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The random cascading origin of abrupt
transitions in interdependent systems

Bnaya Gross 1,2,5 , Irina Volotsenko3,5, Yuval Sallem 3, Nahala Yadid3,
Ivan Bonamassa 4, Shlomo Havlin 3 & Aviad Frydman 3

Phase transitions are fundamental features of statistical physics. While the
well-studied continuous phase transitions are known to be controlled by
external global changes affecting the order parameter, the origin of abrupt
transitions is not fully clear. Here we show that abrupt phase transitions may
occur due to a unique internal random spatial cascading mechanism, arising
from dependency interactions. We experimentally unveil the underlying
mechanism of the abrupt transition in interdependent superconducting net-
works to be governed by a unique metastable state of a long-living resistance
cascading plateau. This plateau is characterized by spontaneous cascading
events that occur at random locations and last for thousands of seconds,
followed by a sudden global phase shift of the system. The plateau time length
changeswith the systemsize anddistance fromcriticality, obeying scaling laws
with critical exponents. Furthermore, like epidemic spreading, these changes
are characterized by a branching factor which equals exactly one at the critical
point and deviates from one off criticality. Importantly, the branching factor
provides an early warning for the closeness of critical catastrophic cascades
yielding system collapse.

Phase transitions (PTs) are among the most intriguing phenomena of
statistical mechanics and are usually classified by their macroscopic
features close to the critical point1–4. Second-order PTs are character-
ized by a continuous transition of the order parameter at the critical
point, while first-order PTs display an abrupt change between phases5.
In contrast to first-order PTs, second-order PTs display critical beha-
vior near the critical point characterizedby the scaling lawsof different
quantities2,3. A unique class of PTs is mixed-order PTs, which display
both an abrupt change similar to first-order transitions, and scaling
laws and critical exponents near the critical point similar to second-
order transitions6–10. Here we present experimental findings on the
cascading mechanism origin of interdependent superconducting net-
works that exhibit a mixed-order phase transition.

The paradigm of physical interdependent networks has recently
been introducedby the realizationof thefirst physicalmanifestationof
an experimental setup of interdependent systems - interdependent

superconducting networks (ISN)11. This experimental discovery paves
the way for a new research avenue of interdependent materials. ISNs
have been found to experience an abrupt transition, as predicted by
the theory of interdependent networks12, arising from the interplay of
two types of interactions in the system: connectivity interactions
within each network allowing current to flow, and dependency inter-
actions between the networks in the form of thermal dissipation.
Nonetheless, the underlying mechanism of the abrupt transition and
its critical behavior remained elusive. Here, we reveal experimentally
and theoretically the underlying mechanisms behind the abrupt jump
observed in ISNs. We identify and characterize the temporal-spatial
scaling of the long-term plateau state, which represents a random
cascadingmechanismof PTs. Theplateau time length changeswith the
system size and distance from criticality via scaling laws characterized
by universal critical exponents. Like epidemic spreading, these cas-
cading changes are governed by a branching ratio that equals one at
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criticality, falls below one in the stable regime, and exceeds one in the
unstable regime. Therefore, as this factor approaches one from below,
the risk of a catastrophic cascade increases12. Measuring this obser-
vable offers a practical early warning indicator of proximity to system
collapse -an insight rarely accessible in real-world settings, which we
are able to measure experimentally. We experimentally confirm that
theuniversality class suggested in ref. 13 defines the critical behavior of
physical interdependent networks, as found here in our characteriza-
tion of the critical behavior of ISNs.

Results
Experimental setup
Our ISN system is composed of two coupled amorphous indium oxide
(a - InO) disordered 2D superconducting networks, each containing a
grid of N= L× L segments with L being the linear size of the system
(see Fig. 1a–d). The two layers are separated by an electrically insu-
lating spacer (Al2O3) that has good heat conductance. The inter-
dependent networks paradigm is manifested here by the connectivity
links, represented by currents within each network layer, and depen-
dency links realized via heat transfer between the layers. Each con-
nectivity link i is characterized by a Josephson junction I–V
characteristics14 with a distinct critical temperature Tc,i and a critical
current Ic,i determining its superconductor-normal (S-N) transition
threshold15–24. We note that the high disorder of the samples yields a
wide distribution of Tc,is and Ic,is, leading to large sample-to-sample
fluctuations of the superconducting properties.

