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Personalized risk stratification in colorectal
cancer via PIANOS system

Du Cai 1,2,3,9, Haoning Qi 1,2,3,9, Qiuxia Yang4,9, Huayu Li5,9, Chenghang Li6,
Chuling Hu1,2,3, Baowen Gai1,2,3, Xu Zhang7, Yize Mao 8 , Feng Gao 1,2,3 &
Xiaojian Wu 1,2,3

Current prognostic biomarkers for colorectal cancer (CRC) lack stability and
generalizability across different cohorts and platforms, challenging precise
patient stratification. Here, we introduce a Platform Independent and Nor-
malization Free Single-sample Classifier (PIANOS), designed to refine treat-
ment decisions by accurately categorizing patients with CRC into distinct risk
groups. Developed using gene expression data from 562 patients and
employing a rank-based k-Top Scoring Pairs (k-TSP) algorithm alongside
resampling, PIANOS was rigorously validated in 15 cohorts comprising 3666
patients with CRC. It effectively differentiates high-risk from low-risk patients,
outperforms 105 existing models, and demonstrates robust performance
across technologies like microarrays and RNA sequencing. PIANOS-based
stratification is validated as an independent predictor of disease-free survival.
Moreover, PIANOS discriminates treatment responses across risk categories,
with high-risk patients showing increased sensitivity to bevacizumab and low-
risk patients exhibiting enhanced responsiveness to chemotherapy and
immunotherapy. This study reports significant advancements in supporting
clinical decision-making for CRC and provides a reliable framework for opti-
mizing patient treatment strategies.

Colorectal cancer (CRC) is the third-most commonmalignancy and the
second-leading cause of cancer-related death worldwide1. Despite
considerable progress in the therapeutic approaches for CRC, patient
outcomes remain unsatisfactory, with a general five-year survival rate
of ~65%2. A robust, accurate, and clinically actionable risk stratification
system provides a foundation for further drug discovery to improve

CRC patient outcomes3. Since not all CRC patients at the same stage
respond consistently to the same treatment, a considerable number of
patientsmay experienceovertreatment, undertreatment, or receive no
effective treatment at all4,5. Therefore, accurate and robust risk strati-
fication would be crucial to improving prognostic outcomes for
patients with CRC.
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Recent notable advancements in CRC diagnosis and treatment
include identifying biomarkers like deficient mismatch repair (dMMR)
and microsatellite instability-high (MSI-H), which have proved instru-
mental in guiding immunotherapeutic strategies6. However, these
biomarkers are present in only about 15% of CRC cases, limiting their
broader applications7. Further, most clinical studies still rely pre-
dominantly on the TNM staging system, which accurately gauges
tumor burden but fails to capture tumor heterogeneity8. Conse-
quently, the effectiveness of numerous CRC clinical trials is hampered.

Technological advancements have introduced various risk strati-
fication methods for CRC, such as whole-exome sequencing, RNA
sequencing, immunohistochemistry, radiomics, and pathology9–13. For
instance, the pathology-based SIA14, the iCMS developed through the
integration of single-cell and transcriptomic analyses15, and the CRPS—
which converts transcriptomic data into pathway enrichment scores
and uses deep learning for modeling—16have all been explored. How-
ever, these biomarkers frequently face accuracy and stability issues
due to variability in detection methodologies, sequencing platforms,
and patient demographics17. Such issues limit the applicability of gene
expression-based biomarkers to their initial training sets and the
selection of public datasets. Further, normalization requirements for
dataset processing often introduce test set bias, which refers to addi-
tional information introduced during the data standardization pro-
cess, hampering accurate prediction for new individual samples18,19.
Even widely adopted solutions, such as a combat algorithm, fail to
completely negate batch effects20.

In this work, we present PIANOS, a robust, platform-agnostic
classifier for stratifying CRC patient risk. We demonstrate its prog-
nostic performance across multiple cohorts and its ability to identify
distinct treatment sensitivities. Specifically, PIANOS suggests that low-
risk patients may benefit more from chemotherapy and immu-
notherapy, whereas high-risk patients may exhibit activated angio-
genic features. This study underscores the potential of PIANOS to
enhance personalized clinical decision-making in CRC.

Results
Construction and evaluation of PIANOS in CRC cohorts
Figure 1 provides an overview of the research process. We analyzed
data from 24 cohorts across ten countries comprising 5439 patients
(Fig. 2A). We used the single-sample gene set enrichment analysis
(ssGSEA) algorithm to compute enrichment scores for 22,596 path-
ways from theMSigDB database (version 7.0) for eachpatient. PIANOS
was developed using k-TSP and resampling algorithms, training with
364 patients fromCIT (Fig. 2B). PIANOS stratified patients into high- or
low-risk categories based on gene expression profiles, designating
those scoring >17 as high-risk. Baseline information for all major
cohorts is presented in Supplementary Data 1–3. We examined the
distribution of risk scores across different T, N, and M stages in COCC
and other cohorts, finding a significant increase with advancing cancer
stage (Fig. 2C and Supplementary Fig. 1A–C). Multivariate analysis for
DFS revealed that PIANOS stratification operates independently of
TNM staging and MSI status (Fig. 2D and Supplementary Data 4–9).
Subsequently, DFS disparities between high- and low-risk groups
across various cohorts were investigated. DFS in high-risk patients was
considerably shorter compared to those in the low-risk group across
all examined cohorts (Fig. 2E–I). Besides, PIANOS effectively stratified
patients with CRC across different TNM stages (Supplementary Fig.
1D–F). Supplementary Fig. 2A to C illustrates the distribution of KRAS
mutations, BRAF mutations, and tumor locations across the high- and
low-risk groups in the COCC cohort. PIANOS effectively stratified
patients according to prognosis across different Clinicopathological
characteristics (Supplementary Fig. 2D–L). Figure 2J, K presents typical
computed tomography (CT) images from different risk groups, high-
lighting cases in which a low-risk patient with advanced tumors
exhibited longer DFS than a high-risk patient with early-stage tumors,

who experienced early recurrence. This demonstrates PIANOS’ ability
to discern tumor biological behaviors beyond traditional TNM staging,
offering a refined approach to CRC risk stratification.

