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Asymmetric binary catalysis, particularly combining chiral Brgnsted acids with
Lewis acids, is an emerging strategy in synthetic chemistry. Although a few
catalyst combinations exist for stereoselective transformations, their scope is
generally limited to pre-organized, activated substrates. Here, we report bin-
ary catalysis combining an organosuperacid with bismuth, where the coun-
teranion of chiral N-triflyl phosphoramide acts as a flexible-coordinating
ligand. This system demonstrates exceptional reactivity and enantioselectivity
in the asymmetric allylation of a-keto thioesters, forming enantio-enriched
o-hydroxy thioesters with a tetra-substituted stereogenic carbon center (up to
>99% yield and 97% ee). The success is attributed to bismuth’s flexibility during
activation, enhancing also interactions with the thioester-tethered substrate.
Integrated experimental, analytical, and computational studies highlight the
unique assembly enabled by the chiral Brgnsted acid and bismuth salt system.

Chiral a-hydroxy carbonyls hold significant importance as essential
building blocks for fine chemicals and, more critically, for the synthesis
of pharmaceuticals, where their stereochemical integrity is often crucial
for biological activity (Fig. 1a). Therefore, developing efficient chemical
processes for synthesizing such chiral structures has become crucial in
asymmetric catalysis. Asymmetric binary catalysis can be a highly pro-
mising tool for achieving these challenging stereoselective reactions.
Over the past decades, the combination of transition metals (e.g., Ti, Pd,
Rh, Ag, Au, and Fe) or rare-earth metals (e.g., Yb) with chiral Brgnsted
acid organocatalysts has emerged as a useful approach, enabling highly
efficient asymmetric transformations (Fig. 1b)"®. A conventional
approach to asymmetric Lewis acid catalysis comprehends utilizing
chiral amine- or alcohol-modified Lewis basic ligands coordinated with
metal centers, facilitated by structurally fixed, redox-neutral chiral
complexes’. Contrary to this, binary strategy leverages the distinct
activation modes of each component efficiently and synergistically: the
metal functions as a redox' or Lewis acidic'® center, while the organic
acid serves as a precursor for counteranion or mono-/bidentate ligand
after deprotonation. Chiral phosphoric acids™ (CPAs: pK,=12.7 (in

MeCN, measured)®”, when (R = Ph)) have exhibited wide applicability as
organic counterparts in a plethora of catalytic reactions . Consider-
able catalytic activities and selectivities have been achieved by utilizing
the unique metal-CPA binary platforms based on their strong coordi-
nating abilities, which offer benefits that a sole catalyst cannot
realize”?°. Recent studies have expanded their usage in conjunction
with main group elements (e.g., Li, Al, Ca, and Mg)'**""%,

Bismuth (Bi) is a post-transition metal that offers a sustainable
alternative to conventional metals for various applications* . Unlike
other heavy metals, bismuth is cost-effective and significantly stable in
aqueous environments. Additionally, it has exceptionally low toxicity—
lower than that of common table salt—making it safe for use in oral
medications (e.g., bismuth subcitrate: for the treatment of Helico-
bacter pylori infections®®). Despite these advantages, only a limited
number of asymmetric bismuth-based binary catalytic approaches
have been disclosed in recent years. Cheng, Li, and coworkers showed
the synergistic effect of Bi(lll) salt and CPAs in diverse asymmetric
transformations, such as 1,2-allylation reactions, kinetic resolution,
and Mukaiyama—-Mannich reaction®*. Although these Bi-CPA binary
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Fig. 1| Thioester-directed asymmetric allylation via organosuperacid-bismuth
binary catalysis. a Representative bioactive compounds bearing chiral a-hydroxy
carbonyls with stereogenic carbon center(s). b Previous works: [CPAs] X [Lewis
acids]. ¢ Underdeveloped binary acid catalysis: [NTPA] X [Bi]. d This work:
Thioester-directed asymmetric allylation via organic-bismuth binary acid catalysis.