Resistance versus current measurements
The system is set at a fixed and controllable temperature, and the
network resistance, RN, is experimentally measured as we sweep the
bias current Ib from high to low and back. During this process, an
abrupt jump is observed at a critical point Ic,← from the mutual normal

state (N) to the mutual superconducting state (S) as the current
decreases, and from the S-state back to theN-state at Ic,→ as the current
increases, showing a hysteresis phenomenon, see Fig. 1e. This result
can be obtained theoretically by solving the Kirchhoff equations of
both networks simultaneously while accounting for the thermal cou-
pling between the layers11 as seen in Fig. 1f. The characteristics of ISNs
clearly exhibit an abrupt transition but also a critical exponent β,
describing the scaling ofRN as the current approaches the critical point
Ic from the N-state to the S-state as

ΔR � ðΔIÞβ: ð1Þ

where ΔI = Ib − Ic. Both, the experimental and numerical simulation
results follow the scaling behavior with the same value of the critical
exponent β = 1/2 (Fig. 1e, f insets respectively). The same exponent is
observed for fixed current and varied temperature (Fig. S1) and in
simulations of other interdependent systems including abstract per-
colation on interdependent networks25 and interdependent ferro-
magnetic networks26, confirming that the transition is universal in
mixed-order PTs13.

The role of the dependency between the superconducting net-
works formed by the heat dissipation in ISNs is intrinsic to the critical
behavior and can be understood by the I–V curves for different system
sizes as shown in Fig. 2a, d. Small systems produce weak heat dis-
sipation, making the coupling weak, thus resulting in a continuous
transition similar to the transition observed in single isolated
networks11. Large systems, on the other hand, dissipate enough heat
for an abrupt transition to emerge, suggesting that the sample size also
influences the critical behavior. Furthermore, as seen in Fig. 2b, e, the
critical transition points are found to depend on the system size.While
for small systems the transition is continuous and Ic,→ = Ic,←, for large
systems abrupt transition and hysteresis are observed showing

(b) (c) (d)

(e)

Fig. 1 | Mixed-order transitions in interdependent superconducting networks.
a Experimental systems. b Zooming in on the overlap section of the networks.
c Large view of scanning electron microscope images of the superconducting
network. d Each network segment is 10 μm long and 2μm wide. For a fixed tem-
perature (T = 1.8K), the network resistance, RN, is measured for increasing current
(blue) and decreasing current (red) showing hysteresis in both (e) experiment (for
the top layer of an ISN with linear size L = 416) and (f) theory based on numerical

solution of the Kirchhoff equations (L = 20, see Methods for simulation para-
meters). For decreasing current, the critical exponent β = 1/2 (Eq. (1)) is observed
near the critical point Ic from N to S in both experiment and numerical solution
(insets (e) and (f) respectively), indicating a mixed-order transition and thus
belonging to the same universality class as percolation on abstract interdependent
networks12.

Article https://doi.org/10.1038/s41467-025-61127-z

Nature Communications |         (2025) 16:5869 2

www.nature.com/naturecommunications


Ic,→ > Ic,← and both critical thresholds increase with the system size as
shown in Fig. 2b, e. The hysteresis presents three regimes: N-state for
Ib > Ic,→, S-state for Ib < Ic,← and an S/N-state depending on the initial
conditions for Ic,← < Ib < Ic,→. The increase of the critical current with the
system size allows us to estimate the correlation length critical expo-
nent ν using the scaling relation27–29

Icð1Þ � IcðLÞ � L�1=ν ð2Þ

where ν is the correlation length exponent and Ic(∞) is a fitting para-
meter (see methods). Figure 2c, f show for both experimental and
theoretical results the critical exponent ν = 3/4, as predicted for sys-
temic cascades at mixed-order phase transitions in d = 2 dimension13.

