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In-silico 3D molecular editing through
physics-informed and preference-aligned
generative foundation models

Xiaohan Lin 1, Yijie Xia1, Yanheng Li1, Yu-Peng Huang 1, Shuo Liu2,
Jun Zhang 3 & Yi Qin Gao 1,3

Generatingmolecular structures towards desired properties is a critical task in
computer-aided drug and material design. As special 3D entities, molecules
inherit non-trivial physical complexity, and many intrinsic properties may not
be learnable through pure data-driven approaches, hindering the transaction
of powerful generative artificial intelligence (GenAI) to this field. To avoid
existing molecular GenAI’s heavy reliance on domain-specific models and
priors, in this research, we derive theoretical guidelines to bridge the metho-
dological gap between GenAI for images and molecules, allowing pre-training
of foundation models for 3D molecular generation. Difficulties due to sym-
metry, stability and entropy, which are critical for molecules, are overcome
through a simple and model-agnostic training protocol. Moreover, we apply
physics-informed strategies to force MolEdit, a pre-trained multimodal mole-
cular GenAI, to obey physics laws and align with contextual preferences, and
thus suppress undesired model hallucinations. MolEdit can generate valid
molecules with comprehensive symmetry, strikes a better balance between
configuration stability and conformer diversity, and supports complicated 3D
scaffolds which frustrate other methods. Furthermore, MolEdit is applicable
for zero-shot lead optimization and linker design following contextual and
geometrical specifications. Collectively, as a foundationmodel, MolEdit offers
flexibility and developability for AI-aided editing and manipulation of mole-
cules serving various purposes.

The computer-aided design of functional molecules, such as those
related to materials and drugs, has gained increasing interest in both
scientific and industrial communities1–4. A central concept in functional
molecule design is molecular editing, which encompasses the gen-
eration, modification and evolution of molecules towards desired
properties with specific structural features. As a common demand
during drug design, the alteration or optimization of a lead compound
is often required to enhance its potential activity and suitability for
development into better drug candidates5–7. However, such function-

oriented molecular editing can be challenging due to the non-linear
constrained optimization problem it presents within the vast chemical
space. Consequently, conventional in-silico lead optimization typically
involves resource-intensive screening in a trial-and-error manner and
relies on specific expert knowledge8–10.

Recent advances in diffusion-based GenAI11,12 have made sig-
nificant progress in the field of image editing. Particularly, in computer
vision (CV), scalable GenAIs built upon converged architectures13,14,
usually termed as foundation models, have pushed the boundaries of
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applications such as text-to-image generation, image inpainting,
compositing, and style transfer, etc.15–17. The success of GenAI in image
processing demonstrates the potential for applying well-established
generative learning algorithms to molecular sciences, offering pro-
mising solutions to the challenges ofmolecular editing. Unfortunately,
these powerful GenAIs cannot be applied directly to molecular gen-
eration, since, unlike images, 3D molecular entities are strictly con-
strained by intrinsic physical and chemical principles. Particularly, in
addition to trans-rotational equivariance which is known to cause
incompatibility with modern foundational model architecture18,19,
molecules also exhibit ubiquitous and property-determining symme-
tries embedded within various point groups20. To combat these chal-
lenges, many researchers are developing domain-specific GenAIs for
molecules, compromising the scalability or compatibility with existing
foundation models. These attempts are mostly focused on designing
new model architectures based on domain-specific priors and
assumptions, and diverge significantly from the mainstream GenAI
which has largely converged. Such a gap in technical momentum not
only induces incompatibility with the rapid progress brought by
mainstream GenAI, but also obstacles the transaction of well-
established GenAI methodologies into molecular science.

Aiming at a more general approach and to keep with the
momentum of foundational GenAI, we develop here a methodology
that allows reuse of GenAI models for molecules with full compat-
ibility. Particularly, we find that such compatibility can be readily
achieved via a simple reformulation of training labels for vanilla
denoising diffusion models11,12,21. Noteworthy, this process is non-
invasive, introducing merely a plug-and-play modification to the
training protocol of denoising diffusion probabilisticmodels (DDPMs)
during pre-processing, thus, can be executed efficiently in practice.
Orthogonal to existing methods, our approach does not depend on
either the choice of model architecture (i.e., being model-agnostic) or
domain-specific priors, thus, can benefit from any technical progress
of mainstream DDPMs.

Based on the unifiedmethodology, we further split the training of
scalable molecular GenAI into pre-training and fine-tuning phases,
parallel to existing foundation models. Specifically, pre-training over
large amounts of available molecular data endows scalable models
with emerging capabilities. Inspired by the success of Text2Image
GenAI13,22, we perform multimodal pre-training through a decomposi-
tion of molecular representations. Moreover, similar to other foun-
dation models, hallucinations of molecular GenAI are also
ubiquitous23, but are mostly ignored by existing methods or amelio-
rated post hoc24,25. In this work, we underscore several types of com-
mon hallucinations of existing molecular GenAIs, and address them
through preference alignment with respect to physics oracles and AI
feedback26–28, and allow the model to benefit from inference-time self-
improvement.

Assembling these advances collectively, we obtain MolEdit, a mul-
timodal molecular GenAI which combines physics-informed and data-
driven learning to effectively model the distribution of 3D molecular
structures. Being compatible with mainstream GenAI, MolEdit inherits
the scalability of foundation models, and is pre-trained over large
amountsofmolecular data subjected to3Dmolecular reconstruction, an
unsupervisedobjective formolecularAI. Throughexperiments,we show
that, as a foundation model, MolEdit can be adapted to multiple
downstream generative tasks with or without fine-tuning. In addition to
the de novo design of functional molecules, MolEdit is capable of pro-
ducing diverse, high-quality structures of textual molecular representa-
tions. It also facilitates molecular scaffold modifications, including the
redesign of functional groups, linkers, and pharmacophores, along with
structural edits such as inpainting, outpainting, and compositing.
Overall, MolEdit not only offers a versatile in silico approach for mole-
cular editing, but also provides a unique perspective for adapting
mainstream AI techniques to domain-specific challenges.