Ac acetyl, Bn benzyl, Boc tert-butyloxycarbonyl, Bz benzoyl, Cy cyclohexyl, DFT
density functional theory, DMSO dimethyl sulfoxide, ee enantiomeric excess, Et
ethyl, ‘Bu isobutyl, ‘Pr isopropyl, L, ligand, Me methyl, OAc acetate, Ph phenyl, Tf
trifluoromethanesulfonyl (triflyl).
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Table 1| Optimization of chiral acid organocatalyst

o)
SY . /\/Bpin
[¢)
1a

2
(1.0 equiv.)

CPA

1(R=24,6-(Pr)s-CeHy-)
2 (R =24,6-(Cy)s-CeHz-)

-

CTA chiral NTPA
1(R=H-)
1R=H) 2 (R = 1-Naphthyl-)

Bi(OAc); (3 mol%)
chiral acid (3 mol%)

solvent (0.1 M)
25°C,24h

%20 3(R=9-Anthracenyl-) \ 28 2(R=Ph) S A wacerviy)
7/ >OH 4 (R=9-Phenanthrenyl-) / SOH 3 (R =4-Bu-CeHyr) 4 (R =3,5-(CF3)p-CeHs-)
O o 5 (R = Ph;Si-) C o 4 (R = 1-Naphthyl-) 5 (R = 9-Phenanthrenyl-)
6 (R = CgFs-) 6 (R = PhySic)
® R © R 7 (R = 2,4,6-(Pr)3-CeHyr)
Entry? Chiral acid Solvent Yield (%)° ee (%)°
CPA-1 CH,Cl, 56 27
2 CPA-2 CH,Cl, >99 42
3 CPA-3 CH,Cl, >99 39 (ent)
4 CPA-4 CH,Cl, 82 14 (ent)
5 CPA-5 CH,Cl, 98 16
6 CPA-6 CH,Cl, 82 13 (ent)
7 CTA1 CH,Cl, 74 6 (ent)
8 CTA-2 CH,Cl, 57 17
9 CTA-3 CH,Cl, 68 25
10 CTA-4 CH,Cl, >99 61 (ent)
114 NTPA-1 CH,Cl, Al 19 (ent)
12¢ NTPA-2 CH,Cl, >99 12
13¢ NTPA-3 CH,Cl, 93 22 (ent)
144 NTPA-4 CH,Cl, >99 65
15 NTPA-5 CH,Cl, >99 26
16 NTPA-6 CH,Cl, 60 5 (ent)
17¢ NTPA-7 CH,Cl, >99 47 (ent)
18 NTPA-7 PhCL >99 56
19 NTPA-7 THF 44 35
20 NTPA-7 EtOAc 77 68
21 NTPA-7 PhMe >99 75
22° NTPA-7 PhMe >99 (92)f 91

“Reaction condition: a-Keto thioester (1a, 0.1 mmol), allyl-Bpin (2, 1.0 equiv., 0.1mmol), Bi(OAc); (3 mol%, 0.003 mmol), chiral acid (3 mol%, 0.003 mmol), solvent (0.1M, 1.0 mL), 25 °C, 24 h.

®Yield (%) was determined by 'H NMR integration.

°Enantiomeric excess (ee) value was determined by chiral HPLC analysis. ent opposite enantiomer as major form.

9(S)-Enantiomer of NTPA was used.
°Reaction was performed at =20 °C for 48 h.

flsolated yield. Bpin boronic acid pinacol ester, ‘Bu tert-butyl, Cy cyclohexyl, Pr isopropyl, OAc acetate, Ph phenyl, Tf trifluoromethanesulfonyl (triflyl).

