the decoding outputs into online control
commands for real-time robotic finger control.

Here we present a noninvasive BCI system with the capability of
continuous naturalistic robotic finger control from finger ME and MI
activities. In a group of 21 able-bodied human participants who com-
pleted the study, we show that after one session of training andmodel
fine-tuning, excellent accuracy can be achieved for 2-finger and
3-finger online robotic control using theMI andMEparadigms.We test
that online training can significantly enhance task performance by
integrating the network’s session-specific learning through fine-tuning
with the subjects’ adaptation to real-time feedback, and that online
smoothing can further stabilize the control outputs. The proposed
system advances noninvasive BCI-based robotic control at the indivi-
dual finger level, highlighting their potential to be developed into
practical devices for clinical applications and everyday tasks.

Results
In this study, we investigated finger-level real-time robotic control via
EEG-based BCI. With the aim of naturalistic control, the robotic finger
movement was designed to be controlled by the executed or imagined
movement of the corresponding finger within the dominant hand
(right hand). Twenty-one able-bodied individuals with previous limb-
level BCI experience participated in one offline session and two online
sessions each for finger ME and MI tasks. The offline session familiar-
ized the participants with the task and was used to train subject-
specific decoding models. In the online sessions, EEGNet-8.2 was
implemented to decode individual finger movements in real time46.
Participants received two forms of feedback reflecting the continuous
decoding results, including visual feedback on a screen, where the
target finger changed color to indicate the correctness of the decoding
(green for correct, red for incorrect), and physical feedback from a
robotic hand, which moved the detected finger in real time. The
feedback period began one second after the trial onset and continued
until the trial ended. To alleviate the problem of inter-session varia-
bility in decoding, in each online session, a fine-tuned model was fur-
ther trained from the base model using the same-day data collected in
the first half session48. The online task performance was evaluated
usingmajority voting accuracy, computed as thepercentage of trials in
which the predicted class, determined by themajority vote of classifier
outputs over multiple segments of the trial, matches the true class49,50.
Additionally, the precision and recall with respect to each class were
calculated for every classifier. Precision evaluates themodel’s accuracy
in correctly identifying instances of a specific class, whereas recall
measures the classifier’s effectiveness in detecting all relevant instan-
ces. Each session included 16 runs of binary classification paradigm
with thumb and pinky tasks, and 16 runs of ternary classification
paradigm, decoding tasks involving the thumb, index finger, and
pinky. The basemodel was used to decode the first 8 runs of each task,
while the fine-tuned model was applied to the last 8 runs.

Finger-level robotic control via motor intention
We demonstrated the feasibility of real-time robotic control using
finger-level MI (Fig. 1, Supplementary Fig. S1, SupplementaryMovies S1,
S2). Across 21 participants, the results of a two-way repeated measures
Analysis of Variance (ANOVA) model indicated a significant improve-
ment in MI performance across two online sessions for both binary
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(F = 14.455, p =0.001, Fig. 1A) and ternary (F= 24.590, p <0.001, Fig. 1B)
paradigms. Performance enhancements were evident in the precision
and recall metrics for individual classes, showing consistent improve-
ments across all categories between sessions (Fig. 1C, Supplementary

Fig. S1A). Furthermore, the feature representations learned by the deep
learning decoder exhibited enhanced class discriminability with
increased training size across sessions, as demonstrated by visualiza-
tions of intermediate-layer activations (Supplementary Fig. S2).

A B

E

FD

C

Fig. 1 | Online performance in motor imagery (MI) robotic finger control.
Group-level online performance for 2-finger (A) and 3-finger (B) MI across sessions
(n = 21 subjects). Comparisons between the base and fine-tuned models for Ses-
sions 1 and 2 were conducted using a two-tailed Wilcoxon signed-rank test with
Bonferroni correction for multiple comparisons (*** if p <0.001, * if p <0.05). Two-
way repeated-measures ANOVAs were applied with main effects of session and
model, and comparisons between Sessions 1 and 2 were indicated by the main
effect of session (### if p <0.001, ## if p <0.01). The red dashed line indicates the
chance level, while the gray dashed line represents the median performance under
each condition. The black dots represent every instance. P-values: 0.0002
(A, Session 1), 0.0122 (A, Session 2), 0.0011 (A, Session 1 vs. 2); 0.0271 (B, Session 1),
3.62e−05 (B, Session 2), 7.55e−05 (B, Session 1 vs. 2). Group-level precision of
2-finger and 3-finger MI decoding across sessions (C) and group-level recall of

2-finger and 3-finger MI decoding results for different classifiers (D)
(n = 21 subjects). The center lines indicate the median values. The boxes extend
from the lower quartile to the upper quartile. Diamonds indicate outliers that are
more than 1.5 times the interquartile range above the third quartile or below the
first quartile. Comparisons between the precision across sessions and recall across
models were conducted using a two-tailed Wilcoxon signed-rank test with Bon-
ferroni correction for multiple comparisons (*** if p <0.001, ** if p <0.01, * if
p <0.05). P-values: 4.62e−08 (C, Thumb, 2-class), 0.0009 (C, Thumb, 3-class),
0.0395 (C, Index, 3-class), 0.0012 (C, Pinky, 3-class), 0.0412 (D, Thumb, 3-class),
0.0007 (D, Index, 3-class). E Group averaged alpha band (8−13Hz) ERD topology
for MI online control tasks. F Group-averaged saliency topological maps of the
EEGNet models for online MI sessions. Channels with the highest 25% saliency
values are highlighted by white circles on the electrodes.
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The ANOVA also identified a significant main effect of model type
for binary (F = 31.380, p < 0.001) and ternary (F = 22.443, p < 0.001)
tasks. Post-hoc pairwise comparisons were performed to assess the
efficacy of fine-tuning during each session on the performance out-
comes. Bonferroni-corrected two-tailed Wilcoxon signed-rank test
results indicated that fine-tuned models significantly outperformed
basemodels in all online sessions andparadigms (p < 0.001 for Session
1 binary tasks and Session 2 ternary tasks, p <0.05 for Session 2 binary
tasks and Session 1 ternary tasks; Fig. 1A, B). Comparisons of
intermediate-layer feature maps further indicated that fine-tuned
models exhibited enhanced decoding capabilities relative to base
models (Supplementary Fig. S2). This observation aligns with previous
studies demonstrating that fine-tuning effectively enhances model
capacity by adapting it to the target dataset’s distribution51,52. Despite
relatively balancedprecision values across all categories using the base
models (Supplementary Fig. S1B), imbalances were noted in the
models’ ability to identify relevant instances of different classes
(Supplementary Fig. S1C, D). Specifically, the thumb and the index
finger in the 3-class paradigm had lower recall values when using the
base models (Fig. 1D). Fine-tuning contributed to addressing these
class imbalances by significantly enhancing the detection capability of
the categories with low recall values, as confirmed by multiple-
comparison corrected two-tailed Wilcoxon signed-rank test results
(Fig. 1D). After one session of online training and model fine-tuning,
2-finger online MI robotic control can be achieved with an average
accuracy of 80.56% across 21 subjects, and 3-finger online control can
achieve the average accuracy of 60.61%.

The involvement of contralateral motor and premotor cortices
during MI has been documented in many studies53,54. To further elu-
cidate this phenomenon, alpha band (8–13 Hz) event-related desyn-
chronization (ERD) patterns were extracted from EEG data to analyze
MI-induced electrophysiological activation. A significant power
decrease was observed in the left sensorimotor region duringMI tasks
(Fig. 1E). Complementing these findings, saliency maps generated by
EEGNet models, using the gradient of the output class probability
relative to the input EEG signals, highlighted the hand knob area in the
left primary motor cortex (Fig. 1F). These findings align with prior
research identifying this region as critical for motor intention. The
spatial concordance between the saliency topologies of the decoders
and the ERD patterns reinforced the sensorimotor region’s role in the
model’s predictions.Tovalidate this observation,weconductedoffline
decoding experiments comparing performance across sensorimotor-
specific channels, non-sensorimotor channels, and whole-scalp inputs.
To control for the potential confounding effect of input dimension-
ality, the number of channels in the sensorimotor and non-
sensorimotor regions was matched. Sensorimotor channels achieved
decodingperformancecomparable towhole-scalp input,whereasnon-
sensorimotor channels showed significantly reduced accuracy (Sup-
plementary Fig. S3A, C), reinforcing the critical role of sensorimotor
regions in finger MI decoding. Further dissection of cortical con-
tributions was achieved by isolating four subregions, each comprising
11 channels, including contralateral and ipsilateral hand knob areas,
which are responsible for controlling the fine movements of fingers,
occipital cortex, and frontal regions (Supplementary Fig. S4A). Among
the subregions, the left and right hand knob areas yielded the highest
decoding accuracies (Supplementary Fig. S4E), aligning with our
electrophysiological analysis results and confirming the decoder’s
dominant reliance on these regions. This convergence confirms the
decoder’s primary reliance on the sensorimotor region during MI.
However, the accuracy using only the contralateral hand knob as input
was found to be significantly lower than 128-channel whole-scalp input
(Supplementary Fig. S4C). This finding aligns with the saliencymaps of
the EEGNet models, which revealed a predominant focus on the hand
knob area in the left primarymotor cortex with additional emphasis in
the right hand knob region and parietal channels (Fig. 1F). Together,

the saliency maps and subregion analyses underscore the key role of
the contralateral hand knob region in decoding finger movements,
while also suggesting that distributed electrode configurations cap-
ture supplementary task-relevant signals.