Dynamics during the abrupt transition
Identifying the underlying physicalmechanismsof a phase transition is
essential to understand its nature. To this end, we measure experi-
mentally the dynamics of the system, i.e., the resistance versus time of
the system, R(t), during the abrupt transition from the mutual N-state
to the mutual S-state at and near the relevant critical threshold Ic, see
Fig. 1e, f. The results shown in Fig. 3a are based on the following pro-
tocol: (i) The system is controlled and fixed at a temperature T < Tc and
the bias current is set at Ib > Ic so the system is tuned to be in the
N-state. (ii) At time t = 0 the current is abruptly switched to a value
Ib < Ic and R(t) is measured. Remarkably, when the bias current is
switched very close to the critical current Ib → Ic, the resistance curves
display a semi-saturated resistance for a long time (similar to a ghost
attractor found in other systems30,31) before it drops abruptly to zero
resistance as the system transits to the S-state (Fig. 3a, c show
experimental and numerical results respectively). As seen, the lifetime,
τ, of this plateau can last for thousands of seconds. That is, macro-
scopic times of many orders of magnitudes longer than the timescales
of electronic interactions (τe ~ 10−12−10−10s) within each network or

phonon between them (τp ~ 10
−8 − 10−6s), indicating that the interplay

between the layers plays a significant role in the process. This behavior
is in marked contrast to the rapid realization observed at the critical
point of second-order transition (see Fig. S4). The inset of Fig. 3a
zooms in on the plateau regime, showing that the resistance does not
monotonically decrease with time but fluctuates. Similar behavior are
reproduced by the theory upon introducing thermal fluctua-
tions (Fig. 3c).

We repeat the above process by deep quenching to slightly lower
values of Ib and find that, as Ib decreases, τ decreases as well (Fig. 3a).
The measured plateau duration time τ is found to follow a scaling
behavior with the distance of the bias current from the critical current
as

τ � ðΔIÞ�ζ ð3Þ

with an exponent consistent with ζ = 1/2 as seen in Fig. 3b, e for
experimental and theoretical results respectively. This value is con-
sistent with the theoretical prediction for percolation on abstract
interdependent networks32.

Cascading mechanism origin
The long plateau indicates a mechanism of spontaneous long-term
local changes. This long-term plateau suggests that, due to the long-
range dependency (heat) in such ISNs, each segment in one network
may influence any other segment in the second network. Thus, the
interactions become nearly spatially random where, near criticality,
phase changes (N-S) of elements are generated anywhere in the system
depending on Tci and Ici of the individual segments, see Fig. 4. In this
near criticality regime, the phase transition is governed by a sponta-
neous random-cascading, i.e., a chain of events where one element,
that has changed its phase, influences on average one element at a
different location with closest Tci and Ici in the other network due to

Fig. 2 | System size dependence. a Experimental results (top networks) for the I--V
curves of interdependent superconducting networks for different system sizes
taken atT = 1.8K. Small systemsexperiencecontinuous phase transition like a single
layer11, while for large systems abrupt transition is observed. The asymmetry in the
characteristics of the I--V curves is the result of the different critical points for
increasing and decreasing currents, i.e., the hysteresis. b This behavior is reflected
by the critical currents. For small systems, identical critical points are shown for

both increasing and decreasing current Ic,→ = Ic,←. Larger systems experience an
abrupt transition and hysteresis appears with Ic,→ > Ic,←. c The correlation length
exponent ν = 3/4 is evaluated using the scaling of the critical point with the system
size (Eq. (2)) as predicted for interdependent systems13. d–f The theory based on
numerical results for the iterative solution of the coupled Kirchhoff equations
supports the experimental findings shown in (a, b, c), respectively.
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thermal dissipation. This process continues until enough elements
undergo a phase change, thus causing an abrupt macroscopic PT. We
note that, while the experiment focuses on the transition from N to S,
an analogous process is expected to occur for a transition from S to N,
as illustrated in Fig. 4.

Since the changes during the plateau are those of a few network
elements, in order to influence the whole system, we expect τ to
depend on the sample size. For this, we measure the time duration of
the plateau, τ, for different system sizes. Indeed, Fig. 3b, d shows

experimental and theoretical (based on numerical solutions) mea-
surements of the dependence of τ on the system size, which follows:

τ � Nψ ð4Þ

with ψ = 1/3 which satisfies the relation ψ = ζ/(νd) (see Supplementary
Information). Note that this exponent has also been observed in per-
colation on abstract interdependent networks32. This result supports
our paradigm that the plateau, during the abrupt transition, represents