systems have demonstrated remarkable success, their applications
have been mainly limited to electrophiles with reactive, cyclic (rigid)
imine or carbonyl backbones, such as isatin-derived N-protected keti-
mines, cyclic oxocarbenium ions, N-protected isatins, dibenzo[b f1[1,4]
oxazepines, 3,y-unsaturated o-keto esters, and racemic 2H-azirines.
Catalytic reactions utilizing functionalized acyclic substrates are
deemed challenging, likely due to the weaker binding of substrate to
the binary active site in these systems. Therefore, we hypothesized that
a chiral strong Brgnsted acid might be an efficient precursor for the
counteranion of the elaborate system because it contains multiple
transient coordinating functional atoms. This flexible coordination
may promote a harmonic synergy between the complex’s stability and
its catalytic activity by leveraging the coordination-decoordination
equilibrium®**’, While one part of the ligand remains firmly anchored, a
weakly binding unit of the potential multidentate ligand can reversibly
dissociate from the reaction center, creating an active site for

substrate interaction. In this context, we envisioned that a bismuth-
counteranion of chiral organosuperacid®**° as a ligand could pave the
way for a new approach in asymmetric binary catalysis. This strategy
may offer broad compatibility towards challenging substrates and
achieve high levels of regio- and stereoselectivity (Fig. 1c).

Herein, we report a binary catalytic system that combines a chiral
organosuperacid with a Bi(lll) salt (Fig. 1d). We found that the bismuth
complexes of counteranions derived from chiral N-triflyl
phosphoramides®**° (NTPAs: pK,=6.4 (in MeCN, measured)” and
pK,=-3.36 (in dimethyl sulfoxide (DMSO), calculated)”, respectively,
when (R=Ph)), efficiently catalyze the enantioselective allylation
reaction of a-keto thioesters. This discovery is significant because (i)
the use of asymmetric binary acid catalysis employing chiral organo-
superacids as flexible-coordinating ligand precursors represents an
underexplored approach (with only a few chiral NTPAs documented as
counteranions*** or as compatible Brgnsted acids**™° in metal
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Fig. 2 | Experimental and analytical investigations of the organosuperacid-
bismuth binary catalytic system. a Control reactions for catalyst evaluation. b'H
NMR (500 MHz) study for in situ-generated catalytic assembly. ¢ Employing pre-
prepared intermediate I as catalyst. d Examination of various Lewis acid catalysts
and others. e Reaction using a-keto oxoester as starting material. *Yield (%) was

analog

determined by 'H NMR integration. "Enantiomeric excess (ee) value was deter-
mined by chiral HPLC analysis. ent = opposite enantiomer as major form. Ac acetyl,
Bpin boronic acid pinacol ester, ‘Pr isopropyl, Me methyl, OAc acetate, OMe
methoxy, OTf triflate, Ph phenyl, Tf trifluoromethanesulfonyl (triflyl).
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catalysts), and (ii) the underlying mechanism of chiral induction in  excellent enantioselectivities in challenging allylation reactions® >
post-transition metals such as bismuth has been scarcely investigated under mild conditions, enabling the formation of thioester-tethered
owing to their complex coordination behaviors. By utilizing the dis- tetra-substituted stereogenic carbon center in a single protocol.
tinctive binding properties of this catalytic approach, we achieved (iii)  Thioesters are highly reactive yet sufficiently stable intermediates and
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play a pivotal role in biology and organic synthesis, enabling key
metabolic processes and further versatile chemical transformations®.
Experimental, analytical, and computational mechanistic studies cor-
roborated the cooperative covalent and non-covalent interactions
between the Bi(lll)-NTPA binary acid framework and the coordinated
substrates.

Results and discussion

Catalyst evaluation

For the model reaction, we selected S-isopropyl a-keto thioester 1a as
the acceptor to study catalytic efficiency for acyclic substrates,
underdeveloped in previous catalytic systems. Initially, we investi-
gated the reaction between 1a and allylboronic acid pinacol ester
(allyl-Bpin, 2), using 3 mol% of Bi(OAc)z and 1,1"-bi-2-naphthol (BINOL)-
derived chiral acid organocatalyst, in CH,Cl, at ambient temperature
for 24 h (Table 1). By exploiting CPA-1 (CPA featuring 3,3’-bis(2,4,6-
triisopropylphenyl)-substituents), we obtained the desired chiral
S-isopropyl o-hydroxy thioester 3a in 56% conv., whereas with low
enantioselectivity (27% ee, Entry 1). Other attempted CPAs did not

render satisfactory results (Entries 2-6), driving us to explore alter-
native core structures, such as chiral thiophosphoric acids. While some
promising results were obtained, the efficacy of the CTA scaffold
proved to be limited (Entries 7-10).