To delineate the factors contributing to the observed perfor-
mance improvements, offline simulations were conducted using EEG
data collected during MI robotic control sessions. Data from fine-
tuned runs in Session 2were evaluated using threemodels: the Session
1 Base model (S1-B), the Session 1 Fine-tuned model (S1-F), and the
Session 2 Basemodel (S2-B). Across sessions andmodels, significant or
near-significant improvementswere evident in binary tasks (S1-B vs. S1-
F: p = 0.052; S2-B vs. S2-F: p <0.001; S1-B vs. S2-B: p =0.019; S1-F vs. S2-
F: p <0.001, Fig. 2A) and ternary tasks (S1-B vs. S1-F: p =0.044; S2-B vs.
S2-F:p = 0.004; S1-B vs. S2-B:p < 0.001; S1-F vs. S2-F:p <0.001, Fig. 2A).
The observed improvements were achieved using the same input data
across compared models, ruling out data quality as confounding fac-
tors, and therefore highlighting the machine learning effects. The
enhanced performance of fine-tuned models (S1-F, S2-F) over their
base counterparts (S1-B, S2-B) demonstrates the effectiveness of
machine learning-driven adaptation in refining feature extraction for
session-specific data. Furthermore, the superior performance of Ses-
sion 2 models (S2-B, S2-F) over Session 1 models (S1-B, S1-F) suggests
enhanced decoding capacities facilitated by increased training sizes.
To investigate the effects of human learning, offline decoding was
performed using the Filter Bank Common Spatial Pattern (FBCSP)
method paired with a Linear Discriminant Analysis (LDA) classifier50. A
two-way repeated-measures ANOVA revealed a significant main effect
of the model in 3-class offline simulations (Fig. 2B). Significant per-
formance improvement was observed during the first 3-class session
when comparing the last eight fine-tuned runs with the first eight base
runs (p <0.01, Fig. 2B). A numerical enhancement in decoding per-
formancewas also noted inSession 2 compared toSession 1 for ternary
tasks (Cohen’s d = 0.222, F = 3.065, p =0.095). However, no clear
improvement trend was observed in online decoding accuracy over
eight continuous runs (Fig. 2C). These findings suggest an initial
within-session human learning effect and cross-session human training
for the 3-finger MI tasks.

Movement execution controlled robotic finger movements
The same group of participants (n = 21) also participated in one off-
line session and two online sessions of finger ME tasks, following the
same experimental design as theMI tasks (SupplementaryMovies S3,
S4). Significant performance improvements were observed across
sessions and between the fine-tuned and base models, as indicated
by a two-way repeated-measures ANOVA (2-class session effect:
F = 8.826, p = 0.007; 2-class model effect: F = 35.034, p < 0.001,
3-class session effect: F = 12.914, p = 0.001; 3-class model effect:
F = 35.869, p < 0.001, Fig. 3A, B, Supplementary Fig. S5). Enhanced
class separability was observed in the learned feature space across
sessions, with fine-tuned models exhibiting clearer class distinction
than their base model counterparts (Supplementary Fig. S6). Online
training substantially increased precision and recall for thumb and
pinky across sessions (Fig. 3C, Supplementary Fig. S5A). Offline
simulation results comparing different models on the same dataset
demonstrated enhanced decoding performance using Session 2
models compared to Session 1 models (2-class decoding: p(S1-B vs.
S2-B) = 0.140; p(S1-F vs. S2-F) < 0.001; 3-class decoding: p(S1-B vs. S2-
B) = 0.009; p(S1-F vs. S2-F) < 0.001, Supplementary Fig. S7A). This
improvement highlighted the impact of increased training size on
machine learning performance across sessions. Significant decoding
improvements were observed when comparing fine-tuned models to
base models within Session 2 (2-class decoding: p(S2-B vs. S2-
F) < 0.001; 3-class decoding: p(S2-B vs. S2-F) = 0.001, Supplementary
Fig. S7A), confirming the efficacy of fine-tuning in enhancing per-
formance within the same session.
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As with the MI paradigm, offline simulation results using the
FBCSP-LDA model to decode EEG data from online sessions showed
within-session performance improvements during the first 3-class
session, but not under other conditions (Supplementary Fig. S7B). A
significant session effect in the 3-class simulation results further sug-
gested human learning involvement in the 3-class paradigm (Supple-
mentary Fig. S7B). However, no consistent improvement in online
decoding accuracy was observed across eight continuous runs within
the same paradigm (Supplementary Fig. S7C).

Fine-tuningeffectivelymitigated the imbalances in the classification
of different fingers by improving recall and precision for the most
challenging classes (Fig. 3D, Supplementary Fig. S5B–D). With the fine-
tuned model, 2-finger online ME robotic control was achieved with an
average accuracy of 81.10% across 21 subjects, while the average accu-
racy for 3-finger control was 60.11%. Electrophysiological analysis
showed a pronounced desynchronization in the alpha band power
within the left sensorimotor regionduring right-handfingermovements,
consistent with established neurophysiological patterns of motor plan-
ning and execution (Fig. 3E). Deep learning decoders similarly focused
predominantly on the motor cortex (Fig. 3F, Supplementary Fig. S3B,
S4D), aligning with known neurophysiological mechanisms.

Effectiveness of fine-tuning persists through continued training
Whereas significant improvement in online control performance
across sessions has been observed in arm-level MI-based BCIs11,55,56, to

thoroughly investigate the learning effects of onlineMI robotic control
at the individual finger level, 16 out of the 21 subjects completed a total
of five MI online sessions. The base model was updated on a session-
by-session base by training on all the available subject-specific data
from previous MI sessions. The same metric, i.e. majority voting
accuracy, was used for performance evaluation.

Two-way repeated-measuresANOVAswere conducted to evaluate
the effects of session, model, and session-model interaction on per-
formance. The results revealed significant learning effects across ses-
sions for both 2-class and 3-class tasks (2-class: F = 7.127, p < 0.001;
3class: F = 14.406, p <0.001, Fig. 4A, B), demonstrating noticeable
performance improvements during online training. Additionally, a
significant model effect indicated that fine-tuning consistently
enhanced decoding accuracy as training sessions progressed (2-class:
F = 35.606, p <0.001; 3class: F = 39.138, p < 0.001, Fig. 4A, B). However,
the session-model interaction effect was not significant, suggesting
comparable learning speeds between the base and fine-tuned models
(2-class: F = 1.375, p =0.253; 3class: F = 1.686, p =0.164).

To further investigate performance dynamics, comparisons
between consecutive sessions were conducted using one-sided Wil-
coxon signed-rank tests. These analyses revealed a noticeable boost in
performance during the early stages of training, specifically between
Session 2 and Session 1 (Fig. 4C, D). However, subsequent sessions
showed no significant performance enhancements, despite numerical
improvements (Fig. 4C, D). Specifically, one session of online training

A B C

Fig. 2 | Machine and human learning effects forMI-based robotic control tasks.
A Offline simulation results (n = 21 subjects) for Session 2 fine-tuned runs using
Session 1 basemodels (S1-B), Session 1 fine-tunedmodels (S1-F), and Session 2 base
models (S2-B), as well as the online decoding results for Session 2 fine-tuned runs
(S2-F). The center lines indicate the median values. The boxes extend from the
lower quartile to the upper quartile. Diamonds indicate outliers that are more than
1.5 times the interquartile range above the third quartile or below the first quartile.
Comparisons between the sessions and the models were made using a two-tailed
Wilcoxon signed-rank test with Bonferroni multi-comparison correction (*** if
p <0.001, ** if p <0.01, * if p <0.05, n.s. if no statistical significance is found). P-
values: 0.0003 (S2-B vs. S2-F, 2-class), 0.0254 (S1-B vs. S2-B, 2-class), 0.0003 (S1-F
vs. S2-F, 2-class), 0.0449 (S1-B vs. S1-F, 3-class), 0.0074 (S2-B vs. S2-F, 3-class),
0.0009 (S1-B vs. S2-B, 3-class), 0.0002 (S1-F vs. S2-F, 3-class). B Offline FBCSP
decoding results onMI robotic finger control data (n = 21 subjects). S1-B, S1-F, S2-B,

and S2-F denote decoding results for Session 1 base runs, Session 1 fine-tuned runs,
Session 2 base runs, and Session 2 fine-tuned runs respectively. The center lines
indicate the median values. The boxes extend from the lower quartile to the upper
quartile. Diamonds indicate outliers that are more than 1.5 times the interquartile
range above the third quartile or below the first quartile. Statistical analysis was
conducted using a two-way repeated-measures ANOVAwithmain effects of session
and model. Main effect of the model: ### if p <0.001, n.s. if no statistical sig-
nificance is found. Post hoc comparisons between models within the same session
weremade using a two-tailedWilcoxon signed-rank test with Bonferroni correction
(*** ifp <0.001, ** ifp <0.01, * ifp <0.05, n.s. if no statistical significance is found). P-
values: 0.0005 (model, 3-class), 0.0114 (S1, 3-class).CGroup-averagedperformance
trends across eight consecutive online runs within the same paradigm. The center
lines indicate the mean values. The shaded areas represent the standard errors.
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was sufficient for the EEGNet models to extract distinguishable fea-
tures from scalp EEG signals, performing comparably to later training
sessions. This highlights the efficiency of the training process. To
evaluate whether the compact architecture of EEGNet-8,2, with only a

few thousand trainable parameters, limited its capacity to leverage
larger datasets, we performed offline analyses using a wider and dee-
per variant (deepEEGNet). This model increased the number of filters
in each layer and incorporated two additional separable convolutional