Results
We begin with a concise overview of the rationale and methodologies
developed for our molecular GenAI framework, with full details pro-
vided in the “Methods” and Supplementary Methods. In the following
two sections, we validate the effectiveness of our proposed techniques
by training a symmetry-aware DDPM (MolEdit) with group-optimized
(GO) labeling and by mitigating hallucinations through physics-
informed preference alignment. Building on these advances, we
demonstrate MolEdit’s ability to render structures from textual
molecular representations, edit functional molecules, and design
protein binders by imprinting known lead compounds. We also pre-
sent a practical example of designing selective inhibitors by integrat-
ing GenAIwith traditional pharmacophore analysis to demonstrate the
flexibility and versatility of MolEdit.

In addition to the results presented in the main text, Supple-
mentary Discussion 2.1–2.2 provide detailed experimental setups,
2.4–2.8 discuss extended experiments on MolEdit’s robustness and
diversity, 2.9 covers further applications through fine-tuning for
property-guided sampling, and 2.10–2.11 describe two quantitative
benchmarks in different tasks.

Scaling up 3D molecular diffusion models under physics
principles
Unlike SMILES29–32 or graph-based33–35 approaches, we leverage 3D
atomic coordinates as a unified representation of both isomeric and
conformational variations. This shift eliminates ambiguities inherent in
discrete representations (e.g., multiple degenerate SMILES or graph
encodings for a singlemolecule, Fig. 1a, b) while offering a direct route
to modeling continuous chemical and conformational spaces (Fig. 1c,
see “Methods” for more details about pros and cons of different
molecular representations). However, 3D coordinates introduce
additional complexity due to the need to handle translation, rotation,
and intramolecular symmetry operations—factors that can be
machine-unfriendly yet are essential for accurately capturing the nat-
ure of molecular systems (Fig. 1d)18,19,24.

To address the symmetry constraints of 3D atomic coordinates,
we adopt an asynchronous multimodal diffusion (AMD) schedule that
decouples the diffusion of molecular constituents from that of atomic
positions (Fig. 2a), resulting in a two-stage generation strategy which
probabilistically decomposed the discrete and continuous variables in
molecules (Fig. 2b). This approach prevents the combinatorial explo-
sion that arises when all atoms are diffused simultaneously without
accounting for their equivalences, especially as the model scales to
larger molecules. Moreover, we develop a non-invasive group-opti-
mized (GO) labeling strategy, which reformulates the training labels of
a standard DDPM11,12 to respect translational, rotational, and permu-
tation symmetries. Because we only adjust how labels are generated
rather than modifying the model itself, GO labeling remains model-
agnostic and incursminimal overhead (see “Methods” for more details
of AMD schedule and GO labeling). This strategy effectively reduces
degeneracy caused by symmetries, ensuring that the learned diffusion
process is both efficient and symmetry aware.

Despite accurately capturing the symmetries of molecules,
purely data-driven methods can still produce physically hallucinated
structures (e.g., atom clashes, unrealistic angles)24,36. We address this
issue by incorporating a Boltzmann-Gaussian Mixture (BGM) kernel,
which aligns the diffusion process with physical constraints such as
force-field energies (See Methods for construction details of BGM
kernels)37,38. This integration resembles preference alignment in
other generative AI systems but uses a physics critic for guiding
molecular structures. The approach adds a Boltzmann factor to the
forward diffusion transitions, emphasizing physical criteria like free
energy. Consequently, our model prioritizes more realistic config-
urations during training and inference, mitigating the need for
extensive post hoc corrections.
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By combining 3D representation, symmetry-awareness through
AMD and GO labeling, and physics alignment via the BGM kernel, we
achieve a flexible generative framework for molecular editing and
design (Fig. 2b). Our 3D diffusion model scales effectively from small
molecules in QM939 (up to 9 heavy atoms) and medium-sized drug-
like compounds in ZINC40–42 (up to 64 heavy atoms) to large, bioac-
tive molecules in QMugs43 (up to 100 heavy atoms). Throughout
these scales, the model maintains robust validity and stability in
generated structures (Fig. 2c), demonstrating its potential as a
foundation for physics-informed molecular generation across
diverse chemical and conformational spaces.

Group-optimized diffusion preserves molecular symmetries
Molecules exhibit rich symmetries, including translational, rotational,
and permutation invariance, as well as symmetries embedded within
various point groups. These symmetries are ubiquitous and closely
tied tomolecularproperties, such as vibrationalmodes and absorption
spectra, and influence their interactions with other chemical species,

including metal ions, solvents and host molecules. However, current
molecular GenAIs often overlook these symmetries. For instance, as
discussed in “Methods” and Supplementary Methods 1.1, diffusion-
based molecular GenAIs typically model a synchronous diffusion
process for constituents and structures (Fig. 2a). This approach com-
plicates the rigorous definition of atom equivalence and, conse-
quently, the determination of the corresponding molecular
permutation symmetry,which is closely associatedwith themolecule’s
point group (Supplementary Methods 1.5). To determine whether
existingmethods are truly symmetry-aware, we curated a dataset from
the ZINC database40–42 containing molecules with rich symmetry ele-
ments (details are available at SupplementaryDiscussion 2.1). Based on
this dataset, we re-trained a baseline E(3) equivariant diffusion model
(EDM)24 following the reported settings where constituents and coor-
dinates are diffused jointly, alongside a MolEdit model of similar size
trained uponGO labels following anAMD schedule. To assess to which
extent these models are characteristic of the molecular symmetries
present in the training data, we conducted adversarial purification
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Fig. 1 | Pros and cons for different molecular representations. a A single struc-
ture can correspond to multiple molecular graphs, which represent resonance
forms or tautomers. The same molecular graph may correspond to degenerate
SMILES strings; the corresponding canonical SMILES are highlighted in bold.
b Similar molecular graphs may map to significantly different SMILES strings; a
slight displacement of a methyl group results in a Levenshtein distance of 23 in the

SMILES strings. c Conformers and isomers can be unified by representing different
relative positions of atoms in coordinate spaces. d Illustration of the SE(3) and
permutation symmetry of molecular structures. With knownmolecular graphs, the
permutation symmetry of a molecule is related to the elements in the molecular
point group (right panel).