Performance and robustness of PIANOS
Figure 3A shows the distribution of patients across high- and low-risk
groups within all analyzed cohorts, as detailed in Supplementary Data
10. We evaluated the prognostic capability of PIANOS by computing
the concordance index (C-index)21 and D-index22 for each cohort. The
analyses confirmed its ability to stratify patient outcomes overall
(overall C-index =0.74, 95% CI = 0.71–0.76; overall D-index = 2.95, 95%
CI = 2.56–3.34; Fig. 3B, C and Supplementary Data 11, 12), considering
data from both sequencing (C-index = 0.71, 95% CI = 0.61–0.81; D-
index = 2.49, 95% CI = 1.58–3.41) and array (C-index = 0.75, 95%
CI = 0.71–0.78; D-index = 3.10, 95% CI = 2.62–3.58) platforms. To fur-
ther evaluate PIANOS’s efficacy in predicting recurrence, we calculated
the area under receiver operating characteristic curve (AUROC) for
each cohort independently. The results consistently demonstrated
significant predictive power for recurrence across all cohorts (Fig.
3D–H and Supplementary Fig. 3A–E). To compare the predictive per-
formance of PIANOS with that of existing colorectal cancer prognostic
systems, including SIA, iCMS, CMS and CRPS, we evaluated the ROC
curves for 3-year and 5-year recurrence across different cohorts
(Supplementary Fig. 3F–O), revealing that PIANOS exhibited the
highest predictive capability in all cohorts. To further contextualize
our findings, we performed survival analysis on the different subtypes
defined by the CMS, SIA, iCMS, and CRPS classification systems within
the COCC cohort. Importantly, the prognostic stratification observed
within our COCC cohort for these classification systemswas consistent
with their previously reported prognostic performance (Supplemen-
tary Fig. 4A–D). To investigate the robustness of PIANOS further, we
iteratively removed random proportions of genes, reducing the input
gene pool to 10%. Intriguingly, even with a 50% reduction in input
genes, both C-index and D-index exhibited only a marginal decrease,
maintaining a C-index of 0.65 and a D-index of 2 across all cohorts
(Fig. 3I, J). To demonstrate the changes in model input with varying
proportions of gene deletion, we displayed the alterations in
ssGSEA scores when gene deletion rates reached 50 and 10%.
Although the ssGSEA scores showed some variations, the relative
ranking among different pathway pairs within individual samples
remained largely consistent (Supplementary Fig. 5C). A comparative
analysis of 105 previously published CRC prognostic models23

demonstrated superior performance of PIANOS, as it consistently
outperformed comparison models in all evaluated cases (Fig. 3K).
This underscores the exceptional predictive accuracy and clinical
relevance of PIANOS in stratifying patients with CRC and reinforces
its potential as a significant advancement in CRC prognostic
assessment.

Multi-omics landscape in different PIANOS groups
To elucidate PIANOS’s prognostic capabilities, we performed a model
decomposition analysis revealing that most pathways identified by
PIANOS are associated with cell proliferation and immune-related
processes (Supplementary Fig. 5A). To identify the most critical tran-
scriptomic signals within PIANOS, we ranked the genes from these
pathways based on their frequency of occurrence (Supplementary
Fig. 5B). Notably, genes such as DKK1, GZMB, THBS1, and CCL5—
recognized for their key contributions to colorectal cancer prognosis—
have been incorporated into several existing prognostic models24–31.
We then examinedmutationdata fromCOCC, TCGA, andACICAM.Fig.
4A and Supplementary Fig. 6A, B display the top 15 genes with the
highest mutation frequencies in high- and low-risk groups, along with
their mutation rates. To evaluate the model’s stability, we combined
mutation frequencies from these cohorts and identified commonal-
ities, finding significant differences in MUC16 and FSIP2 mutation
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frequencies between high- and low-risk groups across all cohorts.
Notably, these genes exhibited highermutation frequencies in low-risk
group (Fig. 4B). We computed the mutation status of high-frequency
mutated genes exhibiting differential mutation frequencies in the
COCC cohort, including APC, RYR2, SMAD4, TRCF7L2, TP53, FAT4,
and MUC16 (Supplementary Fig. 6D). Furthermore, we performed
differential gene expression analysis between high- and low-risk
groups in major cohorts. Besides, we conducted survival analysis on
differential genes in each cohort. The intersection of survival-
contributing genes across four cohorts identified CXCL13 and CXCL9

(Fig. 4C and Supplementary Fig. 6C). Correlation between consensus
molecular subtypes (CMS) and PIANOS risk groups is shown in Fig. 4D,
Supplementary Figs. 6E, 7B, and Supplementary Data 15–17. Notably,
CMS1 and CMS2 were predominantly associated with the low-risk
group, whereas the CMS4 subtype was prevalent in the high-risk
group. Analysis of HALLMARK pathways showed that IFN-α and IFN-γ
response pathways were enriched in the low-risk group. Conversely,
EMT (Epithelial-mesenchymal transition) and TGF-β signaling path-
ways were enriched in the high-risk group, which also showed sig-
nificant activation of angiogenesis pathways (Fig. 4E and
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Fig. 1 | Overview of the entire research process. The study framework is orga-
nized into four main stages. First, Data collection: gene expression profiles were
collected from a comprehensive set of 24 cohorts globally, totaling over 5000
patients. Thesewere categorized for specific analyses. Second,Model training: This
panel illustrates the flowchart for ourmodel. Gene expression data from individual
samples are first transformed into pathway enrichment scores. The k-top scoring
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build a multi-classifier model. Our model stratifies colorectal cancer patients
into high- and low-risk prognostic groups. Third, multi-omics analyses: To
uncover the biological underpinnings of the risk stratification, we conducted
integrated analyses of genetic profiles, transcriptomes, and the tumor immune
microenvironment. Fourth, Therapeutic implication: Based on the distinct biolo-
gical underpinnings of the risk groups, we showed the potential treatment
strategies.
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Supplementary Fig. 6F). To validate these findings, we evaluated
ssGSEA scores for five treatment-relevant pathways across 10 GEO
cohorts. This confirmed that TGF-β pathways and angiogenesis path-
ways were more active in the high-risk group (Supplementary Fig. 7A
and Supplementary Data 18). Notably, G2M checkpoint pathway acti-
vation in the low-risk group was observed in all major cohorts
except TCGA.