Fig. 3 | Plateau. a The resistance of an L = 416 ISN is measured experimentally as a
function of time (in seconds) during the abrupt transition from the mutual N-state
to the mutual S-state for different bias currents Ib ≤ Ic, and a long-term plateau is
observed. The time duration of the plateau τ decreases as the current departs from
Ic. The inset zooms in on the plateau regime of the top network, showing that the
resistance monotonically decreases but is affected by thermal fluctuations. b The
plateau timescale τ follows the scaling with the distance from criticality, ΔI = Ib − Ic,
in Eq. (3) with ζ = 1/2 and the scaling with the system size in Eq. (4) withψ = 1/3. Both

exponents are similar to those found for percolation on abstract interdependent
networks32. c Long-lived plateau is also observed theoretically by solving numeri-
cally the Kirchhoff equations of the thermally interdependent superconducting
networks. d In the numerical simulations one can also see that the plateau time
scale at the critical current Ic increaseswith the system size according to Eq. (4)with
ψ = 1/3 and (e) decreases with the distance from criticality ΔI, according to Eq. (3)
with ζ = 1/2, in excellent agreement with experiment shown in (b).

Fig. 4 | Illustration of the dynamics of the cascading mechanism for a heating
process during the abrupt transition. a An ISN system is stabilized at T < Tc and
I < Icwhere all segments are superconducting and there is no thermal dissipation in
the system. b At time t = 0 the current is switched to Ib > Ic so that one segment
switched to the N state and (c) dissipates heat to the entire networks system.d This

causes a random segment in the second network to switch to the N phase and to
dissipate heat. e–g This feedback process of one segment creating a phase change
in a randomsegment in the other network, continues spontaneouslyback and forth
for a macroscopic time until (h) an abrupt transition occurs and both networks
become normal.
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a cascading process thatoccurs spontaneously for amacroscopic time.
The collapse of all experimental curves in the plot of Fig. 3b is rather
striking and further supports the interpretation of the slowing down
arising from critical branching.

To further support this cascading paradigm and enhance our
understanding on themechanism,we analyzed the plateaubehavior as
a branching process to characterize the underlying dynamics33–35.
Consider the branching factor (branching ratio), R, which defines the
average number of segments in a network that are affected by a single
segment in the other network that changes its state e.g, from N to S.
This parameter is analogous to the branching factor R observed in
multitude of systems experiencing a branching process36–38. A cano-
nical example of a branching process is an epidemic spreading, such as
COVID-1939 or any disease40. In such cases, the branching factor mea-
sures how many people, on average, an infected individual will infect
before recovery or death. For the mean-field approximation of epi-
demics spreading, R< 1 means the disease is being suppressed, while
R> 1 means it spreads exponentially fast41. The case of R= 1 is critical
andmeans that a personwith the disease passes it onto only one other
person on average, and the population of infected increases linearly
over time. Since R fluctuates over time and the process may early
converge into an absorbing state, one would need to average over
many realizations to observe hRi= 142.

While basic epidemic spreading models show continuous PTs41,
more complex models show first-order PTs43 and, in some cases, pre-
sent a plateau behavior44. In our ISNs, the PT at criticality is abrupt and
characterized by a long-term plateau, while during this abrupt transi-
tion, R is exactly one along the plateau (Fig. 3a), before the system
abruptly changes its phase. This is because the heat dependency
interaction range extends over the entire sample (allowing for mean-
field to be valid, see Methods) and hence, each segment that changes
phase from N to S will affect, on average, exactly one segment in the
other network with the closest Tc and Ic. This implies that above Ic it is

expected thatR< 1 and below Ic, one can expectR> 1 while the critical
branching occurs atRc = 1.