A B

E

FD

C

Fig. 3 |Onlineperformance inmovement execution (ME) roboticfingercontrol.
Group-level online performance for 2-finger (A) and 3-finger (B) ME across sessions
(n = 21 subjects). Comparisons between the base and fine-tuned models for Ses-
sions 1 and 2 were conducted using a two-tailed Wilcoxon signed-rank test with
Bonferroni correction formultiple comparisons (*** if p <0.001, ** if p <0.01). Two-
way repeated-measures ANOVAs were applied with main effects of session and
model, and comparisons between Sessions 1 and 2 were indicated by the main
effect of session (## if p <0.01). The red dashed line indicates the chance level,
while the gray dashed line represents the median performance under each condi-
tion. The black dots represent every instance. P-values: 0.0001 (A, Session 1),
0.0055 (A, Session 2), 0.0075 (A, Session 1 vs. 2); 0.0003 (B, Session 1), 0.0026
(B, Session 2), 0.0018 (B, Session 1 vs. 2). Group-level precision of 2-finger and
3-finger ME decoding across sessions (C) and group-level recall of 2-finger and

3-fingerMEdecoding results for different classifiers (D) (n = 21 subjects). The center
lines indicate the median values. The boxes extend from the lower quartile to the
upper quartile. Diamonds indicate outliers that are more than 1.5 times the inter-
quartile range above the third quartile or below the first quartile. Comparisons
between the precision across sessions and recall across models were conducted
using a two-tailed Wilcoxon signed-rank test with Bonferroni correction for mul-
tiple comparisons (*** if p <0.001, * if p <0.05). P-values: 0.0003 (C, Thumb, 2-
class), 1.79e−05 (C, Pinky, 3-class), 0.0310 (D, Thumb, 2-class), 3.35e−05 (D, Index,
3-class). E Group averaged alpha band (8−13Hz) ERD topology for ME online con-
trol tasks. F Group-averaged saliency topological maps of the EEGNet models for
online ME sessions. Channels with the highest 25% saliency values are highlighted
by white circles on the electrodes.
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A B
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Fig. 4 | Effects of online trainingonMI roboticfinger control.Group-level trends
in 2-finger (A) and 3-finger (B) MI accuracy over five online sessions
(n = 16 subjects). The center lines indicate the mean values. The gray dashed line
represents the chance level, and error bars indicate the standard errors. The per-
formance distribution for the Base and Fine-tuned models across all sessions is
shown on the right. The center lines indicate the median value. The boxes extend
from the lower quartile to the upper quartile, and the lines indicate 1.5 times the
interquartile range. Statistical analysis was conducted using a two-way repeated-
measures ANOVAwithmain effects of session andmodel. Main effect of themodel:
### if p <0.001. P-values: 2.6e−05 (A), 1.53e−05 (B). Pairwise comparisons of
2-finger (C) and 3-finger (D) MI accuracy between consecutive sessions

(n = 16 subjects). The center lines indicate the median values. The boxes extend
from the lower quartile to the upper quartile. The whiskers span up to 1.5 times the
interquartile range. One-sidedWilcoxon signed-rank tests were performed for each
session pair and model type. Statistical significance after Bonferroni correction is
denoted as ***p <0.001, **p <0.01, *p <0.05. P-values: 0.0260 (C, 2-1, Base), 0.0024
(D, 2-1, Base), 0.0012 (D, 2-1, Fine-tuned), 0.0103 (D, 4-3, Base). Linear regression
analysis of the improvement in 2-finger (E) and 3-finger (F)MI accuracy achieved by
the fine-tuned model compared to the Base model across five sessions. The center
line indicates the linear regression model fit of the data. The shaded region indi-
cates the 95% confidence interval for the regression.
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layers before the flatten layer (Supplementary Table S1). Despite
modest numerical improvements in decoding accuracy (2-class:
+1.21%; 3-class: +1.52%) compared to the simulated results using EEG-
Net, the overall learning trend remained consistent using deepEEGNet
(Supplementary Fig. S8). For this comparison, deepEEGNet results
were benchmarked against EEGNet’s simulated outcomes rather than
online performance metrics to mitigate potential confounding effects
of real-time feedback. This persistent plateau suggests that the
observed trend may stem from inherent limitations in EEG-derived
features for sophisticated finger movement decoding, rather than
model capacity alone.

To quantify the effects of fine-tuning, linear regression analyses
were performed on the accuracy differences between fine-tuned
models and base models across training sessions. The results
demonstrated a significant superiority of fine-tunedmodels as training
progressed, reflected by significant positive offsets (2-class: t = 4.251,
p <0.001; 3class: t = 2.992, p =0.004, Fig. 4E, F). However, the session
effect was not significant (2-class: t = −1.558, p = 0.311; 3class: t = 0.286,
p =0.776, Fig. 4E, F), indicating that the decoding capability of the fine-
tuned models remained consistently superior to that of the base
models throughout training. These findings confirm the effectiveness
of fine-tuning in mitigating the cross-session variability and improving
the performance of deep-learning models across multiple sessions.

In addition to online behavioral results, offline decoding and
electrophysiological analysis were conducted to examine the training
effects on the human side. Offline decoding of single-session EEG data
using an FBCSP-LDA model revealed no improvement in signal dis-
criminability for binary tasks (Supplementary Fig. S9A). However, for
ternary tasks, significant improvements were observed in fine-tuned
runs compared to base runs, as indicated by a two-way repeated-
measures ANOVA (F = 15.028, p = 0.001, Supplementary Fig. S9B), and
the enhancement in the data discriminability mainly occurs in the first
session (Cohen’s d =0.502 for Session 1, Supplementary Fig. S9B). This
indicates a plateau in humanMI learning at the early stages of training.
One-way ANOVA analysis of the EEG data collected during the online
training sessions showed that ERD levels at channel C3, which is
believed to produce the strongest neural signals related to right-hand
MI, remained consistent throughout five training sessions (2-class:
F =0.432, p = 0.784; 3-class: F = 0.284, p =0.887, Supplementary
Fig. S10). These findings suggest that the proposed paradigm requires
minimal training to achieve satisfactory performance.

Online smoothing stabilizes the robotic control
Despite the strong performances achieved by deep-learning-based
decoders in finger-level robotic control tasks, this sophisticated con-
trol paradigm remains challenging. The primary difficulties stem from
the low signal-to-noise ratio and limited spatial resolution of scalp EEG,
particularly in ternary classification tasks with an increased number of
categories57. To further enhance robotic control performance, we
developed an online smoothing approach aimed at stabilizing robotic
movements by incorporating previous decoding outputs into the
decision-making process (Supplementary Movies S3, S4). Out of the
21 subjects studied, 16 participated in one ME online session and one
MI online session, with each session comprising four runs using the
original control mechanism and four runs using the smoothing
mechanism. In addition to accuracy, we evaluated the efficacy of the
smoothing approach using two additionalmetrics: Label Shift, defined
as the number of changes in the continuously predicted results within
one trial, and All-Hit Ratio, calculated as the percentage of trials in
which all predictions matched the true label.

Separate linear mixed-effect models were constructed for each
metric across the 2-fingerMEparadigm (Fig. 5A), 3-fingerMEparadigm
(Fig. 5B), 2-finger MI paradigm (Fig. 5C), and 3-finger MI paradigm
(Fig. 5D). No significant differences were observed between the
smoothed outputs and the original ones in terms of accuracy, which

suggests that the smoothing approach maintained task performance
across these paradigms. Furthermore, in all four paradigms, we
observed a significant reduction in the number of label shifts, reflect-
ing enhanced stability in the output control commands. Comparing
thepercentageof All-Hit trials before and after applying the smoothing
approach, we found that it effectively filtered out small perturbations
during the tasks, leading to better overall control (Fig. 5E, F). These
findings underscore the potential of the smoothing approach to
improve the robustness and reliability of EEG-based robotic control
systems.

Offline decoding between different finger pairs
The decoding results from offline sessions provided valuable insights
into the discriminability of different finger groups, guiding the design
of online experimental paradigms. Subjects were instructed to per-
form either ME or MI of the thumb, index finger, middle finger, and
pinky of their dominant hand (right hand). Offline decoding was per-
formed on all possible 2-finger, 3-finger, and 4-finger combinations
using EEGNet and FBCSP.

Among all the 2-finger groups, the thumb–pinky pair demon-
strated the highest decoding performance across paradigms and
classifiers, achieving an average accuracy of 77.58% for theMI task and
75.65% for the ME task using EEGNet. Conversely, the index finger and
the middle finger combination exhibited the least discriminability
(Fig. 6A, B). To explore the electrophysiological basis for the variation
in discriminability across finger pairs, the distances between EEG
channels showing maximum ERD activation for each pair were com-
puted and compared. The thumb–pinky and index–pinky pairs
exhibited the greatest distance inMI-inducedERDactivationwithin the
alpha band, aligning with the offline decoding results and somatotopic
mapping (mean distance: 46.316mm for thumb–pinky and 42.262mm
for index–pinky, Supplementary Fig. S11). For 3-finger combinations,
the thumb-index-pinky and thumb-middle-pinky groups showed the
highest accuracy, as reflected in the averaged results. In the 4-finger
classification, an average accuracy of 43.61% for theMI task and 42.17%
for the ME task was obtained. These offline decoding results demon-
strate the enhanced performance of EEGNet in finger-level EEG-BCI
decoding compared to non-deep-learning decoders like FBCSP,
underscoring the potential of deep-learning-based methods in accu-
rately distinguishing between various finger movements or motor
intentions.