Patientswith CRC and lowPIANOS scoresweremore sensitive to
chemotherapy
Our analysis revealed a significant upregulation of G2M checkpoint
pathway, a key target of several chemotherapeutic drugs32, in low-risk
group (Fig. 5A). To investigate chemotherapy sensitivity across risk
groups, we searched Cancer Genome Project database and found that
5-fluorouracil, irinotecan, and oxaliplatin exhibited lower IC50 in low-
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risk group, indicating enhanced drug sensitivity (Fig. 5B). For 282
patients in COCC underwent Ki67 detection, immunohistochemistry
(IHC) showed higher Ki67 expression in low-risk group (Fig. 5C) and a
significant disparity in Ki67 distribution between high- and low-risk
groups (Fig. 5D), with a positive correlation between Ki67 expression
and G2M checkpoint activity (R =0.26, p <0.001, Fig. 5E). Stratifying
patients into low (≤30%) and high (>30%) Ki67 groups, Kaplan–Meier
curves indicated significantly better DFS for high Ki67 group patients
receiving chemotherapy compared to untreated patients (HR=0.40,
p < 0.01, Fig. 5G). No significant DFS difference was noted in low Ki67
groupbasedon chemotherapy administration (Fig. 5F). Chemotherapy
benefits varied, with a 53% DFS improvement in the low-risk group
versus 41% in the high-risk group (Fig. 5H, I). Data from GSE87211
(n = 203) showed a negative correlation between PIANOS scores and
chemotherapy-induced regression rates, quantifying chemotherapy
sensitivity based on pre- and post-treatment tumor invasion depth
(Fig. 5J). In cohorts from GSE104645 (n = 193), the chemotherapy
response rate was 69% in the low-risk group and 48% in the high-risk
group (Fig. 5K). CT imaging (Fig. 5L) depicted post-chemotherapy
outcomes for different risk groups, showing significantly prolonged
DFS in low-risk patients receiving chemotherapy, whereas high-risk
and untreated low-risk patients showed early recurrence. Baseline
information of chemotherapy cohorts was presented in Supplemen-
tary Data 19–24.

Metastatic CRC patients with high PIANOS scores exhibit higher
angiogenesis activation features
Enrichment analysis revealed an enhanced angiogenesis pathway in
the high-risk group (Fig. 4E), indicating that bevacizumab, a widely
utilized monoclonal antibody in CRC therapy, might have potential
clinical utility in this subgroup33. We confirmed disparities in HALL-
MARKangiogenesis andWP-angiogenesis gene sets acrossPIANOS risk
groups in major cohorts (Fig. 6A, B). Subsequently, quantification of
vascular endothelial cell abundance using xCell revealed a significant
increase in the high-risk group (Fig. 6C). Moreover, VEGFA, a direct
target of bevacizumab, showed elevated expression in the high-risk
group (Fig. 6D).Using single-cell data fromGSE17834134, we performed
cellular clustering and tSNE dimensionality reduction, focusing on
stromal cells within epithelial populations (Fig. 6E–G). Patients with
high-risk had a significantly larger proportion of VEGFA-positive stro-
mal cells (Fig. 6H, I).We collected data on stage IVpatients for analysis,
including 30 patients who received bevacizumab treatment in the
COCCcohort (baseline characteristics are presented in Supplementary
Data 25–28). Due to the limited cohort size, we employed propensity
scorematching (PSM) to balance baseline differences between treated
and untreated patients. Survival analysis of stage IV recurrent patients
undergoing bevacizumab therapy in COCC, stratified by median
VEGFA expression levels, revealed no OS difference in the low VEGFA
group between treated and untreated patients (Fig. 6J). In contrast, in
the high-VEGFA group, bevacizumab-treated patients demonstrated
significantly improved OS compared to untreated patients (Fig. 6K,
HR =0.42, p =0.047, 95% CI = 0.17–1.01). Applying similar analysis to
PIANOS scores, no significant OS difference was observed in the low-
risk group between treatment modalities (Fig. 6L), whereas the high-

risk group treated with bevacizumab showed significantly enhanced
OS (Fig. 6M, HR =0.43, p =0.019, 95% CI = 0.21–0.89). Figure 6N, O
shows CT images of typical high-risk group patients with or without
bevacizumab treatment, respectively.

Tumor immune microenvironment in different PIANOS groups
Initial analysis of immune response pathways, including IFN-α, T cell
receptor signaling, and PD1 mediated immunity, demonstrated sig-
nificant enrichment in the low-risk group (Fig. 7A and Supplementary
Fig. 8A–C), suggesting a more active immune microenvironment.
Representative H&E-stained images from TCGA highlighted these dif-
ferences (Fig. 7B). Utilizing immune infiltration estimates by Saltz et al.
derived from deep learning analysis of H&E-stained slides, we
observed an abundance of lymphocytes, TILs (tumor-infiltrating lym-
phocytes), and macrophages in the low-risk group (Fig. 7C and Sup-
plementary Data 29). Quantification of tumor microenvironment
(TME) via xCell showed a substantial immunoscore elevation in the
low-risk group, with increased infiltration of antitumor immune cells
such as CD8 +T cells, natural killer T (NKT) cells, dendritic cells (DCs),
andmacrophages. Immune checkpoint and immunomodulatory genes
confirmed an increased expression in the low-risk group (Fig. 7D and
Supplementary Data 30). Additionally, intrinsic immune response
markers, including tumor mutational burden (TMB), silent mutation
rate, single-nucleotide variant (SNV) neoantigens, and insertion-
deletion (indel) neoantigens, were significantly higher in the low-risk
group (Fig. 7E). Extrinsic immune responses, characterized by leuko-
cyte, lymphocyte, and TIL fractions and cytolytic activity (CYT) scores,
were also elevated in the low-risk group (Fig. 7F). Low-risk tumors
exhibited lower TIDE scores (Fig. 7G), indicating better responsiveness
to immune checkpoint inhibitor (ICI) therapy. Comparing our findings
with NIHMS958212’s TCGA classification based on multi-omics data35,
we observed a strong correlation between the C2 subtype, known for
high immune cell infiltration, and the low-risk group (Fig. 7H). Notably,
the low-risk group had a higher prevalence of high microsatellite
instability, known to favorably affect ICI therapy outcomes (Fig. 7I).
Furthermore, we noted significant CXCL13 expression in TNKILC cells
(T/natural killer [NK]/innate lymphoid cell [ILC]) (Fig. 7J). Dimension-
ality reduction and clustering of T cell subgroups showed a diminished
proportion of TNKILC cells and CXCL13-positive cells among both
CD8+ andCD4+ cells in the high-risk group (Fig. 7K–O). Analysis of TLS
within the tumormilieu revealed a significantly lower number of TLS in
the high-risk group than in the low-risk group (Fig. 7P, Q). In addition,
TCR (T cell receptor) levels were higher in the low-risk group (Fig. 7R),
and ICR (immunologic constant of rejection) scores from the original
cohort supported similar conclusions (Fig. 7S) in ACICAM. This sug-
gests that different PIANOS groups may have varying sensitivities to
immunotherapy.