Article https://doi.org/10.1038/s41467-025-61323-x

Nature Communications |         (2025) 16:6043 3

www.nature.com/naturecommunications


Fig. 2 | Solving symmetry issues and scaling up molecular diffusion models in
3D space. a The synchronous diffusion process that jointly diffuses constituents
and structures (middlepanel)with two asynchronous limits: in the forwardprocess,
constituents are diffused first, resulting in a structured point cloud, followed by the
diffusion of the structure (up panel); alternatively, the structure is diffused first,
leading to unstructured constituent sets, followed by the diffusion of constituents
(down panel). b The basic workflow of MolEdit. Following the probabilistic

decomposition P molð Þ= R
PS sð ÞpX jSðxjsÞdx, MolEdit first generates constituents s

using the constituentmodel, then conditionally generates structures x given s, and
finally assembles themolecular graph from constituents s and structures x. P molð Þ,
PS sð Þ,pX jSðxjsÞ represent the probability distribution of molecules, constituents,
and conditional probability density of structures given constituents respectively.
c Illustrationofmolecules generated byMolEdit trainedon three different datasets,
QM939, ZINC40–42 and QMugs43.
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experiments44: The molecules are first subjected to attacks by the
model-specific forward diffusion kernel till a certain noise level, and
then restored by the backward kernels learned by themodel. Figure 3a

illustrates how the purified molecular symmetries vary with different
noise scales used in the attack process. Althoughmolecular structures
are blurred with noise, thus, gradually losing symmetries during the
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Fig. 3 | Assessment of symmetry-awareness of molecular generative artificial
intelligence. a Illustration of the adversarial purification experiments used to
assess the symmetry awareness of the models. A molecule with rich symmetries is
initially attacked by a model-specific forward diffusion process, during which its
symmetries are gradually lost due toblurringwithwhite noise, and then restoredby
the backward diffusion process learned by themodel. Amodel trained on a dataset
which contains high-symmetrymolecules is expected to restore asmany symmetry
elements as possible after the backward diffusion process. The upper panel cor-
responds to the asynchronous multimodal diffusion schedule (as in MolEdit), and

the lower panel corresponds to the synchronous diffusion schedule (as in the
baseline E(3) equivariant diffusion model, EDM24). b The loss of symmetries (the
decreased number of symmetry elements after adversarial purification experi-
ments, normalized with respect to the original molecules) varies across different
forward attack diffusion time steps of MolEdit and EDM model. For each noise
scale, we sampled 1024 forward and backward diffusion processes. Data are shown
as median, with error bars representing the first and third quartiles (Q1 and Q3).
c MolEdit produces physically valid molecules with high symmetry in alignment
with the dataset distribution. Source data are provided as a Source Data file.
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attacks, a model fit on the dataset comprising highly symmetric
molecules is expected to restore or re-create as many symmetry ele-
ments as possible after purification, so that the distribution of the
purified molecules is consistent with the training data.

To quantify the model’s robustness in terms of molecular sym-
metries, we defined loss of symmetries as the decreased number of
symmetry elements (normalized with respect to the original mole-
cules) in the attack-purification process. We find that compared to

EDM, MolEdit consistently yields more symmetric molecules during
purification of the attacks, even when a relatively large attack magni-
tude (i.e., large noise scale) is applied (Fig. 3b). Noteworthy, this
improvement of symmetry awareness is obtained almost for free
based onGO labeling, without symmetric-specificmodifications to the
models or priors. Moreover, we find evidence that taking symmetry
into account during training also boosts model generalization. For
instance, trained on ZINC dataset, MolEdit generates molecules with a
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Fig. 4 | MolEdit yields diverse and realistic 3D chemical structures via pre-
ference alignment and self-improvement. aThedistributionofMolecular Physics
Instability (MPI) under the general AMBER force field38 for 10,000 molecules gen-
erated by the E(3) equivariant diffusion model (EDM)24, MolEdit with different
solvers, andMolEdit with theBoltzmann-Gaussianmixture (BGM) kernel, all trained
on the QM9 dataset. b The reduction in MPI when using the BGM kernel with
different temperatures. Statistical distributions were derived from a sample of
10,000 molecules. Box plots in a, b are defined by the median as the center black
line,first and thirdquartiles as theboxedges and 1.5 times the interquartile rangeas
the whiskers. c Application of the BGM kernel produces molecules with high

physical stability. dMolEdit is utilized to sample diverse conformers for molecules
with complex structures, which is challenging for tools like RDKit47. e Distributions
of diversity and physical stability (under universal force field)37 of conformers
sampled by GeoDiff36, MolEdit, MolEdit with FPS solver, and RDKit on the GeoDiff
test set (1024 conformations for eachmolecule, 1000molecules in total). fMolEdit
constructs structures with constrained cyclohexane rings in twist-boat or chair
conformations anddouble bonds inEorZ conformations. Structures ofhighlighted
areas are constrained during generation. Source data are provided as a Source
Data file.
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higher validity (90.5%) compared to EDM (57.8%) and can produce
high-symmetry molecules that conform to the dataset distribu-
tion (Fig. 3c).