Frequency-specific contributions to finger discrimination
The suppression of oscillatory activities within the alpha (8–13 Hz) and
beta (13–30Hz) frequency bands in the contralateral sensorimotor
region during both ME and MI tasks has been widely discussed58,59.
Previous studies have shown that alpha and beta frequency compo-
nents offer effective discriminations between limb-level MI
tasks10,11,18,60. To explore the frequency-specific information encoded in
EEG during finger ME and MI tasks, we extracted alpha and beta fre-
quency components from offline EEG recordings. Task-specific ERD
topologies revealed highly similar spatial patterns in both alpha and
beta bands when subjects performed or imagined movements of dif-
ferent fingers (Fig. 6C, D). During ME tasks, a bilateral power decrease
in both frequency bands was observed over the sensorimotor region,
with the strongest suppression on the contralateral side. In contrast,
MI tasks exhibited amore localized ERD in the left sensorimotor region
across both frequency bands.When comparing themodulation of EEG
oscillations induced by ME and MI tasks, we observed stronger bilat-
eral desynchronization during ME, consistent with previous
findings59,61–63. Additionally, power modulations in the alpha and beta
bands were also observed in parietal regions.

Since the analysis focused on the BCI responders after two rounds
of screening based on their ME and MI performance, which might
influence the group-level alpha and beta band ERD trends, we
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conducted analyses comparing ERD activations between qualified
participants and non-responders excluded for unsatisfactory perfor-
mance. Among participants excluded for poor ME performance
(n = 13), alpha and beta ERD in the contralateral sensorimotor region
remained detectable but markedly weaker than in responders (Sup-
plementary Fig. S12A, B, F). For individuals excluded due to inadequate
MI performance despite intactME ability (n = 5), contralateral ERDwas
evident during ME tasks but absent during MI (Supplementary
Fig. S12C, D). Across both responders and non-responders, MI tasks
consistently elicited weaker alpha and beta ERD than ME tasks (Sup-
plementary Fig. S12E), supported by medium-to-large effect sizes
across groups. Non-responders also exhibited reduced ERD magni-
tudes compared to responders in both ME and MI tasks (Supplemen-
tary Fig. S12F), indicating their inability to generate robust
sensorimotor cortical activation. These findings demonstrate that the
attenuated ERD during MI relative to ME in alpha and beta bands is a
consistent feature across both groups.

Beyond the alpha and beta rhythms, movement-related cortical
potentials (MRCPs) in the low-frequency band (0.3–3Hz) have been
frequently used to differentiate hand and finger movements39,64,65. To
assess the contribution of these slow components, we visualized time-
resolved amplitude topoplots and MRCP waveforms at the selected
channel (C3) (Supplementary Fig. S13). All four fingers elicited sig-
nificant changes in low-frequency EEG amplitudes within the first
1.5 seconds following trial onset (Supplementary Fig. S13A, B). The
amplitude modulation began in the contralateral fronto-central

regions and spread to the contralateral parietal areas over time, in
both ME and MI conditions. No significant changes were observed
prior to the trial onset or after 1.5 seconds. Compared to MI, ME eli-
cited stronger amplitude changes. MRCPs were present in both finger
ME and MI, characterized by a negative deflection in the electrode
shortly after trial onset (Supplementary Fig. S13C, D). Although finger-
specific differences were observed during a brief window around the
MRCP deflection, low-frequency activity across individual fingers
showed considerable overlap throughout the trial.

To assess the discriminability of individual finger movements
across frequency bands, we filtered the EEG data into delta (0.5–4Hz),
theta (4–8Hz), alpha, and beta bands. Each was separately input into
EEGNet, and the resulting decoding accuracies were compared with
those obtained from broadband (4–40Hz) data. Decoding perfor-
mance significantly declined when using individual frequency bands
compared to the 4–40Hz input, highlighting the contribution of
broadband information in decoding finger movements (Fig. 6E, F).
Among the single-band conditions, the alphabandyielded significantly
higher accuracy than the delta, theta, and beta bands, while the beta
band significantly outperformed the delta band. To further examine
the role of low-frequency components, we expanded the broadband
range to 0.3–40Hz to include delta activity. The decoding perfor-
mance of this extended broadband input remained superior to that of
individual bands, and was comparable to that of the alpha band
(Supplementary Fig. S14). These findings highlight the pivotal role of
broadband EEG signals and specifically underscore the critical role of

A B E

C D F

Fig. 5 | Effects of online smoothing. Comparison between the original outputs
from the fine-tuned EEGNet model and the smoothed outputs for 2-finger ME (A),
3-finger ME (B), 2-finger MI (C), and 3-finger MI (D) online tasks (n = 16 subjects).
Accuracy is calculated using the majority vote method; Label Shifts represents the
average number of shifts in predicted labels within one single trial, which quantifies
how stable the decoder is; All-Hit Ratio is defined as the percentage of the trials that
are classified correctly throughout the whole trial. The center lines indicate the
median values. The boxes extend from the lower quartile to the upper quartile.
Diamonds indicate outliers that are more than 1.5 times the interquartile range

above the third quartile or below the first quartile. Comparisons between the two
conditions were made using a linear mixed effects model (*** if p <0.001, ** if
p <0.01, * if p <0.05). No p-value adjustments were made. P-values: 7.66e−13
(A, Label Shifts), 7.97e−06 (A, All-Hit Ratio), 2.16e−28 (B, Label Shifts), 2.78e−10
(B, All-Hit Ratio), 3.43e−12 (C, Label Shifts), 9.04e−07 (C, All-Hit Ratio), 3.49e−33
(D, Label Shifts), 9.77e−16 (D, All-Hit Ratio). Comparison between the original and
the smoothed probabilities for the target class of one example 2-finger trial (top)
and one example 3-finger trial (bottom) for ME (E) and MI (F) tasks. The black
dashed line represents the probability at the chance level.
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alpha and beta oscillations in distinguishing individual finger
movements.

Discussion
In this study, we demonstrate continuous robotic finger control using
MI and ME through deep learning techniques (Fig. 7A, Supplementary
Movies S1–S4). Our findings highlight the separability of scalp EEG
signals corresponding to different finger movements or movement
intentions of the same hand, decoded using a deep-learning-based

model. Significant improvements in task performance were achieved
through online training and model fine-tuning. The online paradigms
included binary tasks (thumb and pinky motions) and ternary tasks
(thumb, index finger, and pinkymotions). In a group of 21 able-bodied
experienced BCI users, we achieved average accuracies of 80.56% for
2-finger MI control and 60.61% for 3-finger MI control after a single
session of online training and fine-tuning, demonstrating the system’s
effectiveness. Further online training for MI tasks revealed that one
sessionwas sufficient to attain satisfactory performance in the studied

A

B

E F

C D
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finger control tasks. This finding underscores the practicality of our
system for real-world applications, as it requires minimal training.
Additionally, we developed an online smoothing approach to enhance
control stability bymitigating noise-inducedfluctuations. The system’s
performance demonstrates its ability to translate brain signals into
precise motor commands for the same hand through intuitive map-
ping, a critical feature for real-world BCI-based robotic control
applications.

Intracortical BCI systems have made significant strides in robotic
device control by directly interfacing with neural activity, achieving
high precision and real-time feedback for multi-degree-of-freedom
tasks. Studies have demonstrated high-performance neuroprosthetic
control7–9, simultaneous, independent finger movement control31,33,
and BCI systems for quadcopter control and typing based on finger
decoding34,35. High-density recordings enable intuitive decoding of
complex limbmotions, while the low spatial resolutionof EEG limits its
task complexity despite its noninvasiveness and portability. Therefore,
most state-of-the-art EEG-BCI systems employ motor imagery tasks
unrelated to the intended output actions the user aims to achieve10,11,47.
The discrepancy between human thoughts and the control commands
requires practice and training before achieving satisfactory perfor-
mance. This has led to research efforts aimed at decoding upper
extremity movements or intentions reflective of desired actions,
including elbow, forearm, and hand movements65,66, grasping
types67,68, and finger-related tasks36–38. While some studies have trans-
lated dexterous grasping into online control using scalp EEG67, existing
research on finger-level movement decoding has been limited to off-
line analysis. Our work extends previous explorations in sophisticated
upper limb movement decoding and explores the possibility of real-
time, naturalistic robotic control at the individualfinger level with both
movement execution and motor imagination.

Compared to previous studies utilizing invasively acquired sig-
nals, our study demonstrated a comparable response time with a
latency of 1 s. In contrast, a recent study on an ECoG-based finger
decoding system reported a group delay of ~1.17 s30, while another
study using implanted electrode arrays forfinger decoding introduced
a delay period of 1.5 s before providing feedback33. We observed a
continuous increase in the decoding probability of the target finger
within the first second after the task onset in both 2-finger and 3-finger
control (Supplementary Fig. S15). Following the onset of the feedback
period, thedecodingprobability of the targetfinger remained elevated
and consistently high until the trial ended, indicating that reliable
control can be achievedwithminimal delay. Furthermore, we achieved
satisfying online decoding performance, with an average decoding
accuracy of 80.56% for 2-finger MI control, significantly surpassing the
offline movement decoding accuracy for the same finger group
(thumb vs. pinky) reported in earlier research38. Though our study

does not yet attain the level of independent and simultaneous online
finger control achieved by intracortical BCIs31,32, it represents a sig-
nificant advancement in the field of noninvasive BCI in dexterous
robotic control.