Patients in the low-risk group may be more sensitive to
immunotherapy
We explored the differences in ICI response across different PIANOS
groups in several immunotherapy cohorts. In GSE35640, including 56
skin cutaneous melanoma (SKCM) patients undergoing MAGEA3
immunotherapy, the low-risk group had a higher response rate than

Fig. 2 | Construction and evaluation of the prognostic integration analysis
system (PIANOS) prognostic signature for colorectal cancer (CRC). A Global
distribution of the cohort included in this study. The in-house Clinical Omics Study
of Colorectal Cancer in China (COCC) cohort is highlighted. *CRC validation
cohorts; **CRC neoadjuvant therapy validation cohorts; ***Immunotherapy vali-
dation cohorts. B Schematic representation of the methodological workflow.
CViolin plot of PIANOS risk scores versus TNMstage inCOCC (n = 968). Intergroup
comparisons (p values): T1 vs T3 (1.49 × 10−6), T2 vs T3 (2.45 × 10−8), T3 vs T4
(2.73 × 10−6), N0 vs N1 (2.39 × 10−12), N1 vs N2 (0.0359), M0 vs M1 (3.19 × 10−13). Box
plots: median (center), 25th/75th percentiles (box), whiskers (1.5xIQR, outliers not

shown). P values from the two-sided Wilcoxon rank-sum test. *p <0.05, **p <0.01,
***p <0.001. D Forest plot of multivariable Cox regression analysis in COCC
(n = 968), comparing PIANOS high- vs low-risk groups. Blue squares: hazard ratios
(HRs); horizontal lines: 95% CI. P values from two-sided likelihood ratio test; exact
values in Supplementary Data 9. E–I Kaplan–Meier curves for disease-free survival
(DFS) by PIANOS group in COCC (p = 6.31 × 10−16), CIT (p = 1.58 × 10−19), TCGA
(p = 4.87 × 10−6), ACICAM (p = 2.15 × 10−4), and meta-GEO (p = 5.95 × 10−20) cohorts.
P values from a two-sided log-rank test. J, K Representative CT scans of CRC
patients before and after treatment. Source data are provided as a Source Data file.
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Fig. 3 | Performance and robustness of the PIANOS model. A Proportions of
PIANOS high- and low-risk groups across all cohorts.B,C Forest plots of concordance
indices (C-index) and robust hazard ratios (D-index) across cohorts, with meta-
estimates for sequencing, array-based, and combined platforms. Cohorts and sample
sizes (n): CIT (562), COCC (968), TCGA (618), ACICAM (348), GSE14333 (226),
GSE17538 (200), GSE41258 (142), GSE28722 (125), GSE38832 (122), GSE143985 (91),
GSE39084 (67), GSE63624 (49), GSE75315 (49), and GSE31595 (37). Squares: point
estimate; horizontal lines: 95% CI. Significance for D-index via two-sided log-rank test;

significance for both indices vs. reference (D-index=1, C-index=0.5) inferred from95%
CIs. Nomultiple comparison adjustments. Exactp values in SupplementaryData 11, 12.
*p<0.05, **p<0.01, ***p<0.001. D–H Area under the ROC curve (AUC) for PIANOS
predicting three-year recurrence in CIT, TCGA, COCC, ACICAM, and Meta-GEO
cohorts. Solid line: ROC curve; shaded area: 95% CI. I, J Line charts illustrating C-index
and D-index changes with input gene loss. K Bubble plot comparing C-index and p
values of PIANOS versus 105 other models across all cohorts. P values from a two-
sided permutation test. Source data are provided as a Source Data file.
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Fig. 4 | Multi-omics landscape between PIANOS groups. A Waterfall plot of the
top 15most frequentlymutatedgenes by the PIANOSgroup inCOCC.B Stackedbar
plot of genes with the highest mutation frequency across three cohorts (COCC,
TCGA, ACICAM). Genes with significantly different mutation frequencies (high- vs
low-risk) across all three cohorts are marked (***). P values for FSIP2 and MUC16,
respectively: COCC (0.020, 0.040), TCGA (0.007, 0.004), ACICAM (0.048, 0.040);
two-sided Chi-square test. C Differential genes between high- and low-risk groups,

along with the intersection of all survival-related differential genes across all
cohorts, resulting in CXCL13 and CXCL9. D Sankey diagram illustrating the rela-
tionship between PIANOS groups and consensus molecular subtypes (CMS).
E Heatmap of enriched differential HALLMARK pathways by PIANOS group across
CIT, TCGA, ACICAM, and COCC cohorts. Source data are provided as a Source
Data file.
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the high-risk group (59 vs. 19%, Fig. 8A). Similarly, GSE91061, with 98
SKCM patients treated with PD1 immunotherapy, showed a higher
proportion of objective response rate (ORR) in the low-risk group than
in the high-risk group (27 vs. 16%,). PSM further revealed superior
survival outcomes in low-risk group (HR = 2.75, p = 0.04, Fig. 8B). In a
cohort of 21 patients with non-small cell lung cancer (NSCLC)
(GSE136961) receivingPD1blockade, PIANOS score achieved anAUCof

0.778 for predicting immunotherapy responses (Fig. 8C). IMvigor210,
encompassing 298 urothelial cancer (UC) patients treated with PD-L1
inhibitors, showed higher response rates (28 vs. 17%) and enhanced
survival in low-risk group compared to high-risk group (HR = 1.52,
p =0.03, Fig. 8D). In PRJEB23709, which included 78 renal cell carci-
noma (RCC) patients undergoing PD1 immunotherapy, low-risk group
also had a higher response rate (67 vs. 41%) and better survival
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outcomes (HR= 2.21, p = 0.02, Fig. 8E). Analysis of 78 RCC patients
received PD1 immunotherapy from PRJEB25780 corroborated higher
immunotherapy response rate in low-risk group (39%) than high-risk
group (14%) (Fig. 8F). An evaluation of 726 RCC patients from
NIHMS1737783 treated with PD-L1 immunotherapy showed low-risk
grouphada higher response rate (80%) than high-risk group (61%). IHC
data fromthis cohort validated significant enrichmentof CD8+ andPD-
L1+ cells, and elevated CD274 and PD-L1 expression levels in the low-
risk group (Fig. 8G).

Discussion
Accurate identification of patients at high risk for CRC remains a
formidable challenge in clinical diagnostics and treatment. Achieving
accuracy in prognosis, a crucial aspect of personalized medicine, is
hindered by tumor heterogeneity and limitations of current
algorithms20,36. These factors complicate the use of genomic
expression-based prognostic models in clinical settings. PIANOS,
developed using the pathway k-TSP algorithm, resampling techni-
ques, and model integration, marks a pioneering effort to establish a
stable prognostic prediction system applicable across diverse
cohorts. Tested across 15 cohorts with 3666 patients, PIANOS
demonstrated exceptional predictive performance and may indicate
differences in treatment sensitivities among patient subgroups. This
underscores its potential ability to enhance stratified patient man-
agement in CRC.