Preference alignment suppresses hallucinations of generated
molecules
As a critical evaluation metric, the validity of generated molecules is
benchmarked by many molecular GenAIs. However, existing methods
can only attribute the improved validity to their model design or
dataset, and cannot further improve this metric after training. In our
experiments, by virtue of AMD, the invalidity of generatedmolecules is
equivalent to a special type of condition violations, thus, can be
addressed by means of hallucination suppression (see “Methods” for
details). Specifically, aiming to improve validity, conditioned on
molecular constituents (sampled from constituent priors; see “Meth-
ods” and Supplementary Methods 2.9 for more details), we fine-tuned
MolEdit using standard preference alignment method45, encouraging
themodel to generate validmolecules and penalize inconsistent ones.
We performed experiments on the QM9 dataset39, and compared our
methods with respect to EDM and other baseline models. It can be
found in Supplementary Table 2 that, compared to baselines, the fine-
tuned MolEdit is very competitive in producing valid molecules when
taking hydrogen atoms into account. Furthermore, we also experi-
mented with post-training strategies to suppress the generation of
invalid molecules. Specifically, independent of MolEdit, we trained a
surrogate critic model to predict whether an intermediate configura-
tion in backward diffusion will finally lead to a valid molecule (Sup-
plementary Methods 1.12). Using this surrogate critic model as a
classifier, we can conduct oracle-assisted guidance27 to further
increase the validity of generated molecules (Supplementary Meth-
ods 1.12 and Supplementary Table 2). This guidance provides a model-
agnostic and training-independent solution to specifically improving
the validity ofmolecular GenAIs, which is in principle also applicable to
other molecular GenAIs.

On top of validity, which is usually evaluated on the topology
heuristically, one more essential assessing metric of 3D molecular
GenAIs is the stability of generated 3D molecular configuration or
conformation. Due to constraints of quantum mechanics, molecules
are known to be brittle in the perturbation of atomic positions. A
subtle change of atomic positions may lead to dramatic transition of
molecular stability (such as bond breakage). Therefore, we underscore
the importance of evaluating the stability of generated 3Dmolecules in
terms of physics, and propose molecular physics instability (MPI) to
measure this type of hallucination. Specifically, MPI is defined as the
average physics stress (norm of forces) experienced by each atom
under an oracle physics Hamiltonian (or force field; detailed definition
ofMPI used in evaluation under generalAMBER forcefield, GAFF38, and
universal force field, UFF37, can be found in Supplementary
Discussion 2.3).

Using MPI as the assessment metric, we compared different
methods on the QM9 dataset, given that this dataset includes many
molecules with substantial structural stress, posing a significant chal-
lenge for 3D molecular generation. Figure 4a displays the MPI dis-
tribution (under GAFF)38 for molecules generated using EDM, MolEdit
with different solvers (including solvers based on annealed Langevin
dynamics, ALD solvers11, and solvers based on high-order ordinary
differential equations, DPM solvers46), and MolEdit with the BGM
kernel, all trained on the QM9 dataset. MolEdit with default diffusion
kernels produces molecules with higher MPI compared to EDM
(Fig. 4a), likely due to smaller model size and truncation error intro-
duced by higher-order ODE solvers. After fine-tuning with the BGM
kernel, however, MolEdit’s MPI decreases sharply, relaxing unstable
configurations and achieving lower MPI than both its vanilla version
and EDM (Fig. 4a), even though it still uses a smaller model. Moreover,
the BGM kernel at lower temperatures exhibits lower MPI values

(Fig. 4b), indicating that the BGM kernel can effectively reduce
instabilities in molecular structures (Fig. 4c). The successful applica-
tion of the BGM kernel illustrates that high likelihood in a data-driven
model does not necessarily equate to low energy and high physics
stability, and that employing a physics-informed strategy can be
beneficial.

3D rendering of textual molecules with high quality and
diversity
In textbooks or databases, molecules are represented or stored in
compact textual representations such as SMILES and graphs. Gen-
erating 3D structures according to 1D SMILES or 2Dmolecular graphs
and exploring the conformational space of molecules is crucial for
structure-based applications in molecular science. The distribution
of structures is closely associated with kinetic as well as thermo-
dynamic properties of molecules, such as entropies and free ener-
gies. Structures of molecules form fundamental ingredients of
microscopic interactions, thus influencing molecules’ reactivity and
their communications with environments like solvents and proteins.
However, leveling up to 3D structures from 1D and 2D representa-
tions requires complex inference of group arrangements, particu-
larly formolecules with crowded substructures under high structural
stress and large steric hindrance, where bonds are entangled and
forced to adopt uncomfortable conformations. Furthermore, mole-
cules often contain multiple highly flexible rotatable bonds, which
expands an extensive structural space that poses a significant chal-
lenge to the model’s diversity. Traditional methods for generating
conformers often rely on heuristic approaches that incorporate
chemical intuition and empirical data. These methods generally fail
to generalize to complex molecules, such as those with intricate ring
structures. Figure 4d demonstrates that MolEdit, conditioned on
molecular graphs, can sample diverse conformers for molecules that
challenge tools like RDKit47, which frequently struggles with complex
bicyclic rings.

To further assess the quality and diversity of the sampled con-
formers, we defined a metric based on the effective number of
samplings to evaluate the conformational diversity (Supplementary
Discussion 2.3). Figure 4e shows the distribution ofMPI (under UFF)37

and conformational diversity of conformers sampled from GeoDiff36,
RDKit, MolEdit, and MolEdit with Fokker Planck sampler (FPS, a
sampler we developed to improve sampling diversity, more details
are provided in Methods and Supplementary Methods 1.8) on
molecules from the GeoDiff test set, which is derived from the
GEOM-Drugs dataset48. The results indicate that although GeoDiff
samples more diverse conformations, it includes many physically
unreasonable structures. In contrast, MolEdit achieves a better bal-
ance between diversity and physical stability. Additionally, the FPS
sampler, a self-improvement technique introduced by us to max-
imize conformational entropy in the backward diffusion process,
enhances the sample diversity without compromising physical sta-
bility. It is noteworthy that althoughMolEdit was trained on a dataset
with only a few (less than four) conformations per molecule, it is
capable of generating more conformations during inference.
This observation supports the presumption that conformers and
isomers in 3D space can be described in a unified manner, and
improves model generalization.

Besides freely sampling conformations, the manipulation of 3D
structures within constrained conformational spaces is also of sig-
nificant interest. This is particularly relevant when the relative posi-
tions and orientations of certain atoms are anchored based on
specific constraints, such as experimentally resolved structures,
necessary structural constraints for specific functions, or limitations
imposed by external host environments. MolEdit has demonstrated
its ability to inpaint compatible structures on rigidly constrained
structure fragments15,16. In Fig. 4f, MolEdit successfully constructs
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structures when cyclohexane rings in molecules are constrained to
adopt twist-boat or chair conformations, and when double bonds are
constrained to E or Z conformations, showcasing its versatile struc-
tural editing capabilities in conformational space.