In order to test the above hypothesis, we quantify R in our ISNs
along the plateau using the following procedure:

RðtÞ= ½Rðt +ΔtÞ � RðtÞ�=½RðtÞ � Rðt � ΔtÞ�: ð5Þ

for each network. Figure 5 shows both experimentally and theoreti-
cally the average branching hRi during the plateau for different cur-
rents around the critical point. It is seen that above the critical point
(ΔI > 0), the average branching factor hRi is smaller than one and each
segment impacts on average less than one segment, departs from one
as ΔI increases, leading to an early stop of the cascading process, and
the system remains at the N-state. Below the critical point (ΔI < 0), the
average branching factor is larger than one, increaseswithΔI, and each
segment impacts on average more than one segment, and the
cascading process transitions the system into the S-state. Exactly at
the critical point (ΔI = 0), a critical branching factor of hRic = 1 is
observed where each segment impacts on average exactly one
segment. This behavior of the branching factor around criticality
further supports our hypothesis of the spontaneous cascading during
the abrupt mixed-order transition, and we expect similar behavior in
other abrupt transitions. The experimental measurements of the
plateau used to estimate the branching factor are shown in Fig. S2.
Similar behavior for the branching factor is also observed for fixed
current and varied temperature (Fig. S3).

Discussion
One of the most important aspects of phase transitions is its under-
lying mechanism, which determines and characterizes its nature. The
state-of-the-art underlying mechanism of phase transitions usually
involves macroscopic interventions such as changing an external
parameter of the entire system for second-order transitions or the

Fig. 5 | Branching factor. a Experimental (top network of an L = 416 ISN) and (b)
theoretical measurements of the average branching factor during the cascading
near criticality of the abrupt transition. These are extracted from resistance versus
time curves shown in Fig. S2. Above the critical point (ΔI >0), the averagebranching
factor hRi is smaller than one, and each segment impacts on average less than one

segment. Below the critical point (ΔI < 0), the average branching factor is larger
than one, and each segment impacts on average more than one segment, as
hypothesized. Note also that hRi approaches 1 as I approaches Ic from both
directions. Exactly at the critical point (ΔI = 0) a critical branching factor of hRic = 1
is observed, where each segment impacts on average exactly one segment.
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spreading of growing nucleating droplets in first-order transitions1–3.
Here we reveal that an abrupt macroscopic phase transition can occur
due to spontaneous long-term cascading changes whose time scale is
macroscopically long and depends on the system size. This finding
fundamentally alters our understanding of phase transitions. It
experimentally confirms that cascading processes are at the origin of
the long-lived metastable state close to the spinodal point45–47 and is
expected to be found in a large class of systems that experience
spontaneous cascading phenomena during their transition48–53.

The critical branching factor hRic = 1 experimentally observed
here at the critical point can be used to estimate the resilience of real
systems. Since estimating the critical point of real-world systems is a
difficult task54, having at hand a metric to estimate the system’s resi-
lience is critical. In a real-world system, ideally, one would gather data,
build a model of the system, and measure the branching factor by
testing the model. However, while the connectivity links composing
the network structure are usually easier to obtain, the dependencies
between nodes in different networks are rarely easy to derive from
data. Hence, another approach will be needed. Stable real-world sys-
tems often experience local failures that do not lead to a total collapse.
Hence, these systems are characterized by hRi< 1. To estimate the
system’s resilience, one should track local failures andmeasure the gap
ΔR= hRic � hRi as a proxy for resilience, recommending applying
mitigation strategies for catastrophic events. The closer ΔR is to zero,
the larger the risk of system collapse.

The features of the transition in our ISNs, characterized by the set
of critical exponents (β, ν) = (1/2, 3/4) and (ζ, ψ) = (1/2, 1/3), is similar to
that found for abstract percolation on interdependent networks25,32

and for the theoretical model of interdependent ferromagnetic
networks9,26 confirming that properties of mixed-order transitions are
universal13, suggesting that the cascading mechanism could be the
origin of mixed-order transitions observed in a wide range of different
systems.

While the network structures in this work are restricted to a 2D
lattice, the insights of this work are relevant to non-symmetric topol-
ogies for two reasons. First, the disordered compositions (i.e., the
critical temperatures and critical currents of the segments) vary
between segments, hence breaking the symmetry of the structure.
Second, it was already shown in percolation on interdependent
networks55 that as long as the dependencies are random between the
networks (as in our work), the topology of the network only shows
quantitative variation (i.e., changes of the critical points) but the
qualitative critical behavior remains the same. Suggesting, as shown in
our work, the cascade behavior is controlled by the thermal coupling
and not by the network topology.