For stronger acids like chiral NTPAs, an improvement in catalytic
performance in terms of reactivity and enantioselectivity was observed
(Entries 11-17). Notably, the reaction using the catalyst NTPA-7 (chiral
NTPA bearing 3,3’-bis(2,4,6-triisopropylphenyl)-substituents), brought
significantly enhanced outcome compared to its CPA analog CPA-1
(NTPA-7: > 99% conv. and 47% ee (Entry 17) vs CPA-1: 56% conv. and 27%
ee (Entry 1)). The most dramatic enantioselectivity increment was
obtained in toluene (PhMe) among the examined solvents (up to 75%
ee, Entries 18-21). Finally, at a lowered temperature (-20 °C) for an
extended reaction time (48 h), a superior result was furnished (92%
yield and 91% ee, Entry 22). Other factors did not demonstrate a sig-
nificant positive impact (see Supplementary Information for details).
Although CTA-4 and NTPA-4 were promising candidates in the early
stages, their catalytic efficacies were less consistent under various
reaction conditions (see Supplementary Information for details).
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Experimental and analytical mechanistic investigations

To gain insights into the reaction mechanism, we performed experi-
mental and analytical studies, emphasizing the significance of the
combined binary acid catalytic system. As shown in Fig. 2a, control
reactions conducted with or without the catalytic components,
Bi(OAc); and NTPA-7, indicate that both are crucial for achieving the
desired reactivity and enantioselectivity. Noticeably, the model reac-
tion was inactive when either Bi(OAc); or NTPA-7 was absent (<2
conv.). Using CPA-1 instead of NTPA-7 under the standard reaction
condition resulted in considerably declined reactivity and enantios-
electivity (74% yield and 12% ee). These facts indicate that the triflyl
group (-Tf=-SO,CF3) at NTPA-7 interacts with Bi(OAc);, and such
synergistic action plays a critical role in efficient stereoselective
catalysis.

We next carried out a series of '"H NMR measurements to detect
the in situ binary acid catalytic assembly (Fig. 2b). When NTPA-7 and
Bi(OAc); were mixed, the Brgnsted acid peak of NTPA-7 immediately
disappeared (6 =2.23 ppm in MeCN-d5) and the generation of acetic
acid was simultaneously observed (6=1.59 ppm in PhMe-dg), pre-
sumably through anion exchange. Furthermore, a new *P NMR signal
(in PhMe-dg) appeared at 6 =-35.72 ppm (condition (b)) shifting from
6=2.68 ppm (condition (a)), and we assigned the resulting species as a
potential intermediate I (see Supplementary Figs. 269 and 270). When
allyl-Bpin (2) was added to the pre-formed putative intermediate I, the
formation of a potential intermediate II-through transmetalation-like
step—was witnessed by the observation of a typical "B NMR signature
of the concomitant byproduct, AcO-Bpin (6 =22.64 ppm in PhMe-ds,
see Supplementary Figs. 269 and 270). These stoichiometric reactiv-
ities were consistent with computational studies (vide infra). More-
over, removing acetic acid from the reaction mixture and using the
pre-prepared intermediate I as the catalyst substantially decreased
both reactivity and enantioselectivity (Fig. 2c). This fact indicates that
the generated acetic acid is essential for achieving a successful cata-
lytic outcome.

As shown in Fig. 2d, alternative Bi(lll) and Bi(V) salts, used in place
of Bi(OAc);, proved ineffective under the optimized reaction condi-
tion, obtaining the product 5a with low reactivities and poor enan-
tioselectivities (up to <67% conv. and 9% ee, Entries B-F). When
Bi(OAc); was replaced by other acetates such as HOAc, NaOAc, and
KOAc, no catalytic activity was observed (Entries G-I). Other main
group and transition metal Lewis acids resulted in fruitless outcomes
(Entries J-0). The importance of the thioester group was further
evaluated by synthesizing an oxygen analog (Fig. 2e). When subjected
to the standard reaction condition, o-keto oxoester, instead of 4a,
exhibited poor reactivity across a broad temperature range. This
finding emphasizes the critical role of the thioester group in achieving
a successful catalytic outcome (see Supplementary Fig. 268).