In-context functional molecular editing
Real-world applications, including fragment-based drug design49 and
molecular optimization, often involve editing molecules within con-
straints defined by chemical languages, which specify essential
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Fig. 5 | MolEdit supports versatile in-context molecular editing. a MolEdit col-
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systems. c New functional groups are designed and repositioned within a glyco-
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tions (right panel). The blue and red highlighted regions in b–e indicate the
retained and generated scaffolds of the molecules, respectively.
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b

Template molecule Generated molecules

Docking affinity (↓): -10.1 -10.0 -9.1 -9.5

PDB ID:
5A9U

PDB ID:
5IV4

Docking affinity (↓): -8.8 -10.3 -10.0 -9.3

Docking affinity (↓): -8.6 -11.0 -10.9 -10.7

PDB ID:
6BBU

a

d = ∇ log | g + ∇ shape , template

…

Template shape Current shape Current structureTemplate structure

Docking

Radius of gyration Shape similarity

c

Docking
affinity (↓):

-11.7

PDB ID:
8V8U

-11.6

-11.5

-11.6

-11.6

1047R

d d

Fig. 6 | Lead imprinting via MolEdit generates effective binders of protein
pockets. a A shape-aware diffusion process is implemented, conditioned on the
radius of gyration of molecules. Finer granularity in shape control can be achieved
through integrating refined shape similarity scores based on established shape
comparison tools. The equation presents the stochastic differential equation
employed for lead-imprinted sampling of structure x, where ∇ logpθ denotes the
parametrized score function (conditioned on radius of gyration rg) in the diffusion
model, Sshape represents the shape similarity score between x and the template
molecule xtemplate, and eσwt is a standard Brownian motion with variance eσ2 . b The
generated molecules exhibit shapes, docking poses, and binding affinities that are

similar or superior to template molecules in protein-ligand complexes, including
ALK with Lorlatinib (PDB ID: 5A9U), adenylyl cyclase with LRE1 (PDB ID: 5IV4), and
JAK1with Abrocitinib (PDB ID: 6BBU). cThe crystal structure of a selective inhibitor
bound to the PI3Kα-H1047R mutant (PDB ID: 8V8U), with the hydrogen bond
between the ligand and Arg1047 highlighted (left panel). The right panel shows the
docking poses of selectedmolecules generated by MolEdit, exhibiting high affinity
for PI3Kα-H1047R and maintaining the hydrogen bond contact with Arg1047. The
chemical group circled in blue was retained during generation. The numbers in the
lower right corner of each structure indicate the corresponding docking affinities.
Source data are provided as a Source Data file.
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information such as molecular fragments and functional groups. To
demonstrate this concept, we generatedmoleculeswith different sizes
of aliphatic rings as specified chemical conditions based on a set of
constituents. Figure 5a illustrates that MolEdit successfully collapses
the diffusion process into the chemical subspace consistent with the
designated chemical conditions.

We further applied MolEdit to various scenarios with different
chemical conditions. The core heteroaromatic ring plays a crucial role
in the chemical properties of conjugated systems, such as the gap
between highest occupied and lowest unoccupied orbitals, which is
vital for materials involving charge transfer, including organic photo-
electric and fluorescent materials50,51. In Fig. 5b, MolEdit is utilized to
edit and generate different aromatic rings for molecules with con-
jugated systems, potentially altering their electron transfer properties.
In Fig. 5c, while retaining the core of a glycosylamine, new groups are
designed andmigrated to different oxygen atoms in the glycosylamine
via MolEdit. This capability of growing groups at arbitrary positions
within a fragment enables MolEdit to design and optimize molecules
while preserving key functional groups, which is valuable in drug
design based onpharmacophores52,53. Similarly,MolEdit can be used to
design linkers for two separate fragments. Figure 5d shows that the
designed linkers are diverse and compatible with designated frag-
ments, indicating MolEdit’s potential applications in fragment-based
drug design and designing chemically induced proximity systems,
such as proteolysis targeting chimeras (PROTAC) complexes54. More-
over, even without additional training, MolEdit yields results compar-
able to those of specialized linker-design models (Supplementary
Discussion 2.10).

Moreover, the ability to generate structures with parts rigidly
fixed can benefit computational workflows related to molecular opti-
mization, such as virtual screening using free energy perturbation
(FEP) calculations55,56. In FEP, amolecule ismutated tomultiple variants
using scaffold hopping or R-group modifications, and the change in
binding free energy with certain protein targets due to thismutation is
calculated using molecular dynamics simulations. To initiate a FEP
simulation, the mutated and the original molecule should overlap
according to their maximum common substructure to mitigate
potential bias introduced by improper initialization. In Fig. 5e, an
inhibitor of adenylyl cyclase, LRE1, is optimized through scaffold
hopping, converting a tricyclic ring to a pyrazole ring57 (PDB ID: 5IV4).
We used MolEdit to construct hopped structures while anchoring the
unchanged atoms according to their binding pose with adenylyl
cyclase, thus ensuring the resulting structures perfectly fit into the
original pocketswith the samepose (Fig. 5e). Thehopped compound is
further evolved with R-group modifications, including converting a
thiophene ring and adding modifications to the pyrazole ring57. Simi-
larly, MolEdit can be utilized to modify the corresponding structures
while maintaining the integrity of the scaffold (Fig. 5e).