Our findings demonstrate that deep-learning strategies can
effectively resolve subtle motor-related EEG patterns obscured by the
volume conduction effects42, enabling precise real-time BCI control.
The subtle differences in electrical activity caused by individual finger
movements or imagined movements are challenging to detect with
conventional BCI decoders due to signal smearing. The present find-
ings demonstrate that deep learning enables efficient and automated
feature extraction fromEEG time series, significantly reducing the time
required for signal processing compared to traditional machine-
learning-based methods. This approach facilitates the online classifi-
cation of minimally processed short EEG segments, allowing for real-
time feedback in an online setting and ultimately improving BCI per-
formance. Furthermore, the proposed fine-tuning paradigm enhanced
BCI performance by mitigating session-to-session variability, a chal-
lenge that standard pre-trained deep learning models were unable to
address.

The improvement in online task performance across sessions and
through fine-tuning underscores the critical role of online training in
enhancing MI and ME control (Figs. 1A, B, 3A, B). The superior offline
decoding performances achieved using Session 2 models, as com-
pared to Session 1 models reveal evidence of active machine learning
facilitated by increased training data (Fig. 2A, Supplementary Fig. S7A).
Additionally, we demonstrated that fine-tuning significantly enhances
decoding performance even with limited training data (Figs. 1A, B, 2A,
3A, B, Supplementary Fig. S7A). The within-session comparison of
performances highlights fine-tuning as a critical strategy formitigating
inter-session variability in EEG signals. Beyond machine learning
effects, we observed human learning across sessions and within the
first online training session for ternary MI and ME tasks (Fig. 2B, Sup-
plementary Fig. S7B). However, the binary paradigms exhibited no
significant human learning effect, potentially due to variations in
cognitive loadand task complexity. The cognitive load theory suggests
that balancing task difficulty is crucial for effective learning, while
overly simple tasks fail to sufficiently stimulate cognitive
processing69,70. These findings offer valuable insights into designing
experimental paradigms optimized for human learning.

Our results underscore the critical role of the contralateral sen-
sorimotor region in differentiating executed and imagined finger
movements, aligning with neurophysiological patterns of motor
intention and execution (Figs. 1E, 3E, Supplementary Fig. S4). Notably,
however, decoding performance declined when restricted to the
contralateral hand knob region alone (Supplementary Fig. S4B, C),
suggesting the potential contributions of other coactivated regions

Fig. 6 | Offline decodingperformance and electrophysiological analysis.Group-
level offline decoding performance of finger ME (A) and MI (B) using EEGNet and
FBCSP (n = 21 subjects), where 1 represents thumb, 2 represents index finger, 3
represents middle finger, and 4 refers to pinky. The red dashed lines indicate the
chance levels. The center lines indicate the median values. The boxes extend from
the lower quartile to the upper quartile. The whiskers span up to 1.5 times the
interquartile range. Comparisons between two decoders were conducted using a
two-tailed Wilcoxon signed-rank test with Bonferroni correction for multiple
comparisons. P-values: 0.0011 (A, 1-2), 0.0003 (A, 1-3), 0.0006 (A, 1-4), 0.0132 (A, 2-
3), 0.0308 (A, 2-4), 0.0009 (A, 3-4), 3.81e−06 (A, 1-2-3), 0.0011 (A, 1-2-4), 0.0002
(A, 1-3-4), 2.67e-05 (A, 2-3-4), 3.81e-06 (A, 1-2-3-4), 0.0054 (B, 1-2), 0.0001 (B, 1-3),
5.72e−06 (B, 1-4), 0.0009 (B, 2-3), 0.0011 (B, 2-4), 1.14e−05 (B, 3-4), 0.0003 (B, 1-2-
3), 0.0002 (B, 1-2-4), 1.14e-05 (B, 1-3-4), 0.0005 (B, 2-3-4), 0.0002 (B, 1-2-3-4).
Group-level task-specific alpha band (8−13Hz) (C) and beta band (13–30Hz) (D)
ERD topographies (n = 21 subjects). From left to right, ERD topographies corre-
sponding to thumb, index, middle, and pinky movements are displayed. The top
row presents results fromME data, while the bottom row presents results fromMI

data. Comparison of offline EEGNet decoding performance (n = 21 subjects) forME
(E) and MI (F) tasks using EEG signals filtered with different bandpass settings
(4–40Hz, alpha band, beta band, delta band, theta band). The x-axis shows clas-
sification results for different frequency bands. Offline classifications were per-
formedon thumbvs. pinky (1-4), thumbvs. index finger vs. pinky (1-2-4), and all four
fingers (1-2-3-4). Two-way ANOVAwas conducted across different frequency bands
and finger pairs, and statistical significance was observed in all task conditions.
Significance stars indicate post hoc pairwise comparison results using an FDR-
corrected two-tailed Wilcoxon signed-rank test (*** if p <0.001, ** if p <0.01, * if
p <0.05). P-values: 0.0181 (E, 4–40Hz vs. Alpha), 9.53e−06 (E, 4–40Hz vs. Beta),
4.45e−05 (E, 4–40Hz vs. Delta), 4.45e−05 (E, 4–40Hz vs. Theta), 0.0018 (E, Alpha
vs. Beta), 0.0020 (E, Alpha vs. Delta), 0.0023 (E, Alpha vs. Theta), 0.0197 (E, Beta vs.
Delta), 0.0329 (F, 4–40Hz vs. Alpha), 3.17e−06 (F, 4–40Hz vs. Beta), 3.17e−06
(F, 4–40Hz vs. Delta), 1.19e−05 (F, 4–40Hz vs. Theta), 0.0002 (F, Alpha vs. Beta),
3.17e−06 (F, Alpha vs. Delta), 4.76e−05 (F, Alpha vs. Theta), 8.74e−05 (F, Beta
vs. Delta).
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during online training. These may include attentional modulation and
bilateral sensorimotor coordination. The saliency topological maps
highlight the importance of parietal and occipital channels in online
decoding, suggesting a role for visual attention during MI and ME, as
supported by offline EEG analysis (Figs. 1E, F, 3E, F). Some participants
reported focusing on the target finger, either through direct gaze or
peripheral vision, indicating visual engagement. The occipital lobe,
where the primary visual cortex is located, is the primary recipient of

visual feedback. The parietal activations are known to reflect covert
attention and oculomotor intention as part of the fronto-parietal net-
work, which plays a crucial role in the top-down attention required for
neurofeedback71. Supporting this observation, previous studies have
reported activations in the parietal-occipital regions during tasks
involving conscious visuospatial attention modulation72–74. In our
study, ERD in the ipsilateral sensorimotor region was observed, parti-
cularly during finger ME, which may be attributed to the deactivation

Fig. 7 | Experimental paradigm. A Experimental Setup. Motor imagery or execu-
tion of single fingers was used to drive the robotic finger motion. BMapping from
human motions or imagination of motions of fingers (right hand) to the robotic
finger control (right hand). C Overview of experimental sessions for each partici-
pant. There were four different phases of experiments with a varying number of

participants involved depending on their availability. D Overview of the online
session design. In the first half session, a pre-trained EEGNet model was utilized to
provide real-time robotic hand control at finger level while subjects were per-
forming the finger movement imagery or execution. The latter part of the session
used an EEGNet model fine-tuned on the data from the first 8 runs.
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of ipsilateral sensorimotor structures60. Various neural patterns within
the ipsilateral sensorimotor region were reported and discussed
across subjects and studies58,63,75. Our saliency maps and subregion
analyses suggest the involvement of task-related EEG changes in the
ipsilateral side for decoding finger movements (Figs. 1F, 3F, Supple-
mentary Fig. S4D, E). In addition, simulations of low-density EEG sys-
temswith broad scalp coverage revealed stabledecodingperformance
despite reduced channel counts, emphasizing the primacy of broad
spatial coverage over high-density sampling (Supplementary Fig. S16).
This finding reflects EEG’s intrinsic limited spatial resolution due to
volumeconduction, whichmanifests focal cortical activity across scalp
regions. Consequently, sparse but spatially distributed electrodes can
effectively capture the distributed neural signatures necessary for
decoding, reducing system complexity and computational load with-
out sacrificing accuracy. In summary, while the sensorimotor cortex is
central to finger movement decoding, whole-scalp coverage captures
complementary neural processes that improve decoding robustness44.
The minimal performance drop with lower-density systems under-
scores that practical EEG-based BCIs can prioritize broad spatial cov-
erage over high channel density, which provides important guidance
for designing real-world systems with reduced complexity and
increased usability.

Interestingly, task performance for robotic finger control pla-
teaued early in the online sessions, with additional training yielding no
further improvement in accuracy (Fig. 4C, D). Similarly, C3 ERD values
showed numerically stronger responses in the first three sessions for
both the 2-class and 3-class tasks but plateaued after Session 3 (Sup-
plementary Fig. S10). Moreover, offline decoding results using FBCSP
and deepEEGNet revealed enhanced data discriminability primarily in
the first session (Supplementary Fig. S8, S9), suggesting that perfor-
mance saturation likely reflects inherent limitations in EEG-derived
features for precise finger movement decoding, rather than con-
straints imposed by model capacity. This contrasts with other studies
reporting continuous improvement through up to 10 sessions55. This
discrepancy may be due to the intuitive mappings between dominant
handmovements and output commands, reducing cognitive load and
shortening the learning curve. Additionally, participants’ prior
experience with limb-level MI tasks may have facilitated faster adap-
tation. The observed early performance plateau suggests that exten-
sive additional trainingmay be unnecessary for experienced BCI users,
even if they are new to finger-level MI. This finding has practical
implications for designing efficient MI-based BCI systems. Future
research should explore the effects of finger MI training on naïve
subjects to determine if the rapid plateau is unique to experienced
users or generalizable to those without previous MI experiences. Fur-
thermore, despite the initial investigation on expanding the archi-
tecture size, systematical evaluation of the state-of-the-art decoders
may potentially enhance decoding performance over extended train-
ing periods in future applications76.