Mechanistic investigations by density functional theory (DFT)-
based computation
To examine kinetically viable reaction mechanism, we performed
computational studies based on DFT calculations as the SMD(toluene)
MO06-2X/{6-311 + G*/def2-TZVPP for Bi}//{6-31G*/SDD} level of
theory”. At the outset, we investigated the complexation between
Bi(OAc); and NTPA-7 (Fig. 3). Our initial consideration included var-
ious possible coordination modes upon anion exchange. The results
indicated that the formation of a six-membered bidentate complex I is
highly exergonic with a driving force of 21.9 kcal/mol, and the spon-
taneous deprotonation that releases acetic acid as a byproduct was
consistent with analytical observations by 'H NMR monitoring in
Fig. 2b. Other monodentate conformations (I, and I,) were less stable
than complex I, with energies of 17.2 and 17.0 kcal/mol, respectively.
Meanwhile, intermediate I, which exhibited weaker binding by the
triflate portion, converged to the complex I during the geometry
optimization process.

Having understood the stability of the six-membered-like che-
lated complex, we next evaluated the subsequent allylation reactivity
on the substrates (Fig. 4). Initially, the pre-formed complex I can
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3k 3l 3m

78% yield, 73% eed 82% yield, 1.73:1 d.r.
56% ee / 89% ee®®

Fig. 7 | Substrate scope (continued on Fig. 8). °Reaction conditions: a-Keto
thioesters (1, 0.3 mmol), allyl-Bpin (2, 1.0 equiv., 0.3 mmol), Bi(OAc); (3 mol%,
0.009 mmol), NTPA-7 (3 mol%, 0.009 mmol), PhMe (0.1 M, 3.0 mL), -20°C, 48 h.
°Yield (%) was determined after column chromatographic purification.

93% yield, 80% ee®

3d
90% vyield, 84% ee

3n 30

91% vyield, 91% ee 74% yield, 80% eed

°Enantiomeric excess (ee) value was determined by chiral HPLC analysis. “Reaction
was performed at 25 °C. *Diastereomeric ratio (d.r.) value was determined using 'H
NMR analysis. Bpin boronic acid pinacol ester, Me methyl, OAc acetate, OMe
methoxy, Ph phenyl.

undergo either transmetalation of allyl-Bpin (2) or binding of a-keto
thioester 4a. Our computational investigations on both pathways
suggested that transmetalation is kinetically favored under the optimal
reaction condition (see Supplementary Fig. 291). Hence, the complex I
reacts with allyl-Bpin (2) through a transmetalation process, forming
an allyl-bismuth complex I with a kinetic barrier of 17.8 kcal/mol
(I> I-TS). Then, a-keto thioester 4a binds to complex I, affording a
catalyst-substrates complex IIl. This complex has the potential to
traverse four different enantio-determining carbon-carbon (C-C)
coupling transition states (see Supplementary Fig. 296), structures and
energies of two representatives (III-TS and III’-TS) are displayed in
Fig. 4. The transition states III-TS and III’-TS lead to the products (S)-5a
and (R)-5a, respectively, where III-TS exhibited an activation energy
that is 3.0 kcal/mol lower than that of II'-TS. This computational
kinetic barrier for the C-C coupling aligned with our spectroscopic
observation confirming the (S) absolute configuration. Finally, the
product (S)-5a can be released through facile protonation of the
resulting catalyst-adduct complex IV by exogenous acetic acid, facil-
itating the regeneration of the complex I to close and turn over the
catalytic cycle. Attempts to explicitly locate the transition states for
monotonous ligand dissociation and association were unsuccessful on
electronic energy surfaces because the entropic contribution plays a
critical role during these processes®® (see Supplementary Fig. 293).
The fundamental origin of exceptional enantioselectivity was
further examined by utilizing complexes IV and IV’. Electronic energy
components suggested that the energy differences between III-TS and
II'-TS were well-reflected in the structures of their respective