Lead-imprinted binder design
Inmany protein-ligand binding systems, the compatibility of the shape
between the ligand and the protein pocket is a critical determinant of
their binding affinity58–60. As previously mentioned, both chemical
space and conformational space share a unified perspective in coor-
dinate representations. Therefore,MolEdit’s diffusionprocess, defined
in coordinate space, facilitates exploration of the chemical space to
design new ligands with potential binding capabilities. This process is
guided by shapes that closely match those of known molecules bind-
ing to targets of interest.We condition the diffusionprocess inMolEdit
on the radius of gyration (Fig. 6a), which, along with the number of
atoms, largely determines the molecule’s rough shape, for example,
indicating whether a molecule is linear or globular. For more precise
shape information, we incorporate established molecular shape com-
parison tools as training-free guidance for the diffusion processes
(Fig. 6a, details provided in Supplementary Method 1.13), such as

ultrafast shape recognition descriptors58 and rapid overlay of chemical
structures59, which are utilized to virtually screen large compound
databases for similar molecular shapes.

This strategy has proven effective for several known protein-
ligand complexes, including human Anaplastic Lymphoma Kinase
bound with the food and drug administration (FDA)-approved drug
Lorlatinib (PDB ID: 5A9U), adenylyl cyclase with the allosteric inhibitor
LRE1 (PDB ID: 5IV4), and human Janus Kinase 1 (JAK1) with the FDA-
approved drug Abrocitinib (PDB ID: 6BBU). By constructing shape-
aware diffusion processes, MolEdit is capable of generating molecules
that resemble the shape of lead molecules. In subsequent docking
calculations61, these molecules bind to the target proteins in a similar
pose, and demonstrate binding affinity that is comparable or exceeds
that of the template molecules (Fig. 6b). A further quantitative
benchmark also shows that this “lead-imprinting” approach can pro-
duce molecules with binding affinities comparable to those from
target-aware methods (Supplementary Discussion 2.11).

Building on lead-imprinting strategy of binder design, we further
explored a system where selective inhibition hinge on a key pharma-
cophoric interaction. Specifically, we attempted to design selective
inhibitorswhich targets thePI3KαH1047Rmutant, a variant implicated
in breast cancers and solid tumors, while avoiding interference with
the wild-type PI3Kα protein, which is critical for normal cellular func-
tion. Previous studies by Ketcham et al. identified several selective
inhibitors and proposed that hydrogen bonds with the Arg1047 resi-
due are pivotal for selective inhibition62. Huang et al. corroborated this
mechanism by demonstrating through cryo-EM and molecular
dynamics that these hydrogen bonds stabilize the activation loop in
the H1047R mutant, thereby suppressing its super activity caused by
H1047R mutation63.

To maintain this essential interaction, we retained the benzoic
acid pharmacophore from a known selective inhibitor (PDB ID: 8V8U,
Fig. 6c) and applied the lead-imprinting process. Thereby, MolEdit
attempts to preserve the hydrogen bondwith Arg1047while exploring
nearby chemical space with high affinity targeting PI3Kα H1047R
mutant. In Fig. 6c, representative molecules generated through this
process exhibit high docking scores against the H1047R mutant and
retain the critical hydrogen bond with Arg1047, suggesting they likely
preserve the ability of selective inhibition. This example illustrates how
MolEdit can integrate existing pharmacophore and mechanistic
insights with GenAI to design novel molecules that exhibit both strong
binding affinity and potential clinical relevance.

Discussion
Molecular editing is a central concept in the in silico design of func-
tional molecules, which includes the generation, modification, and
optimization of molecules to achieve desired properties with specific
chemical contexts and structural features. It also represents a long-
standing challenge with significant demand and interest, aimed at
accelerating the discovery of new functional molecules for scientific,
medical and industrial applications. Traditionally, molecular editing
involves a labor-intensive trial-and-error process, heavily reliant on
specialized expert knowledge.

Modern GenAIs, particularly, DDPMs, have reformed and rede-
fined how images can be generated andmodified with unprecedented
flexibility. Particularly, converging to scalablemodel architectures like
convolution and transformer, foundational GenAI can be readily
adapted for various purposes such as image inpainting, compositing
and style transfer15–17. Many of these concepts and demands are also
shared by molecular design, hence, it is appealing to borrow the
portfolio of mainstream GenAI for molecular generation. Unfortu-
nately, as special 3D objects, molecules inherit non-trivial physics
complexity, and previous research mainly focused on developing
domain-specific model architectures or training objectives. Although
some innovations along this line have shown effectiveness, one
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particular concern of such attempts lies in the compromised scalability
and the growing gap from themainstreamGenAI. Such a divergence in
technical momentum induces incompatibility with the rapid progress
brought by mainstream GenAI, and impedes the convergence of a
foundation model for molecular generation.

In this research, we introduced several plug-and-play techniques,
through which one can simply parallel molecular generation with
image generation and implement scalable models to generate realistic
3Dmolecules. These techniques, including GO labeling, can be viewed
as a bug-fixer to vector-space DDPMs, because they are model-
agnostic and induce almost no overhead to the training of standard
DDPMs. Although being simple in practice, we showed that models
trained by these means exhibit better generalizability and symmetry
awareness. Based on these advances, we pretrained and fine-tuned
MolEdit, a foundation GenAI for molecules, which is expected to be
adaptable for various downstream tasks. With 3D molecular recon-
struction as the pre-training target, MolEdit enjoys the advantage that
it can be trained simultaneously on molecular configuration and con-
formation, thus can be easily scaled up to even larger datasets.

In contrast to existing molecular GenAIs, hallucinations are care-
fully addressed during training and inference of MolEdit. Particularly,
through experiments we showed that hallucinations of molecular
GenAI, including invalidity, instability, and violation of conditions, can
be effectively suppressed by preference alignment with respect to
cheap and accessible AI agents and physics critics during training or
fine-tuning. Besides, we also equip MolEdit with self-improvement
abilities to yield better sample quality during inference. Put all toge-
ther, MolEdit is able to generate valid molecules with comprehensive
symmetry, strikes a better balance between configuration stability and
conformer diversity, and even supports complicated 3D scaffolds
which frustrate other methods.