In CRC prognosis, PIANOS outperformed 105 existing molecular
classificationmodels acrossnearly all cohorts.Compared to traditional
methods that require predefined cohort construction as a baseline
reference—essentially focusing on inter-sample differences—PIANOS
employs an innovative approach to identify intra-sample variability,
effectively bypassing the issue of cohort standardization. This sig-
nificantly enhances model performance and versatility, enabling PIA-
NOS to be applied to genomic sequencing data from any source37,38.
Additionally, by shifting from solely relying on gene expression to
incorporating pathway enrichment as the primary input, PIANOS
effectively manages scenarios with missing genes39. These features
significantly enhance its clinical utility, offering a versatile and robust
prognostic tool that addresses challenges such as tumorheterogeneity
and incomplete data.

PIANOS aligns closely with the TNM system in recognizing tumor
heterogeneity and provides additional insights40. To elucidate prog-
nostic disparities identified by PIANOS, we investigated variations in
pathway enrichment. Remarkably, patients classified in the high-risk
group exhibited significant upregulation of the EMT pathway, indi-
cating tumor invasiveness and poorer prognosis41. Existing research
indicates thatpatientswithCMS4 subtype exhibit low immune activity,
high invasiveness and metastatic potential, prominent stromal com-
ponent, and gene expression features related to tumor growth and
dissemination, such as angiogenesis and TGF-β signaling pathways.
These characteristics contribute to a poorer prognosis and are

consistent with traits observed in our high-risk group42. Conversely,
activation of antitumor immune pathways and G2M checkpoint in the
low-risk group highlights distinct phenotypic characteristics and
potential therapeutic responses. Mutational analysis revealed a higher
prevalence ofMUC16 and FSIP2mutations in the low-risk group, which
is consistent with previous studies suggesting enhanced responsive-
ness to immunotherapy in solid tumors harboring MUC16
mutations43,44. In the COCC cohort, mutation analysis demonstrated
that the high-risk group exhibited an elevated mutation frequency of
SMAD4 and TP53. Previous studies have indicated that these features
are associated with enhanced EMT and angiogenesis45,46, whereas wild-
type TP53 may confer a more robust immune phenotype47. Moreover,
mutations in TCF7L2, FAT4, MUC16, and RYR2 have been correlated
with heightened immune activity and improved prognosis in CRC and
other malignancies48–51. Through integration of differential gene
expression and survival analysis, we identified that the low-risk group
exhibited elevated expression levels of CXCL9 and CXCL13. This
observation indicates enhanced T cell activity and macrophage
polarization within low-risk cohort52–54. Collectively, these observa-
tions suggest that low-risk patients may exhibit greater sensitivity to
immunotherapy, while high-risk patients may demonstrate increased
responsiveness to angiogenesis-targeting treatments.

Adjuvant chemotherapy is crucial for reducing recurrence risk
and improving patient prognosis in CRC managing55. Current clinical
practices primarily rely on pathological assessments and staging
criteria56. However, tumor complexity and heterogeneity pose sub-
stantial challenges to the precision of these criteria, potentially leading
to over- or under-treatment4. Given the adverse effects of che-
motherapy and the impact of tumor recurrence on patient survival,
personalized treatment is essential. Common CRC chemotherapeutic
agents (e.g., 5-fluorouracil, oxaliplatin, and irinotecan) target highly
proliferative tumor cells, suggesting that tumor proliferative activity
may indicate drug sensitivity. Previous studies have established a
strong correlation between proliferation marker Ki67, which is com-
monly used in clinical settings, and chemotherapy sensitivity in
patients with CRC57. Our analysis found elevated Ki67 levels in PIANOS
low-risk patients, indicating increased tumor proliferation and greater
chemotherapy sensitivity. This correlation was confirmed in COCC,
where low-risk patients showed significant benefits from standard
chemotherapy protocols. These insights suggest PIANOS could stratify
patients in future chemotherapy clinical trials, optimizing treatment
outcomes. Furthermore, consistent outcomes in two novel adjuvant
chemotherapy cohorts indicate PIANOS’ potential for guiding neoad-
juvant treatment strategies. However, further clinical trials are needed
to validate the robustness of PIANOS as a predictive tool, confirming
its applicability and effectiveness in enhancing treatment precision
and improving patient outcomes in CRC therapy.

Bevacizumab, a humanized anti-VEGFAmonoclonal antibody, is a
primary treatment for advanced metastatic CRC33. Despite its wide-
spread use, a comprehensive decision-making framework for its

Fig. 5 | CRC patients with a low PIANOS score were more sensitive to che-
motherapy. A Gene set enrichment analysis (GSEA) plot of the G2M checkpoint
pathway (low- vs high-risk). Datasets: CIT(p < 1 × 10−10), ACICAM(p =0.031),
COCC(p < 1 × 10–10). Two-sided permutation test; p values Benjamini–Hochberg
adjusted. B 50% inhibitory concentration (IC50) values for oxaliplatin, irinotecan,
and fluorouracil (5-FU) by PIANOS risk group. Datasets and drugs (n, p values
provided for irinotecan, oxaliplatin, 5-FU respectively): CIT (n = 562; 1.81 × 10−7,
1.87 × 10−13, 3.45 × 10−14), COCC (n = 968; 4.06 × 10−22, 1.79 × 10−18, 1.99 × 10−8), TCGA
(n = 618; 3.24 × 10−31, 1.56 × 10−12, 8.56 × 10−18), ACICAM (n = 348; 1.90 × 10−10,
1.19 × 10−9, 1.11 × 10−17). C Representative hematoxylin and eosin (H&E) staining and
Ki67 immunostaining of tumor tissues. Image is illustrative due to specimen
availability; see Fig. 5D for quantitative analysis.D Violin plots of Ki67(high- vs low-
risk) in COCC (n = 536, p =0.015). E Correlation between G2M checkpoint and Ki67
in COCC (p = 1.4 × 10−9). Plot shows data points (black circles), a linear regression