resultants, IV and IV’ (see Supplementary Fig. 296). As enumerated in
Fig. 5a, analyzed by the non-covalent interactions (NCI) plot®, an
attractive interaction between the aryl moiety of the adduct and the
ligand backbone in IV was revealed, showing a hydrogen-hydrogen
(H-H) distance of 3.200 A (d_)=3.200 A) and an O-Bi-O angle of
91.1° (£(0-Bi-0) = 91.1°). Whereas a similar interaction was observed in
IV’, the nature of non-covalent interaction was repulsive, due to the
shorter distances between the adduct and the ligand (dg-n)=2.508
and 3.019 A). In essence, the shorter oxygen-oxygen (0-0) distance
between the adduct and the ligand in IV’ (do_0)=2.777 A), along with
the smaller O-Bi-O angle (£ (o0-gi-0) = 71.8°), induced a strong repulsive
interaction. We concluded that such interaction is substantiated in the
bidentate coordination mode enabled by NTPA-7.

Energy decomposition analysis®® was further conducted to
quantify the unique interactions (Fig. 5b). By dividing IV and IV’ into
two fragments (the catalyst and the adduct, respectively), we were able
to deconvolute the steric- and orbital-interaction terms using the
Amsterdam Density Functional quantum chemical package®. The total
bonding energy in IV is 2.4 kcal/mol lower, leading to stabilization of
the complex. The steric interaction, on the other hand, contributes
significantly to the energy difference of 4.2 kcal/mol, while the orbital
interaction is marginal. These results underscore the influence of the
bidentate ligand and non-covalent interactions, where the additional
oxygen atom in IV plays a crucial role in differentiating the energy, and
thereby affecting enantioselectivity.

Based on the mechanistic information, we propose a plausible cat-
alytic cycle (Fig. 6). The chiral organosuperacid NTPA-7 is readily
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Fig. 8 | Substrate scope (continued from Fig. 7). “Reaction conditions: a-Keto
thioesters (4, 0.3 mmol), allyl-Bpin (2, 1.0 equiv., 0.3 mmol), Bi(OAc)3 (3 mol%,
0.009 mmol), NTPA-7 (3 mol%, 0.009 mmol), PhMe (0.1 M, 3.0 mL), -20 °C, 48 h.

CccbC
2302605

OMe

OMe

5j
81% yield, 92% ee

/ OMe
T

5n
> 99% vyield, 90% ee

5v
83% yield, 91% ee

92% yield, 62% ee®®

®Yield (%) was determined after column chromatographic purification. ‘Enantiomeric
excess (ee) value was determined by chiral HPLC analysis. “Reaction was performed
at 25 °C. “Reaction was performed in 0.2 mmol scale. Me methyl, OMe methoxy.

activated in situ by anion exchange with Bi(OAc);, generating the active
catalyst I. Subsequently, transmetalation of allyl-Bpin (2) forms the allyl-
bismuth complex II, and the a-keto thioester (1 or 4) binds to create the
adduct species Il After enantio-determining C-C coupling takes place to
afford a tetra-substituted stereogenic carbon center, further protonation
releases the chiral product (3 or 5) and completes the catalytic cycle.

Substrate scope

To probe the generality of the developed catalytic method, a variety of
a-keto thioesters (1 or 4) was subjected to the optimized reaction
condition (Figs. 7 and 8). Intensive modulation of thioester moiety was
initially performed by varying S-substituents on a-keto thioesters 1
(Fig. 7). It was found that a-keto thioesters consisting of S-secondary
alkyl substituents (1a-1d) and S-tertiary alkyl substituents (le and 1f)
smoothly underwent the reaction, offering the corresponding chiral
products (3a-3f) with high levels of reactivity (84-94% yields) and

enantioselectivity (71-90% ee). The reaction utilizing a-keto thioesters
consisting of S-aryl substituents with electron-donating or -with-
drawing groups (1g-1j) also conducted well, attaining the corre-
sponding chiral products (3g-3j) with moderate to good reactivities
(59-84% yields) and enantioselectivities (65-89% ee). Encouragingly,
a-keto thioesters being made up of S-benzyl substituents (1k-10) were
well fitted in the reaction, exhibiting the corresponding chiral pro-
ducts (3k-30) with good to excellent reactivities (74-93% yields) and
enantioselectivities (73-91% ee).