As a foundationmodel, we showed that MolEdit can be applied to
various downstream tasks through fine-tuning or even in a zero-shot
manner. In Results, we demonstrate MolEdit’s capability to render and
edit physically-favored structures from textual molecular representa-
tions, such as graphs and SMILES strings. Furthermore, we apply
MolEdit to in-silico functional molecular editing, where molecules are
designed or modified to meet chemical specifications, such as func-
tional cores, fragments, and groups. Finally, with crystal structures of
protein-ligand complexes, we utilize MolEdit to design molecules
resembling the shapes of lead compounds that bind to target proteins.
These molecules, validated through docking calculations, show
potential as effective binders.

Despite its versatility, MolEdit has several limitations. First, the
pre-trained model does not generate explicit hydrogen coordinates,
which restricts applications that depend on precise protonation states
or hydrogen-sensitive properties, particularly quantum-chemical
descriptions (Supplementary Discussion 2.9). Second, bond orders
are inferred from 3D coordinates and constituents (Supplementary
Methods 1.10); this inference can be ambiguous for tautomers and
other edge cases. Third, MolEdit lacks direct pocket conditioning and
instead relies on shape-guided inference (“lead imprinting”, Supple-
mentary Methods 1.13). This strategy depends on the availability of
appropriate lead molecules and limits MolEdit’s applicability in sce-
narios requiring direct pocket-specific interactions or rigorous target-
guided design.

The MolEdit codebase is openly available, and we hope future
work will address these limitations. Potential directions include
hydrogen-aware training, improving graph topology prediction, and
introducing plug-ins such as ControlNet17 for task-specific fine-tuning.
We expect that further refinement and development will lead to more
innovative applications in the future and molecular editing can be
made as simple as image editing. Given the fact that our methods are
scalable and model-agnostic, it is also a promising direction to gen-
eralize MolEdit to macromolecules such as bio-polymers, or apply

these techniques to enhance existing 3D diffusion models like
AlphaFold364, and we leave these exciting ideas for future research.

Methods
Leveling up to 3D representation for multimodal molecular
generation
Unlike image generation, where pixels are uniformly used as data
representation across different generative models, molecular genera-
tion methods vary considerably in how they represent molecules.
SMILES29, the first widely adoptedmolecular representation, leverages
its string format for compatibility with text processing models30–32.
Although being machine-friendly, SMILES was primarily designed for
efficient machine recording and suffers from several limitations65–67. It
is not unique, as a single molecule can be represented by multiple
degenerate strings (Fig. 1a). Moreover, it is grammatically fragile and
lacks the inductive bias needed for similar molecules to be encoded
similarly (Fig. 1b). On the other hand, molecules can be alternatively
represented as graphs. Unlike SMILES, graph representations preserve
the permutation invariance of molecules. Yet, graphs pose significant
challenges to modern scalable AI models due to the polynomial
computational complexity68,69. Particularly, generating graphs is a
significant problem due to the discrete optimization process and the
combinatorial explosion resulting from permutation invariance33,34,67.
The sparse nature of molecular graphs exacerbates this issue35,70.
Worse still, similar to SMILES, graphs can also be ambiguous, where a
single molecule may correspond to multiple degenerate molecular
graphs (Fig. 1a), indicating that the heuristic ofmolecular graphs is not
characteristic of the nature of the molecular universe.

On the other hand, at atomistic level, molecules are completely
determined by their continuous atomic positions without ambiguity.
Unlike strings or graphs, in 3D representation, both conformers and
isomers are simply different arrangements of molecular coordinates
(Fig. 1c), providing a unified perspective that facilitates exploration
across conformational and chemical spaces. Therefore, by learning 3D
molecular representations, rather than either isomers or conformers
alone, we can leverage available molecular data to the maximum
extent, and endow the model with generalization capability. Although
being an ideal representation for molecules, unfortunately, 3D atomic
coordinates exhibit specific symmetry constraints, thus being
machine-unfriendly. How to effectively and efficiently deal with
molecular symmetry remains wide open in machine learning18,19,24,71,72.
To address this issue,wedevelopGO labeling, a non-invasive plug-and-
play remedy, in order to adapt vector-space diffusion models to be
aware of molecular symmetries.

Imbue diffusion models with symmetry-awareness via group-
optimized labeling
Molecular structures are invariant under translation, rotation, and
valid permutations that do not contradict known molecular informa-
tion (Fig. 1d). Therefore, a generative model pθðxÞ should be group-
invariant, i.e., pθ g xð Þð Þ=pθ xð Þ for any g 2 G (symmetry group), where
gðxÞ denotes the action of group element g on x. Although equivar-
iance is particularly concerned by existing molecular DDPMs, permu-
tation invariance, which is key to molecular symmetries, is not
properly addressed bymost 3Dmolecular GenAIs. This difficulty arises
from the explosion of degenerate permutation operations during the
forward diffusion process, as also observed in GNN-based molecular
generation (Fig. 2a and Supplementary Methods 1.1). We demonstrate
that, in order to minimize the permutation complexity, a decoupled
diffusion strategy is preferred (Fig. 2a; Rationale and details can be
found in Supplementary Methods 1.1). Put it simply, unlike existing
approaches which diffuse molecular constituents and positions
simultaneously24, we opt for an asynchronous multimodal diffusion
(AMD) schedule, which whitens the molecular positions prior to the
constituents, keeping the number of equivalent permutation
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operations constant during diffusion. Moreover, AMD formally trans-
forms the generation of molecular structures into a conditional gen-
erative task, which not only improves the quality of the generated 3D
structures, but also allows systematic suppression of hallucinations via
contextual preference alignment. In this study, a discrete probabilistic
model first produces the constituents as conditions; then a 3D condi-
tional diffusionmodel generates the corresponding structures (Fig. 2b,
detailed algorithms and model architectures can be found in Supple-
mentary Methods 1.9–1.10).