line, and 95% CI (shaded area). F, G Kaplan–Meier curves for disease-free survival
(DFS) by chemotherapy status in COCC patients stratified by Ki67 (high:
p = 1.68 × 10−7; low: p =0.35). H, I Kaplan–Meier curves for DFS by chemotherapy
status in COCC patients stratified by PIANOS risk (high: p = 8.20× 10−4; low:
p =0.001). J Correlation between PIANOS risk scores and regression rates in
GSE87211. Plot shows data points (black circles), a linear regression line, and 95% CI
(shaded area). K Proportions of chemotherapy sensitivity by PIANOS risk group in
GSE104645 (p value from two-sided Chi-square test). L Representative CT images
showing chemotherapy impact by PIANOS risk group. Unless otherwise stated,
p-values calculated using two-sided Wilcoxon rank-sum test (B, D) or log-rank test
(F–I). For regression plots (E, J), p values from the two-sided Wald test. Box plots:
median (center), 25th/75th percentiles (box), whiskers (1.5xIQR, outliers not
shown). *p <0.05, **p <0.01, ***p <0.001 (D). Source data are provided as a Source
Data file.
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application beyond clinical staging is lacking58. Adverse effects,
including hypertension and bleeding risk, highlight the importance of
identifying patients who would benefit most from bevacizumab.
VEGFAexpression level, the target of bevacizumab, is highly correlated
with treatment benefits. However, defining cutoff values for VEGFA

expression remains inconsistent across different populations and
assays. Our study identified that high-risk patients exhibited elevated
VEGFA expression, enhanced angiogenic pathway activity, and a
greater abundance of endothelial cells expressing high-VEGFA levels—
features that collectively indicate robust angiogenic activation.
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Fig. 6 | Metastatic CRC patients with a high PIANOS score were more sensitive
to bevacizumab. A, B Gene set enrichment analysis (GSEA) plots of angiogen-
esis(CIT p = 7.36 × 10−9, TCGA p =0.01, ACICAM p = 1.93 × 10−7, COCC
p = 5.92 × 10−10) and WP_angiogeneis(CIT p = 2.70 × 10−4, TCGA p =0.07, ACICAM
p= 1.00× 10−5, COCC p = 2.65 × 10−3) pathway(low- vs high-risk). P values from a
two-sided permutation test. C, D Violin plots of predicted endothelial cells (CIT
p = 1.92 × 10−9, TCGA p =0.702, ACICAM p = 3.06× 10−7, COCC p = 9.71 × 10−11), and
VEGFA expression(CIT p = 7.71 × 10−3, TCGA p = 1.11 × 10−7, ACICAM p = 1.06 × 10−4,
COCC p = 1.17 × 10−8) byPIANOS risk group.Datasets: CIT (n = 562), COCC (n = 968),
TCGA (n = 618), ACICAM (n = 348). E–G t-distributed stochastic neighbor embed-
ding (tSNE) plot showing cell clusters (all cells and stromal cells) in GSE178341.
H, IViolin plots showing endothelial cells in all cells(p =0.0013) and VEGFA (+) cells

in endothelial cells (p = 6.3 × 10−4) by PIANOS risk group in GSE178341 (n = 62).
J, K Kaplan–Meier curves for overall survival (OS) by bevacizumab status in COCC
patients stratified by VEGFA expression (high and low). L, M Kaplan–Meier curves
for OSby bevacizumab status in COCCpatients stratifiedby PIANOS risk (high- and
low-risk). N, O Representative CT images of high-risk patients before and after
treatment. N Patient 7 (bevacizumab-treated) showing reduced liver metastases.
O Patient 8 (bevacizumab-untreated) showing rapid progression. Unless otherwise
stated, P-values for violin plots (C, D, H, I) were calculated using a two-sided Wil-
coxon rank-sum test. P values for Kaplan–Meier curves (J–M) from two-sided log-
rank test. Box plots: median (center), 25th/75th percentiles (box), whiskers
(1.5xIQR, outliers not shown). *p <0.05, **p <0.01, ***p <0.001 (C, D, H, I). Source
data are provided as a Source Data file.
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Encouragingly, our analysis of a small cohort of stage IV patients
demonstrated a promising trend toward improved overall survival in
the high-risk group receiving bevacizumab compared to those not
treated. Although these preliminary findings derived using PSM sup-
port the potential predictive value of the PIANOS model, larger and
more rigorously designed clinical studies are essential to confirm these
observations and to further establish its clinical utility.

Our analysis found that low-risk patients displayed higher anti-
tumor immune characteristics, suggesting potential sensitivity to
immunotherapy. Comparing immune microenvironments between
risk groups, we found that low-risk patients possess a hotter (more
active) immune microenvironment characterized by higher expres-
sion of immune regulatory59 and checkpoint genes60, activation of
immune pathways, and enrichment of immune cells61,62. Both
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endogenous and exogenous immune responses, indicated by TMB63

and CYT64, respectively, supported these findings. Previous research
utilizing data from TCGA categorized CRC into distinct immune
subtypes. The C2 subtype, characterized by elevated CD8 signaling,
high TCR diversity, and increased proliferative activity, indicative of
a highly active immune response, was predominantly found in
patients classified as low-risk by ourmodel. MSI-H status, a marker of
immunotherapy sensitivity in CRC65, was more prevalent in the low-
risk group, suggesting a favorable response to immunotherapy.
Moreover, low-risk patients displayed a higher proportion of
CXCL13 + CD4+ and CXCL13 + CD8 + T cells, indicating a more active
tumor immune microenvironment and enhanced responsiveness to
immunotherapy66. The presence of TLSs within tumors, associated
with improved response to immunotherapy67, was more common in
low-risk patients, as confirmed by TCGA pathology slides, suggesting
a robust antitumor immune capability. Additionally, biomarkers
related to ICI response, such as TCR and ICR scores, were elevated in
the low-risk group. These findings, validated in seven external
immunotherapy cohorts, demonstrate that low-risk patients exhibit
better treatment responses and prognosis. This evidence suggests
that PIANOS could be valuable in guiding patient selection for
immunotherapy, potentially improving clinical outcomes by identi-
fying those most likely to benefit from such treatments.

As described in the Methods section, given our aim to develop a
broadly applicable personalized risk assessment model for colorectal
cancer, sex-related analyses were not implemented. Although our
model effectively personalizes risk classification and provides some
potential treatment inclinations, our study is retrospective, and the
bevacizumab-related analysis is based on a limited small-scale cohort.
Therefore, prospective studies in larger cohorts are required to verify
thepredictive performanceof themodel and thedrug sensitivity of the
stratified groups. Additionally, Further optimizationmay be needed to
streamline throughput and reduce model complexity.

In conclusion, we found that PIANOS can serve as a robust
molecular subtypingmodel to guide patient prognostic evaluation and
suggest potential sensitivities to various treatment options for CRC.
Patients in low-risk group may benefit from chemotherapy and
immunotherapy regimens, whereas those in high-risk group exhibit
activated angiogenic features and may be more sensitive to bev-
acizumab combined with chemotherapy. These results indicate that
PIANOS not only serves as a complementary tool for TNM staging
system but also enhances application of precise treatment strategies.