Notably, S-(p-methoxybenzyl) (S-PMB) a-keto thioester 4a was
identified as the optimal substrate for achieving the corresponding
chiral S-PMB a-hydroxy thioester 5a with notable reactivity (96% yield)
and promising enantioselectivity (93% ee). A wide range of S-PMB
a-keto thioesters 4 was attempted through a similar process (Fig. 8).
Gratifyingly, S-PMB a-keto thioesters comprising of phenyl and
naphthyl substituents (4a-4c), aryl substituents with electron-
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Fig. 9 | Scale-up synthesis and synthetic applications. a Scale-up synthesis.
b Synthetic applications. 9-BBN 9-boracyclo[3.3.1lnonane, Bpin boronic acid
pinacol ester, Cy cyclohexyl, ee enantiomeric excess, Et ethyl, Me methyl, Mes

(d) Ethyl acrylate (5 equiv.), Grubbs Il (5 mol%), CH,Cl,, 40 °C, 6 h

(e) 25 wt.% NaOMe/MeOH soln. (3 equiv.), MeOH, r.t., 6 h

(f) p-Anisidine (5 equiv.), 3 M EtMgBr/Et,0 soln. (5 equiv.), THF, r.t., 18 h

(g) 4-Methoxybenzylamine (5 equiv.), 3 M EtMgBr/Et,0O soln. (5 equiv.), THF, r.t., 18 h
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2,4,6-trimethylphenyl (mesityl), NMMO 4-methylmorpholine N-oxide, OAc acet-
ate, OMe methoxy/methoxide, Ph phenyl, THF tetrahydrofuran, TPAP tetra-
propylammonium perruthenate, r.t. room temperature.

donating groups (4d-4i), and fused cyclic substituents (4j-4m) nicely
underwent the reaction, furnishing the corresponding chiral products
(5a-5m) with good to excellent reactivities (65-96% yields) and
enantioselectivities (85-97% ee). Additionally, S-PMB a-keto thioesters
comprising of aryl substituents with electron-withdrawing groups
(4n-4s) and heteroaryl substituents (4t-4v) were also smoothly con-
verted to the corresponding chiral products (5n-5v) with strikingly
high levels of reactivity (75->99% yields) and enantioselectivity
(90-95% ee). To our delight, it was found that the S-PMB «-keto
thioesters comprising of alkyl substituents, such as benzyl and phe-
nethyl groups (4w and 4x, respectively), can be readily adapted to the
reaction at ambient temperature, thereby creating the desired pro-
ducts with preeminent results ((5w; 87% yield and 72% ee) and (5x; 92%
yield and 62% ee)). It should be noted that the enantioselective utili-
zation of this type of substrate has been a challenging issue. The
absolute configuration of the obtained chiral products was determined
by the single crystal X-ray structure analysis. Based on the X-ray ana-
lysis of 5c¢, its absolute configuration was assigned as (S). The absolute
configuration of the other chiral products was assigned by analogy.