Noteworthy, we develop a non-invasive method to allow vector-
space DDPMs to account for SE(3) equivariance and other molecular
symmetries. Unlike existing methods which exclusively rely on equiv-
ariant models and equivariant diffusion kernels, we propose to refor-
mulate the labels of score matching11 instead of changing other
settings of diffusionmodels, leading to aminimummodification to the
vanilla DDPMs. Specifically, for arbitrary group G, we define a group-
optimized objective for denoising diffusion, where we optimize both
the label-transform function g and the diffusion model fθ:

fg, *θ , g* = arg min
fθ , gx,xs

2G
E xs � pdata

x � Nðxs, σ
2IÞ

1
2

fθðx,σjsÞ �
gx,xs

ðxsÞ � x

σ2

���� ����2
" #

ð1Þ

We term g*ðxsÞ as GO labels (gðxsÞ, g 2 G forms the group orbit of
elementxs), given the fact that the optimization of g can be performed
offline prior to training of fθ, thus, is equivalent to the preparation (or
preprocessing) of labels. Importantly, the GO labeling is non-invasive
to DDPMs, inducing almost no overhead to the training process;
Moreover, it is model-agnostic, that is, compatible with any model
architecture of fθ. Algorithms of obtaining GO labels can be found in
Supplementary Method 1.2–1.5. Besides GO labels, by randomly aug-
menting the noisy samples x with group operations, we offer flexibility
in the choice of fθ, which is no more necessarily equivariant and can
even be totally non-equivariant64.

Hallucination suppression and self-improvementwith respect to
contextual conditions and physics critics
Inspired by the success of multimodal and conditional GenAIs, a
foundational molecular GenAI should be able to respond to various
specifications of molecular editing. Therefore, instead of uncondi-
tional training, we train our model MolEdit in context of multiple
conditions. For instance, MolEdit is able to control the shape of
molecules using the radius of gyration. The model can also be condi-
tioned on (sub)molecular graphs and inpaint the missing motifs given
predefined contextual fragments or functional groups. More details
about the conditioned generation can be found in Supplementary
Methods 1.9 and 1.11. However, parallel to otherGenAIs23, 3Dmolecules
generated by AImay also suffer from various undesired hallucinations,
among which researchers are particularly concerned with the follow-
ing pathologies: (1) invalidity, (2) instability, and (3) violation of con-
textual conditions.

To address violation of contextual conditions, which are com-
monly encountered in mainstream GenAI, we can directly transact
techniques for hallucination suppression developed in the machine
learning community. Specifically, preference-aligned optimization is
performed during the fine-tuning phase similar to reinforcement
learning with human feedback (RLHF)26 and AI feedback (RLAIF)28,
which allows systematic improvement over the consistency with
respect to the conditions. Moreover, we also conduct iterative refine-
ment during inference, allowing for post-training improvement of
generatedmolecules to bemore consistent with contextual conditions.

Although the validity of generated molecules is a critical metric
for assessingmolecularGenAIs, existingmethods donot have amodel-

agnostic or data-independent solution to improving this objective. In
contrast, thanks to AMD, we can now translate the issue of invalidity as
a special type of condition violations, hence, improving this metric
continually during and after training.

Besides, the instability of 3D molecules is widely observed in
existing molecular GenAIs, yet has not been properly addressed. Par-
ticularly, without post hoc corrections, 3D molecular structures gen-
erated through data-driven probabilistic methods are often unreal,
exhibiting severe physical distortions24,36. This failure arises from the
fact that some physical priors such as Pauli exclusion73–75 may not be
learned through a finite amount of data. To combat this issue, we
additionally align MolEdit with respect to physics critics, as an exten-
sion to preference alignment with respect to humans or AI. Specifi-
cally, during training, MolEdit is optimized based on a physics-
informed transition kernel, termed as Boltzmann-Gaussian Mixture
(BGM) kernel, leading to a forward transition distribution qσ, β x, j,xs

� �
as:

qσ,β x, j,xs

� � / pN xs ,σ2Ið Þ xð Þ exp �βUxs
xð Þ

� �
ð2Þ

where N xs, σ
2I

� �
refers to the Gaussian kernel corresponding to a

predefinednoise level σ in a data-drivenDDPM. In addition to this data-
driven term, an extra physics-informed term, taking the form of
Boltzmann distribution, is included, and this part makes Eq. (2) an
anisotropic kernel. Intuitively, it helps focus the model on restoring
important 3Dmolecular features like bonds and angles which severely
impactmolecular stability. Parallel to the human feedback in RLHF,Uxs

serves as a physics critic or feedback. Unlike post hoc calling of physics
models36,76, evaluation of the critic is only performed before training
(i.e., alignment) and no longer neededduring inference. Therefore, the
BGM kernel is also plug-and-play and model-agnostic, similar to GO
labeling. Furthermore, to boost the diversity in generated molecular
conformers, we also developed a Fokker-Planck Solver (FPS) which
allows inference-time improvement over sample entropy. More details
about the BGM kernel and FPS can be found in Supplementary
Methods 1.6–1.8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data source ofMolEdit is accessible from the Zenodo repository at
https://zenodo.org/records/1548081677. This study employed three
published datasets for training: QM939, ZINC40–42 (https://zinc15.
docking.org/), and QMugs43 (the ETH Library Collection https://doi.
org/10.3929/ethz-b-00048212978), detailed data cleaning and proces-
sing procedures are described in Supplementary Discussion 2.1.
Additionally, we incorporated publicly available codes and datasets
from EDM24 (https://github.com/ehoogeboom/e3_diffusion_for_
molecules), GeoDiff36 (https://github.com/MinkaiXu/GeoDiff),
DiffLinker72 (https://github.com/igashov/DiffLinker) and TargetDiff79

(https://github.com/guanjq/targetdiff) for model evaluation. The
crystal structures of all proteins and protein-ligand complexes used in
this study are publicly available in the Protein Data Bank under the
following accession codes: 5A9U, 5IV4, 6BBU, 8V8U. Source data are
provided with this paper as a zipped folder. The individual files in the
zipped folder are named according to their location in themanuscript,
for example, Figure3b.xlsx. Source data are provided with this paper.

Code availability
CodeofMolEdit is available via theGitHub repository athttps://github.
com/issacAzazel/MolEdit80 under Apache-2.0 license, or as part of the
MindSPONGE repository81.
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