Methods
This study was conducted in accordance with all relevant ethical reg-
ulations and was approved by the Medical Ethics Committee of the
Sixth Affiliated Hospital of Sun Yat-sen University (Approval No.
2024ZSLYEC-408).

Datasets
To construct and validate a cross-platform, robust single-sample risk
stratification system, our research included cohorts from various
countries and regions. We obtained gene expression profiles and
follow-updata of 3666patientswithCRC34,68–83 to validate PIANOS, 396
patients with CRC84,85 to predict neoadjuvant therapy efficacy,
including data from the Gene Expression Omnibus (GEO), The Cancer
GenomeAtlas (TCGA), and in-houseClinical Omics Study of Colorectal
Cancer in China (COCC) CRC cohorts. GEO cohorts were downloaded
from the GEO website (https://www.ncbi.nlm.nih.gov/geo/) and pre-
processed using the GEOquery R package86. The French multicenter
cohort (CIT) served as a training dataset while ten GEO cohorts were
merged into the Meta-GEO validation cohort. Transcripts per million
(TPM) data and H&E slides from COAD and READ TCGA cohorts were
downloaded from (https://portal.gdc.cancer.gov/) and merged into
the TCGA CRC validation cohort. The COCC CRC cohort for inde-
pendent validation was the CRC subproject of the ICGC-ARGO project
(https://www.icgc-argo.org/page/114/cgcc), and all cases were col-
lected from the Sixth Affiliated Hospital of Sun Yat-sen University,
Guangzhou, China. Written informed consent was obtained from all
participants prior to sample collection. Participant sexwasdetermined
retrospectively from hospital medical records, based on the legal sex
registered in each individual’s national Resident Identity Card in China.
All patients underwent curative surgical resection, and the diagnosis of
colorectal cancer was rigorously confirmed by histopathological eva-
luation. Transcriptome data of 46 CRC cell lines were downloaded
from the Cancer Cell Line Encyclopedia project (https://portals.
broadinstitute.org/ccle) for drug sensitivity analysis. We collected
seven immunotherapy cohorts with 1377 patients87–93 to explore PIA-
NOS’ predictive value on immunotherapy response.

The primary endpoint of this study is disease-free survival (DFS),
defined as the period of time after a patient has completed treatment or
achieved complete remission, during which the patient remains free of
any signs or symptoms of the disease. This includes time and status of
recurrence or death. The bevacizumab-treated subgroup comprised
metastatic colorectal cancer patients who underwent standard curative
resection and, following tumor recurrence, received combination ther-
apy with bevacizumab and chemotherapy. Accordingly, overall survival
(OS), defined as duration from start of treatment until death from any
cause or the last follow-up, was employed as the endpoint in our survival
analysis. To reduce potential selection bias and improve result accuracy,
we employed 1:1 propensity score matching (PSM) in stage IV patients
based on variables including age, sex, and tumor location.

Framework of PIANOS
PIANOS comprises three main components: pathway enrichment cal-
culations, rank-based k-Top Scoring Pairs (k-TSP), and resampling. To
more precisely identify characteristics distinguishing patients with

Fig. 7 | Tumor immunemicroenvironment in different PIANOS groups. A GSEA
plots of interferon-α response(p < 1 × 10−10), interferon-γ response (p < 1 × 10−10), T
cell receptor signaling (p = 4.81 × 10−5) and cancer immunotherapy by PD1
(p= 2.59 × 10−4) pathway (low- vs high-risk) in TCGA. P values from a two-sided
permutation test. B Representative HE staining images of tumor tissues in TCGA.
The image is illustrative. See Fig. 7C for quantitative analysis.CRadar plot of immune
cell counts (deep learning-predicted) by PIANOS risk group. D Bubble plot showing
immune cell abundance and immunomodulatory/checkpoint gene expression(low-
vs high-risk). E Comparison of the tumor mutational burden (TMB) (n= 543,
p =4.3 × 10−4), silentmutation (n= 594, p = 2.5 × 10−4), single nucleotide variants(SNV)
neoantigens (n= 594, p = 6.1 × 10−7), and indel neoantigens (n = 594, p = 1.2 × 10−4) by
PIANOS risk group in TCGA. F Comparison of leukocyte fraction (n= 594,
p =9.8 × 10−9), lymphocytes (n= 594, p = 1.0 × 10−6), tumor-infiltrating lymphocyte
(TIL) region fraction (n= 594, p = 4.6 × 10−5), and cytolytic activity(CYT) score
(n= 594, p < 1.0 × 10−15) by PIANOS risk group in TCGA. G Predicted TIDE score by
PIANOS risk group in TCGA (n=618, p = 3.8 × 10−7). H Immune microenvironment

types by PIANOS risk group in TCGA (p = 3.4 × 10−9). IMSI-H proportions by PIANOS
risk group in TCGA (p =0.004) and COCC (p = 6.17 × 10−6). J CXCL13 expression
across cell clusters (p < 1 × 10−15). K, L t-distributed stochastic neighbor embedding
(tSNE) plot of T cell clusters in GSE178341.M–O Violin plots showing TNKILC (T cells,
natural killer cells, innate lymphoid cell types) of all cells (p =0.006), and CXCL13+
cells of all TCD8 (p =0.033) and TCD4 (p =0.0051) cells by PIANOS risk group in
GSE178341 (n= 62). P Representative H&E staining of tertiary lymphoid struc-
ture(TLS) in TCGA. Illustrative example; see Fig. 7Q for quantitative analysis. Q TLS
differences by PIANOS risk group (p = 1.05 × 10−4). R, S Differences of productive
clonality (n = 114, p = 8.09 × 10−4) and ICR score (n= 348, p =6.49 × 10−22) by PIANOS
risk group in ACICAM. Unless otherwise stated: p values for GSEA(A) from two-sided
permutation test. P values for comparisons/differences in (C–G, M–O, R, S) from
two-sidedWilcoxon rank-sum test. P values for proportions/differences in (H, I,Q, J)
from a two-sided Chi-square test. Box plots (E–G,M–O, R, S): median(center), 25th/
75th percentiles(box), whiskers (1.5xIQR, outliers not shown). *p<0.05, **p <0.01,
***p <0.001 (E–G, M–O, R, S). Source data are provided as a Source Data file.
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Fig. 8 | Patients with a low PIANOS score can benefit more from immu-
notherapy. A GSE35640 (SKCM): Immune checkpoint inhibitor (ICI) response
proportions by PIANOS risk group. B GSE91061 (SKCM): ICI response proportions
and Kaplan–Meier overall survival (OS) curves(p =9.01 × 10−4) by PIANOS risk
group. C GSE136961 (NSCLC): Area under the ROC curve (AUC) for PIANOS pre-
dicting OS. Solid line: ROC curve; shaded area: 95% CI. D IMvigor210 (UC): ICI
response proportions and Kaplan–Meier OS curves by PIANOS risk group.
E PRJEB23709 (RCC): ICI response proportions and Kaplan–Meier OS curves by
PIANOS risk group. F PRJEB25780 (RCC): ICI response proportions by PIANOS risk
group. G NIHMS1737783 (RCC): ICI response proportions and violin plot showing