Synthetic applications

The feasibility of our protocol was disclosed through a gram-scale
reaction of 4a, using a reduced loading of the optimal catalytic com-
bination (2mol%), resulting the product 5a without erosion of

reactivity and enantioselectivity (>99% yield and 93% ee, Fig. 9a).
Moreover, suggested functional group derivatizations of model chiral
S-PMB o-hydroxy thioester 5a, while maintaining enantioselectivity,
highlighted the versatility of our catalytic method (Fig. 9b). The con-
secutive hydroboration-oxidation of 5a by utilizing 9-bor-
abicyclo[3.3.1lnonane (9-BBN) was conducted to obtain the
corresponding product 6 in 47% yield. The subsequent Ley-Griffith
oxidation of pre-isolated 6 by utilizing 4-methylmorpholine N-oxide
and tetrapropylammonium perruthenate gave rise to the production
of a y-lactone 7, which constitutes a tetra-substituted stereogenic
carbon center on its y-position, in 60% yield. The olefin metathesis
between 5a and ethyl acrylate gave the corresponding product 8 in
68% yield. The transesterification of 5a rendered the desired
o-hydroxy oxoester 9 in 85% yield. In addition, the positive specific
rotation of 9, which is in accordance with (S) when compared with the
reported values®*®*, confirmed the (S) absolute configuration of its
precursor 5a (see Supplementary Information for details). The cou-
pling reagent-free direct amidation of 5a with p-anisidine and
4-methoxybenzylamine gave the corresponding a-hydroxy amides 10
and 11, respectively in 75% and 71% yield.

In summary, we developed the asymmetric organosuperacid-
bismuth binary catalysis by exploiting the counteranion of chiral NTPA
as a flexible-coordinating ligand. Based on the chiral redox-neutral
bismuth catalytic system, we successfully achieved the
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enantioselective allylation reaction of a-keto thioesters to access
enantio-enriched a-hydroxy thioesters containing a tetra-substituted
stereogenic carbon center with excellent reactivities and enantios-
electivities (up to >99% yield and 97% ee). The unique features of this
unexplored system, including the flexible-coordinating chiral NTPA
counteranion ligand, thioester-directed catalysis, and cooperative
non-covalent interactions, were highlighted through an in-depth
examination of the underlying reaction mechanism. Our future
works will aim to develop a broader range of bismuth-catalyzed sus-
tainable reactions that utilize various organic acid catalysts, challen-
ging systems accelerated by water as a reaction medium®. We hope
this organic-bismuth binary acid system will establish a pioneering
approach in the asymmetric catalysis community, unlocking new
reactivity and selectivity that have not been explored earlier.

Methods

General procedure for the catalytic enantioselective allylation
reaction

In a flame-dried capped test tube, equipped with a magnetic stirring
bar and filled with Ar gas, Bi(OAc); (3 mol%, 0.009 (or 0.006) mmol),
NTPA-7 (3 mol%, 0.009 (or 0.006) mmol), and PhMe (anhydrous,
0.2 M, 1.5 (or 1) mL) were added. The reaction mixture then sealed to
stir to —20 °C (@ constant temperature bath) for 0.5 h. Subsequently,
allyl-Bpin (2, 1 equiv., 0.3 (or 0.2) mmol) was added to the reaction
mixture (dropwise), then sealed to stir at —20 °C for 5 min. To the crude
mixture at —20 °C, S-PMB a-keto thioester (1 or 4, 0.3 (or 0.2) mmol, in
PhMe (anhydrous, 0.2 M, 1.5 (or 1) mL)) was added (dropwise), then
sealed to stir at —20 °C (@ constant temperature bath (or rt)) for 48 h.
The resulting mixture was concentrated in vacuo, and the residue was
purified by column chromatography on silica gel (EtOAc:hexanes=
1:50 to 1:3v/v) to afford corresponding chiral S-PMB a-hydroxy
thioester (3 or 5). The NMR spectra and the mass data were obtained
using the Bruker Ascend™ 500 spectrometer and the Xevo G2-XS QTof
mass spectrometer (combined in supercritical fluid chromatography
(SFC; quadrupole TOF analyzer; Waters, Milford, MA, USA)), respec-
tively, at the Chiral Material Core Facility Center of Sungkyunkwan
University.

Data availability

All relevant data are presented in the main article and/or the Supple-
mentary Information. CCDC 2302605 contains the supplementary
crystallographic data for this paper. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing
data_request@ccdc.cam.ac.uk, or by contacting The Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: +44 1223 336033. Source data are provided with the manuscript.
Other data are available from corresponding author upon
request. Source data are provided with this paper.
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