We observed comparable online performance between the ME-
controlled andMI-controlled paradigms (Supplementary Fig. S17A, B).
Both tasks demonstrated similar decoding patterns over time (Sup-
plementary Fig. S15). The similarity in the underlying neural mechan-
isms between ME and MI has been extensively discussed, supporting
our findings77,78. However, previous research has shown that greater
primarymotor cortex involvementwas observed duringME compared
to MI tasks59,61,62, which is in alignment with our offline EEG analysis on
the alpha and beta band ERD in both experienced BCI users and non-
responders (Fig. 6D, Supplementary Figs. S12, S17C). The highly com-
parable performances observed betweenMI andME-controlled online
paradigms are likely due to enhanced engagement from real-time
feedback, which helps optimize arousal levels according to the Yerkes-
Dodson law, thereby enhancing cognitive and neural
engagement62,79,80. Neurofeedback has been shown to amplify MI-
related sensorimotor rhythms beyond levels seen inME62 and improve

classification accuracy81. We believe that the real-time feedback in our
paradigm increased participants’ arousal and attention, improving the
specificity of MI-related neural activity and narrowing the decoding
gap between MI and ME. Furthermore, decoding performance is not
strictly determined by ERD magnitude but by the classifier’s ability to
extract task-relevant biomarkers, including subject-specific oscillatory
patterns and whole-scalp distribution. EEGNet leverages subject- and
task-specific narrow-band spectral features, despite a general focus on
frequency components within alpha and beta ranges (Supplementary
Fig. S18). Unlike the conventional ERD analysis, which relies on fixed
wide-band power suppression, deep-learning-based decoders auto-
matically identify subtle temporal patterns differentiating individual
finger movements and imaginations. Such approaches can capture
nuanced neural patterns that encode task-relevant information, even
without pronounced ERD expression. Moreover, although con-
tralateral sensorimotor cortex activity prominently contributes to
motor decoding, incorporating whole-scalp data significantly
improved classification accuracy compared to using motor-region-
only signals (Supplementary Fig. S4B, C). Deep learning’s capacity to
identify distributed task-related features44 likely compensates for
weaker MI-induced ERD by integrating supplementary task-relevant
physiological activities, including attentional modulation, bilateral
sensorimotor coordination, and other motor planning processes.
Together, these findings suggest that comparable performance
between finger ME and MI arises from feedback-driven neural
engagement and data-driven extraction of diverse physiological
biomarkers.

Offline decoding results are presented for other 2-finger and
3-finger combinations as well as 4-finger classification. Among all the
binary conditions, the thumbandpinky showed the best separability in
bothME andMI tasks, while the decoders failed to distinguishbetween
index and middle finger movements. This finding aligns with previous
studies showing greater inter-digit distances for pairs of more distant
digits and higher overlap in their activation maps for closer pairs82.
This presents a challenge for scalp EEG to distinguish between neigh-
boring fingers due to its limited spatial resolution. In the 3-class
decoding, the similar performance achieved by the thumb-index-pinky
group and the thumb-middle-pinky group further confirms the high
similarity in brain activities elicited by index and middle finger move-
ments. The EEGNet-based decoders obtained an average accuracy of
46.22% for the MI 4-finger task and 45.58% for the ME task, which is
insufficient for real-time robotic feedback applications. Highly similar
neural activation patterns between actions ormotor imagery involving
different fingers at the scalp level highlight the challenge in multi-
finger classification (Fig. 6C, D). Interestingly, the pinky elicited the
strongest EEG activation across both alpha and beta frequency bands
compared to other fingers, consistent with findings from a functional
near-infrared spectroscopy (fNIRS) study83. A plausible explanation is
that the pinky requires greater attention and effort for movement or
imagery, given its relatively infrequent use in daily activities83. Future
work should explore advanced computational methods and spatial
resolution enhancements to improve the control system’s robustness
and deepen our understanding of finger-specific neurophysiological
patterns.

We investigated the contribution of distinct frequency bands to
finger movement discrimination. Offline simulations revealed that
broadband frequency information significantly enhanced decoding
accuracy (Fig. 6E, F). Among the isolated frequency bands, the alpha
band exhibited the highest performance (Fig. 6E, F), highlighting alpha
oscillations as a critical frequency component for distinguishing indi-
vidual finger movements. In contrast, low-frequency components
showed limited discriminative power across fingers (Fig. 6E, F, Sup-
plementary Fig. S13). This contrasts with previous studies demon-
strating the utility of low-frequencyMRCPs in differentiating hand and
finger movements39,64,65. This discrepancy likely arises from the
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differences in experimental design and analytical focus. MRCPs are
typically observed preceding and immediately after movement onset
and therefore are well-suited for characterizing discrete, non-
repetitive movement tasks84. However, our study involved con-
tinuous decoding during repetitive fingermovements or imaginations,
where the transient MRCP components return to baseline shortly after
the trial onsets and contribute less consistently over time. Importantly,
MRCPs and ERD reflect different neural mechanisms and temporal
dynamics84. MRCPs represent slow, time-locked potentials associated
with movement planning and initiation, while alpha and beta ERD
capture sustained suppression of oscillatory activity associated with
ongoing motor execution or imagination. The transient nature of
MRCPs limits their utility in continuous tasks, while the persistent
modulation of alpha and beta rhythms throughout the movement
aligns better with continuous decoding tasks such as ours. This may
explain why the alpha band, in particular, showed superior perfor-
mance in our classification analysis.

The inclusion of the robotic hand reflects a broader goal of this
research: to enable precise, noninvasive brain-based control of physi-
cal effectors. While this study focuses on decoding individual finger
movements, our long-term objective is to develop practical BCI
applications for bothmotor-impaired and able-bodied users. Although
classification performance was comparable across different feedback
modalities (Supplementary Fig. S19), the robotic hand serves distinct
functional purposes. The virtual feedback on the screen provides
binary outcome information, turning the target finger green or red
depending on whether the classification was correct. In contrast, the
robotic hand moves the decoded finger in real time, offering con-
tinuous and interpretable information about which finger the system
believes the subject is attempting to move, even when misclassified.
This enables participants to gain insight into the decoder’s output.
Moreover, participants reported enhanced engagement with the
robotic feedback. As such, the robotic hand represents a crucial step
toward achieving real-world functionality, allowing users to interact
physically with their environment through brain decoding. Future
workwill further investigate task designs and scenarios that alignmore
closely with everyday use cases.

Despite the wide applications of EEGNet in EEG-BCI decoding, it is
a compact network designed for generalizability across various BCI
paradigms. Recent developments in recurrent neural networks
(RNNs), autoencoders, and transformers offer promising
alternatives45,85,86. RNNs excel at processing time series EEG data by
accounting for temporal dependencies, autoencoders learn robust
latent features through data reconstruction, and transformers use
attention mechanisms to enable a dynamic focus on the most dis-
criminative parts of EEG inputs. Optimization of the decoding algo-
rithm specifically for this finger MI design may significantly enhance
the system’s performance. Furthermore, integrating advanced signal
processing techniques may address the current limitations in the
spatial resolution of scalp EEG. Electrophysiological analysis reveals
similar ERD patterns for movements and imagination of the four fin-
gers (Fig. 6C, D), highlighting the need for better spatial resolution to
distinguish between individual fingers. EEG source imaging has been
demonstrated to enhance MI decoding by estimating cortical current
density and exploiting information at a finer spatial scale, which
especially benefits the decoding of precise MI movements10,42,66,87,88.
Another potential approach to optimize the system performance is to
combine EEG with other neuroimaging modalities with higher spatial
resolution, such as fMRI. Shen et al. obtained a 63.1% average decoding
accuracy across five fingers within the right hand from offline fMRI
data, highlighting the spatial discrimination capability of fMRI at the
level of individual fingers89. Future research incorporating these stra-
tegies could lead to more precise mapping of brain activity, thereby
enhancing the accuracy and reliability of BCI systems and advancing
the control of robotic devices.

One limitation of our study is the selection of participant groups.
All participants hadvarying degrees of prior exposure to limb-level BCI
experiments before taking part in this study, which need to be con-
sidered when interpreting the current findings. Future experiments on
individuals without previous MI backgroundmay help provide a more
comprehensive and generalizable insight into the paradigm. Addi-
tionally, participants were screened based on the first two offline
sessions to determine if they would be considered responders instead
of non-responders. It was reported previously90 that not every indivi-
dual responds well to the sensorimotor rhythm BCI paradigm, and
about 15–30% participants would be considered non-responders, who
do not exhibit skills to accurately control a BCI using motor imagery.
We focused the present study to the responders to sensorimotor
rhythm BCI, since our goal is to investigate, among BCI responders, if
and how well participants can control a robotic hand at individual
finger level. Under such study design, unsatisfactory offline perfor-
mers were excluded from the study, so the current findings should not
be interpreted as applicable to the general population. However, the
increase in the subjects’ engagement and motivation with continuous
robotic feedback may optimize their online behavioral performance
regardless of the offline results91. With the finger-level robotic control
demonstrated in this study using a noninvasive BCI in BCI responders,
future research could apply this paradigm to BCI-naïve subjects and
individuals who initially performpoorly to explore its applicability to a
broader target population. Another limitation of our study is that the
system’s performance in more intricate, real-world scenarios remains
to be tested. While we demonstrated robotic control at the individual
finger level using EEG-BCI, it is crucial to design BCI tasks that more
closely resemble real-world applications and thoroughly evaluate the
practical utility of our BCI system in these contexts.