Methods
Experimental setup and measurements
We performed the experiments for current-voltage characteristics
using a Keithley 2410 sourcemeter and a Keithley 2000multimeter for
each network at T = 1.8K. The cryostat temperaturewas controlled and
measured via a LakeShore 330 using a 25Ω heater and a DT-670 ther-
mometer placed inside the cryostat. We tested and confirmed the
absence of short-cuts between the layers by measuring the junction
resistance between each pair of cross contacts. The cross-layer cou-
plings are created by passing the same current within both layers
simultaneously, thus generating dependency links sustained by heat
transfer. After determining the critical points Ic,← and Ic,→of the coupled
system for up and down sweeps of the current (Fig. 2a–c), we per-
formed the time-dependent experiments described in the text and
presented in Fig. 3a, b.

RSJJ model of disordered superconducting networks
To characterize the SN transitions observed in the experiments, we
model each disordered superconductor via a disordered 2D lattice of

RSJJs. In the limit of large tunneling conductances (g ≫ 1), isolated
networks of RSJJs undergo continuous SN phase transitions at low
temperatures that are generally independent of the ratio between the
Josephson EJ and the Coulomb EC energies56–58. In this regime, each
junction’s state can be characterized by the value of its normal state
resistance, Rn(T), and by its critical current, Ic(T), which generally
depend on the ratio between the temperature Tof the cryostat and the
junction’s SN activation threshold Tc. The latter quantities satisfy in the
Ambegaoakar-Baratoff relation59 IcðTÞRn =

π
2eΔðTÞ tanhðΔðTÞ=2kBTÞ,

where the energy gap, Δ(T), follows the Bardeen-Cooper-Schrieffer
mean-field spectral relation 2Δ(T) ≈ αkBTc with α ≈ 3.53, kB is the
Boltzmann constant and e is the elementary charge. The a:InO samples
fabricated in the present work, however, have bulk SN thresholds large
enough to ensure that junctions rarely undergo a metal-insulator
transition. In light of this, we consider a model of RSJJ with only three
electronic states: superconducting (SC), intermediate (IM) and normal
metal (N), defined according to the Josephson I-V characteristic14.
Hence, the junction’s resistance is defined piecewise as:

Rij =

Rϵ, if V ij <R
n
ϵ I

c
ijðTÞ ð SCÞ

Rn
ij , if V ij >R

n
ij I

c
ijðTÞ ðNÞ

Vij=I
c
ijðTÞ, otherwise ð IMÞ

8><
>: ðM1Þ

whereRϵ is the resistance in the SC state (Rϵ = 10−5Ω in simulations) and
Vij is the potential dropmeasured at the junction’s ends. For the critical
currents, we used a local generalization of the de Gennes relation60

IcijðTijÞ= Icijð0Þ 1� Tij=T
c
ij

� �2 ðM2Þ

where Icijð0Þ is the junction’s critical current at T = 0. We control the
degree of disorder in the arrays by considering a quenched normal
distribution χ ij 2 N ð0,σÞwhere variablesmatch the junctions’ labels in
each array with zero mean and variance σ = 0.1 as a generator for the
other system’s observables. Generating a unique χij distribution for
each network allows us to model the sample-to-sample disorder level
fluctuations observed in the experiment due to the experimental
sample fabrication method. In particular, we define Icijð0Þ= Ic0ð1 + χ ijÞ,
Tc
ij =Tcð1 + χ ijÞ, and Rn

ij =Rnð1 + χ ijÞ where the parameters Ic0 = 48μA,
Tc = 2K, and Rn = 6kΩ were used in simulations.

Global thermal coupling
The thermal coupling is controlled by the properties of the thermal
medium, which is strong enough to decouple the time scales of heat
transmission and electronic equilibration, allowing global thermal
coupling to characterize the quasistatic state of the system. Therefore,
the updated global effective temperature at the t-th overheating cas-
cade is iteratively given by

Tμ
t =T + γRt�1,μI

2
b, t�1,μ + γ

0Rt�1,μ0 I2b, t�1,μ0 + ξðtÞ: ðM3Þ

Here, γ = 4 × 105WK−1 is the thermal conductance within each
network (self-coupling), γ0 =4× 106 WK�1 (parameters used in simula-
tions) is the thermal conductance of the coupling medium, μ≠μ0, with
μ,μ0 =A,B, T is the global heat bath of the system, and ξ(t) is a weak
uncorrelated thermal fluctuations satisfying 〈ξ(t)〉 = 0
and hξðtÞξðt0Þi =2Dδt, t0 .

Thermally coupled Kirchhoff equations
To characterize the abrupt SN phase transitions reported in the
experiments, we have developed a model of thermally coupled RSJJs
networks with thermal couplings sustained by the heat dissipation of
single junctions. Alike simulations in interdependent networks12,
numerical solutions for the mutual order parameter (here, the global
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sheet resistance, R) can be obtained recursively by making the layers
interact through their isolated behaviors adaptively61. In our model of
thermally interdependent RSJJ networks, this is achievedby solving the
Kirchhoff equations of each array under the adaptive effect set by the
‘two-interaction’ interplaybetween Eq. (M1), Eq. (M2), and Eq. (M3).We
consider, therefore, two layers, A and B, each being a 2D lattice with
linear size L, whose left and right boundaries are connected to an
external supernode (source) where the bias current is injected and to
the ground, respectively. Each junction has a Josephson I − V char-
acteristic with Rijdefined as in Eq. (M1), wherewe assume Rϵ = 10−5Ω for
both the arrays and mean normal resistance Rn = 6kΩ. We initiate the
algorithm by randomly assigning two vector potentialsVμwith μ = A, B
with the same values for all junctions at the zeroth iteration. When
starting from the mutual SC state, the junctions’ resistances in both
layers are set as RA

ij =R
B
ij =Rϵ, whilst RA

ij =R
n
ij,A and RB

ij =R
n
ij,B when the

layers start from their mutual N phase. The algorithm evolves itera-
tively as follows:

(i) at the tth stage (t ≥ 1) of the overheating cascade, the effective
temperatures, Eq. (M3), are computed using the resistances and
the local currents found at the stage (t − 1);

(ii) the critical currents IcijðTÞ are updated via Eq. (M2), and their
resistive state is determined via Eq. (M1) after computing the
potential drop Vij,t from the vector Vt;

(iii) the (symmetric) conductance matrices Gμ with μ = A, B are
generated via the junctions’ resistances in Eq. (M1) with entries

Gij =

0, if ði, jÞ =2 E

�1=Rij , if ði, jÞ 2 EP
k2∂i1=Rik , if i= j

8><
>:

where E is the set of edges in each array and ∂i is the set of
nearest neighbors of node i;

(iv) the potential vectors, Vμ,t+1, are updated by solving numerically
the Kirchhoff matrix equations

GA
t � VA

t + 1 = I
A
inj

GB
t � VB

t + 1 = I
B
inj

(

where (⋅) is the matrix product and Iμinj is the vector of total
currents injected into each node at every stage, whose elements
are always zeroes except for the first entry (the supernode)
which equals the driving current Iμb with μ = A, B;

(v) The global sheet resistances of each array are then calculated as
Rμ
t + 1 =V

μ
t + 1ðNÞ=Iμb with μ = A, B.

Steps (i)-(v) are recursively repeated, yielding a sequence of pairs
of vector potentials: fðVA

0,V
B
0Þ, . . . , ðVA

t ,V
B
t Þ, . . .g, whose convergence is

verified as soon as the mutual error

δV=
X

μ =A,B

1� Vμ
t

Vμ
t + 1

�����
�����

becomes smaller than a numerical precision ϵmin. In the simulations
carried on in the present work, we used ϵmin = 10−5.

Fitting parameters
The scaling in Eq. (2) describes the deviation of the critical point Ic(L)
for finite systems from the critical point of an infinite system Ic(∞) as a
function of L. The deviation exhibits a power-law scaling with the cri-
tical exponent ν, which can be estimated both experimentally and
theoretically from this scaling. Since Ic(∞) is not known in theory and
can not be measured by experiments or simulations, we used it as a

fitting parameter. The value of Ic(∞) is determined by minimizing the
error for a linear line on a log-log scale of Ic(∞) − Ic(L) as a function of L
and the slope of the best-fitted line estimates the exponent ν.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Experimental measurement data generated in this study are pro-
vided in the Supplementary Information/Source Data file.

Code availability
Source codes can be freely accessed at the GitHub repository: https://
github.com/BnayaGross/Microscopic-mechanism-of-interdependent-
SC-networks.
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