In summary, we have demonstrated the capability of non-
invasive EEG-based control for individual robotic finger movements
through a naturalistic mapping between human intentions and con-
trol outputs, showcasing the potential for intuitive and sophisticated
human-robot interaction. We have evaluated the efficacy of deep-
learning based BCI decoder with real-time robotic feedback. Perfor-
mance trends across fiveMI-controlled online sessions indicated that
minimal training was required for the proposed paradigm. Addi-
tionally, we introduced and tested an online smoothing approach to
further enhance continuous robotic control. Despite the inherent
challenges of individual finger movement decoding using non-
invasive techniques, the performance achieved in this study under-
scores the significant promise for developing more intricate and
naturalistic noninvasive BCI systems. The successful demonstration
of individual robotic finger control represents a substantial
advancement in dexterous EEG-BCI systems and serves as a critical
step forward, guiding future research in the field.

Methods
Brain-computer interface tasks
Finger movement execution without feedback. At the beginning of
the study, a sessionoffingermovement execution (ME)was conducted
without feedback, meaning that participants performed the move-
ments without receiving any visual or physical cues indicating the
system’s decoding results. In this session, subjects were instructed to
perform repetitive single-finger flexion and extension of their right
hand, including the thumb, index finger,middle finger, and pinky. This
session consisted of 32 runs, each containing 5 trials for eachfinger in a
randomized order. Each trial lasted 5 s, followed by a 2-s inter-trial
interval.

Fingermotor imagerywithout feedback. Following the offline finger
ME session, subjects participated in a session of finger motor ima-
gery (MI) without feedback. Subjects were instructed to imagine
performing repetitive single-finger flexion and extension of their
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right hand, including the thumb, index finger, middle finger, and
pinky, without physically executing the movements. They were
instructed to vividly imagine the sensation and kinesthetic feeling
of themotion whileminimizing any physical bodymovements, such
as swallowing or gritting their teeth. To aid in maintaining their
attention and engagement, subjects were encouraged to visualize a
specific action involving the flexion and extension of the target
finger, like pressing a piano key.

Finger movement execution with real-time robotic feedback. Fol-
lowing the initial phase of offline data collection, subjects with binary
classification accuracy exceeding 70% in both offline ME and MI ses-
sions engaged in robotic hand control through right-hand finger ME
(Fig. 7A, B). This session incorporated two distinct paradigms: the
binary classification paradigm, which involves distinguishing between
thumb and pinkymovements, and the ternary classification paradigm,
which decodes a three-class condition including thumb, index finger,
and pinky movements. Each online session comprised 32 runs, with
each run containing 10 trials for each task in a randomized order. The
first eight runs implemented the ternary classification paradigm using
the base model for real-time feedback, followed by the binary classi-
fication paradigm with the base model for the next eight runs. The
subsequent eight runs applied the ternary classification paradigm
using the fine-tuned model for real-time feedback, and the final eight
runs utilized the binary classification paradigm with the fine-tuned
model (Fig. 7D).

Each trial lasted 3 s. Subjects initiated self-paced fingerflexion and
extension after the trial onset. The feedback period began after 1 s and
continued for 2 s, during which the robotic hand moved the finger
according to the latest prediction result, continuously adjusting the
movements based on real-time decoding outputs. Concurrently, sti-
muli presented on a screen in front of the subject reflected the current
online classification results by changing the color of the target finger,
with green indicating correct classification and red indicating incorrect
classification. A 2-s intertrial interval was appended between con-
secutive trials.

Finger motor imagery with real-time robotic feedback. Following
the fingerME phase, subjects participated inMI sessions with real-time
robotic feedback, which followed a design similar to the ME tasks.
These sessions also incorporated two distinct paradigms: the binary
classificationparadigm,whichdifferentiates between thumbandpinky
imagined movements, and the ternary classification paradigm, which
decodes imagined movements involving the thumb, index finger, and
pinky. Each session comprised 32 runs, with each run containing 10
trials for each task in a randomized order.

The first eight runs employed the ternary classification paradigm
using the base model for real-time feedback, followed by eight runs of
the binary classification paradigmwith the basemodel. The next eight
runs applied the ternary classification paradigm using the fine-tuned
model for real-time feedback, and the final eight runs utilized the
binary classification paradigm with the fine-tuned model. Each trial
lasted 3 s, with subjects initiating self-paced fingermotor imagery after
the trial onset. The feedback period began after 1 second and con-
tinued for 2 s. A 2-second intertrial interval was included between
consecutive trials. The models for ME and MI tasks were trained
separately andupdated after each session tooptimize the utilization of
available data.

Finger motor execution/imagery with smoothed robotic feedback.
To enhance the stability of control outputs and mitigate sensitivity to
noise, an online smoothing approach was applied to both finger ME
andMI tasks. This approach smoothed the outputs from the decoding
models by calculating a weighted sum of current and historical

probabilities, as illustrated in Eq. (1).

h0 =0

P’t =α*ht�1 +Pt

ht =P
’
t
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P’t

jjP’t jj
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The variable ht preserved the previous probability information,
initially set to0. The vector Pt contained the raw decoding outputs for
each possible class as probabilities. The smoothed output, P’t , was
computed by combining the historical and current outputs. The
parameter α adjusted the weighting of prior information. P’t was nor-
malized to ensure that the probabilities summed to 1. The normalized,
smoothed output was subsequently used to direct the movements of
the robotic hand.

To validate the efficacy of the online smoothing, one ME session
and one MI session were conducted at the conclusion of this study.
Each session consisted of 32 runs, with each run containing 10 trials for
each task in a randomized order, similar to the online sessions
described previously. In the first half of the sessions, the initial eight
runs employed the ternary classification paradigm using the base
model for real-time feedback, followed by eight runs utilizing the
binary classification paradigmwith the basemodel. In the latter half of
the sessions, eight runs applied the ternary classification paradigm
with the fine-tuned model for real-time feedback, and the final eight
runs used thebinary classificationparadigmwith thefine-tunedmodel.
The last two sets of eight runs using the fine-tuned decoder were
further divided into two groups of four runs each, one utilizing the
original algorithm and the other employing the smoothing mechan-
ism. The order of these groups was randomized, and the subjects were
not informed of the paradigm changes.

Finger motor execution/imagery with different feedback mod-
alities. To investigate the effects of different feedback modalities, ten
subjects each participated in one ME session and one MI session. Each
session consisted of 34 runs, with each run containing 10 trials for each
task in a randomized order, similar to the online sessions described
previously. During the first 16 runs, base models that were pre-trained
using one offline session and the first two online sessions of the same
subject were employed for both 2-finger and 3-finger decoding. The
data collected during these initial runs was used to fine-tune the base
models. In the latter half of the sessions, participants completed three
runs of 2-finger and 3-finger tasks with the fine-tuned models under
three conditions: visual feedback only, robotic feedback only, and
combined visual and robotic feedback. The order of feedback condi-
tions was randomized to mitigate potential bias.

Experimental design
Subjects. Forty-nine right-handed able-bodied human subjects were
recruited for this study. All procedures and protocols were approved
by the Institutional Review Board of Carnegie Mellon University (pro-
tocol number: STUDY2017_00000548). Before participating in the
experiment, subjects completed screening forms to determine their
eligibility and were informed of the potential risks associated with the
study. Written informed consent was obtained from all subjects prior
to the commencement of the experiment. Consent for possible video
recording during the experiment sessions was obtained from every
subject. We did not obtain consent to publish subject-identifiable
information. Ten subjects withdrew from the study due to scheduling
conflicts. A uniform screening procedure was used that only subjects
achieving over 70% accuracy in offline binary classification for bothME
andMI taskswere included for the entire study. This screening process
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was designed to address the issue that about 15–30% subjects are non-
responders to sensorimotor rhythm BCI90, and our goal is to study if
and how an individual can control a robotic finger among BCI
responders. Eighteen subjects were excluded from the entire study
due to unsatisfactory performance in either the fingerME orMI offline
sessions. The remaining twenty-one subjects (six male/fifteen female;
mean age: 24.23 ± 3.72), each, completed two ME online sessions fol-
lowed by two MI online sessions (Fig. 7C). Upon completion of the
main study, sixteen subjects participated in three additional MI online
sessions and two sessions incorporating the online smooth-
ing (Fig. 7C).

Experimental setup. EEG data were acquired using a 128-channel
BioSemi (BioSemi, Amsterdam, The Netherlands) EEG headcap and an
ActiveTwo amplifier (BioSemi, Amsterdam, The Netherlands). A cap of
appropriate size was chosen for each subject and was positioned
according to the international 10–20 system for electrode placement
at the beginning of each session. EEG signals were recorded at a
sampling rate of 1024Hz. During all sessions, the subjects were seated
in front of a computermonitor at a distance of ~90 cmwith their hands
resting on an armpillowon the desk in front of them. The robotic hand
was placed in between the subjects and the screen in a position where
both the visual stimuli and the robotic hand motion could be clearly
observed by the subjects. Allegro Hand (Wonik Robotics, Korea), a
4-finger robotic hand with 16 degrees of freedom, was used to provide
real-time visual feedback during the experiments.

Robotic control study. Twenty-one subjects participated in the main
study to study naturalistic robotic online control for individual finger
movements. All subjects had at least two prior sessions (about 2 hours
of BCI training) of limb-level MI BCI experience but had no previous
experience in finger-level MI. They performed one offline ME and one
offline MI session for training data collection, followed by two online
sessions for each task.

Training effect of online MI. To investigate the training effect of
online MI tasks, sixteen subjects (five male/eleven female; mean age:
23.56 ± 3.22) conducted three additional online MI sessions after
completing the main study. All five sessions followed the same design,
with the models being updated each session by incorporating data
from all previous sessions.

Smoothed robotic control. Sixteen subjects (five male/eleven female;
mean age: 23.56 ± 3.22) participated in this phase of the study, which
included one ME online session and one MI online session. In each
session, subjects conducted four runs using the raw fine-tuned model
outputs for robotic control and four runs using the online smoothing
mechanism for both binary and ternary tasks.

Online decoding
Online processing and classification were performed using custom
Python (3.8.4) scripts made for BCPy2000 (2021.1.0), a part of the
BCI2000 program92. The 128-channel EEG signals were re-referenced
to the common average, downsampled to 100Hz, and bandpass fil-
tered between 4 and 40Hz using a fourth-order Butterworth filter. The
most recent 1-second segment of data was then z-scored and input to
the online decoder. The decoding outputs were received by a custom
C++ script for robotic finger movement control, with updates occur-
ring every 125ms. The finger with the highest current probability
flexed its four joints by 0.1 rad within the 125ms duration, providing
visual feedback. At the end of each trial, the finger that flexed themost
was considered the predicted class for that trial. All the fingers were
reset to their initial position before the next trial started.

EEGNet-8,2, known for its effectiveness in EEG-BCI decoding, was
employed in this study for online decoding46. The basemodel used for

onlinedecodingduring thefirst half of each sessionwaspre-trained for
300 epochs on data collected in previous sessions and updated for
each session. Early stopping and a learning rate scheduler were
employed during the training process. The fine-tuned model used in
the latter half of each session was further trained on data from the first
eight runs collected on the same day. During the fine-tuning process,
the parameters of the first four layers, including the temporal con-
volution layer and the spatial depthwise convolution layer, were fixed,
while the parameters in the remaining layers were optimized based on
the same-day data.

Evaluationmetrics for the online decoding tasks include accuracy,
precision, and recall. Accuracy is defined as the proportion of correct
predictions compared to the total number of trials, where for each trial
the final prediction is the one that receives the most votes from the
continuous classifier outputs over multiple segments of the trial49. In
multi-class decoding, the precision and recall are calculated for each
class. Precision for a given class is the ratio of correctly classified
instances of that class to the total number of instances predicted as
that class by the classifier. Recall is calculated as the proportion of
correct predictions to the total number of instances that actually
belong to the class in the dataset.

A saliency map, which visualizes the most prominent input data
that influence the model’s predictions, is used to understand and
interpret the inner characteristics of neural network in the finger ME
andMI decoding tasks. The saliency topologicalmap for eachmodel is
computed by summing up the gradient of the predictions with respect
to the input data along the time dimension, as shown in Eq. (2).

X = x1,x2, . . . ,xn

� �

G = dP
dX

St = jmean Gð Þj

S =
PT

t =0
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ð2Þ

wherexi denotesa (CxT)matrix representinga single input,withCbeing
the number of EEG channels and T being the number of time samples in
an input segment.X is a (1 xN) vector representing an input batch,where
N indicates the number of instances in the batch. P is a (N x Z) vector
representing the predictions where Z is the number of classes. St with a
dimension of (C x T) is the averaged saliency map by taking the mean of
G, the gradiant of the predictions with respect to the input data, across
the batch dimension. The absolute value is taken to represent the mag-
nitudeof thegradient.S, the spatial saliencymapwith adimensionof (Cx
1), is obtained by summing up St along the time dimension. To show the
relative importance of each channel at a group level, outliers in the sal-
iency topological map that deviate from the mean value by greater than
2 standard deviations are removed. The Results section presents the
average of the normalized saliency topological maps.

Offline analysis
Offline decoding. Data collected from the offline ME and MI sessions
were initially evaluated using twodecoders: EEGNet-8,2 and Filter Bank
Common Spatial Pattern (FBCSP) with Linear Discriminant Analysis
(LDA) classifier46,50. Model evaluation was conducted using five-fold
cross-validation. Each 5-second trial was segmented with a 1-second
sliding window and a step size of 125ms. The offline processing pro-
cedures were consistent with those used online. The offline results
served as a measure of subjects’ task performance and were used to
exclude underperforming participants. Additionally, the offline results
aided in selecting themostdistinguishable 2-finger and3-finger groups
for the design of subsequent online sessions. Different frequency
bands were used in bandpass filtering, including 4–40Hz, 0.3–40Hz,
delta band (0.5–4Hz), theta band (4–8Hz), alpha band (8–13 Hz), and
beta band (13–30Hz), to investigate the discriminability of individual
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fingers using different frequency components. Different subsets of
EEG electrodes were used as inputs, including sensorimotor-region
channels, non-sensorimotor channels, contralateral/ipsilateral hand
knob, occipital region, frontal region, and low-density layouts (down-
sampled64, 32, and 21 channels), to investigate the effects of electrode
layout and cortical contributions.

Electrophysiological analysis. EEG data recorded during both offline
and online sessions were processed for event-related desynchroniza-
tion (ERD) analysis to uncover the electrophysiological patterns asso-
ciated with finger MI and ME. This was done using the FieldTrip
(20230118) toolbox93 and customized MATLAB (R2023a) scripts
(MathWorks Inc., MA, USA). The raw EEG data were re-referenced to
the common average, downsampled to 100Hz, and bandpass filtered
between 2 and 30Hz. Independent component analysis (ICA) was
performed to remove eye movement and muscle artifacts. The con-
tinuous signal was then segmented into trials spanning from 2 s before
trial onset to the end of the trial. Trials with a standarddeviation above
20 µV were excluded from further analysis. To calculate ERD for each
EEG channel, Morlet wavelets were used to extract the average power
in the alpha (8–13 Hz) and beta (13–30Hz) bands from 0.5 s after trial
onset until the end of the trial (3 s for online sessions and 5 s for offline
sessions). The average power within the same frequency bands during
the 1-second period preceding trial onset was used as the baseline.
Single-trial ERDwas quantified by the relative change in alpha and beta
band power, as calculated in Eq. (3).

ERDc =
ðPc � RcÞ

Rc

× 100% ð3Þ

where Pc represents the average power in the alpha and beta bands
during the task period, and Rc denotes the average baseline power
within each session.

Raw EEG data recorded during the offline sessions was further
processed to visualize movement-related cortical potentials (MRCPs)
in the low-frequency band (0.3–3Hz). Data processing and visualiza-
tion was conducted using MNE-Python (1.9.0)94. The EEG signals were
re-referenced to the common average, downsampled to 100Hz, and
bandpass filtered between 0.3 and 3Hz. ICAwas performed to remove
eye movement artifacts. The continuous data were segmented into
trials, spanning from 1 s before trial onset to the end of each trial. The
signal during the second before the trial onset was used for baseline
correction. Group-averaged low-frequency EEG amplitude topo-
graphies were visualized for each finger. Cluster-level permutation
tests were performed to identify channels and time intervals with
statistically significant deviations from baseline. Additionally, group-
averaged MRCPs at the selected channel (C3) were plotted for each
finger movement. Time periods showing significant amplitude differ-
ences among the four fingers were determined using a one-way
repeated-measures ANOVA.

Offline simulation. Data collected from the onlineME andMI sessions
were decoded using different EEGNet models, a EEGNet variant (dee-
pEEGNet), and a FBCSP-LDA classifier to assess both machine and
human learning effects. Each 3-second trial was segmented using a
1-second sliding window with a step size of 125ms. The offline pro-
cessing procedures mirrored those used during the online sessions to
ensure consistency. The EEGNet models applied in the online sessions
were utilized for decoding the EEG signals of interest offline, and the
majority-vote accuracies were compared to the online results. Addi-
tionally, a five-fold cross-validation was conducted to evaluate the
discriminability of the FBCSP-LDA classifiers on EEG signals obtained
from the online sessions.

Statistical analysis
Statistical analysis was performed using custom Python (3.10.13)
scripts. For the BCI behavioral results, accuracies computed by com-
paring the majority vote prediction and the target finger for each trial
were analyzed and compared across different conditions. Two-way
repeated-measures ANOVAs were applied with main effects of session
andmodel on the onlineME andMI robotic sessions. Pairwise post hoc
comparisons were performed using Wilcoxon signed-rank tests with
False Discovery Rate (FDR) correction if the p value of the main effect
was less than0.05.Unlessotherwise stated,Wilcoxon signed-rank tests
were used to compare performance metrics, including accuracy, pre-
cision, and recall, as well as electrophysiological quantifications
between two different conditions, and one-way ANOVAs were imple-
mented to test the difference in behavioral and electrophysiological
metrics undermultiple conditions. Bonferroni correction was used for
multiple comparisons. Two-way repeated-measures ANOVAs were
employed to analyze the effects of session, model, and session-model
interaction on online performance and simulation results with con-
tinued MI training. Comparison between the smoothed and original
results were analyzed with linear mixed-effect models. Experimental
conditions (Original versus Smoothed) were modeled as fixed effects
and subjects were considered random effects.

Ethics
Every experiment involving human participants have been carried out
following a protocol approved by the Institutional Review Board of
Carnegie Mellon University. Each participant gave informed written
consent.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
article and its supplementary files. Any additional requests for infor-
mation can be directed to, and will be fulfilled by, the corresponding
authors. Source data are provided with this paper. The EEG data in all
subjects used in this study are available in Figshare at: https://doi.org/
10.1184/R1/29104040. Source data are provided with this paper.

Code availability
Customized Python codes for online EEG processing and decoding as
well as offline deep learning model training used in this study are
available on GitHub at: https://github.com/bfinl/Finger-BCI-Decoding.
The code is licensed under the MIT License.
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