difference of CD8+ cells (p < 1 × 10−15) and programmed death ligand-1 (PD-L1)
expression (p < 1 × 10−15) per tumor area by immunohistochemistry (IHC) staining
image and CD247 expression (p < 1 × 10−15) by PIANOS risk group. P values for
Kaplan–Meier curves from two-sided log-rank test. P values for barplot proportions
from a two-sided Chi-square test. P values for violin plots from the two-sided Wil-
coxon rank-sum test. For violin/box plots (G): median (center), 25th/75th percen-
tiles (box), whiskers (1.5xIQR, outliers not shown). SKCM skin cutaneous
melanoma, NSCLC non-small cell lung cancer, UC urothelial carcinoma, RCC renal
cell carcinoma. Source data are provided as a Source Data file.
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differing prognoses, only patients with a poor prognosis (recurrence
within 3 years, n = 190) or a relatively good prognosis (no recurrence
beyond 5 years, n = 174) were selected to train the classificationmodel.
First, we transformed gene expression data into pathway enrichment
scores based on ssGSEA. All gene sets from the MSigDB database
version 7.094 were used for analysis. Subsequently, we randomly
selected 70% of the samples to train the k-TSP model, and the
remaining 30% were used for testing. After repeating 100 times, 100
models for prognosis classification were obtained, and k-TSPs with
balanced accuracy higher than 0.6 in the test set were retained and
constructed as PIANOS. If more than half of the k-TSPs predicted the
patient to be at high risk, the patient was assigned to the high-risk
group; otherwise, it was assigned to the low-risk group. All parameters
were fixed after training, and risk groups for new patients were pre-
dicted using the confirmedmodel. In developing our personalized risk
assessment model for colorectal cancer, the primary objective was to
create a broadly applicable prognostic tool. Consequently, the model
construction did not incorporate sex-specific analyses.

RNA-seq and WGS collection and sequencing
WGS: Genomic DNA (1 µg starting material) was physically fragmented
using a Covaris E220 instrument. Fragments of 200–400bp were
selected using AMPure XP beads. Library construction for WGS was
performed using established in-house protocols with individual
reagents rather than a commercial kit, involving end-repair, 3’ adeny-
lation, adapter ligation, and PCR amplification.

RNA-seq: Ribosomal RNA (rRNA) was removed from total RNA
using theMGIEasy rRNA Depletion Kit (32 RXN, Cat. No.: 1000005953,
MGI). Subsequently, the rRNA-depleted RNA fraction was fragmented
and used for first-strand cDNA synthesis via random hexamer-primed
reverse transcription, followed by second-strand cDNA synthesis using
a conventional random primer method. RNA Index Adapters were
added after end-repair and A-tailing.

Sequencing and Adapter Trimming: Both WGS and RNA-seq
libraries were subjected to paired-end sequencing (100 bp +
100bp + 10 bp reads) on a DNBSEQ-T1 sequencer (MGI Tech, Shenz-
hen, Guangdong, China). Adapter sequences used for filtering were
identical for both RNA and WGS data: Filter_Adp5: AAGTCG
GATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTTGFilter_Adp3:
AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA

Evaluating the performance of PIANOS
Theperformance of PIANOSwas evaluated usingC-index, D-index, and
Kaplan–Meier curves. C-index is the proportion of all paired patients
whose predicted results are consistent with actual results and is the
most frequently used evaluation indicator for survivalmodels. D-index
is an estimate of the traditional hazard ratio (HR). We used the surv-
comp R package to calculate C-index and D-index. Kaplan–Meier
method estimates the probability of survival of patients in different
risk groups at a specific time and calculates the corresponding P value
using the log-rank test. We performed univariate and multivariate
analyses using the survival package for CIT, TCGA, and COCC, and
univariate analyses for other GEO cohorts.We used the pROC package
to assess the predictive performance of PIANOS, SIA, iCMS, CMS, and
CRPS for colorectal cancer recurrence. Specifically, SIA, iCMS, and
CRPS scores were computed for the study cohorts following the cal-
culation methods described in their original publications. SIA was
estimated based on the ratio of CD8A to C1QA gene expression. iCMS
was calculated using the nearest template prediction method, which
leverages the expression pattern template of iCMS marker genes
(Supplementary Data 13). The CRPS values were obtained using the
code available at https://github.com/SkymayBlue/U-CAN_CRPS_
Model. Classification systems were dichotomized into two groups
based on established risk stratifications described in the original
publications. Specifically, CRPS was divided into CRPS4 versus others,

and CMS was divided into CMS4 versus others. For SIA, which yields a
continuous score, we directly used the calculated SIA value for ROC
curve analysis without dichotomization. Given that most recurrences
from CRC occur within the first 3 years post-surgery, we benchmarked
PIANOS and these established methods based on their ability to pre-
dict 3-year recurrence. It is important to acknowledge that several of
these benchmark methods were originally developed and validated
using different outcome metrics and follow-up durations. Specifically,
the original CMS publication validated its subtypes against 72-month
overall survival, relapse-free survival (RFS), and survival after relapse.
The iCMS subtyping was validated against 150-month RFS, OS, and
survival after relapse. The SIA signature was validated for RFS and OS
over the longest possible follow-up period in its original study, and the
CRPS model was validated for 60-month RFS and OS. To test the sta-
bility of PIANOS predictions, we randomly reduced the number of
input genes to evaluate changes in C-index and D-index. We compiled
and evaluated the predictive performance of 105 published models of
CRC using the C-index across several of our main cohorts. Eachmodel
was scored based on relevant features, such as gene expression pat-
terns (an overview of parameter settings is provided in Supplementary
Data 14), and these scores were used as inputs to calculate the C-index.
Specifically, the model by Tokunaga employed a random forest
approach, while Tokunaga used the ssGSEA method. All other models
used a weighted summation approach for scoring. The code for these
analyses has been uploaded to GitHub, and further details can be
found in the Data and code availability section. None of the cohorts
were standardized.

Landscape of difference in PIANOS groups
We used the maftools package95 to analyze gene mutation data from
TCGA, COCC, and ACICAM. The results were visually presented using
waterfall plots that displayed the frequency of mutations in the top 15
genes within each PIANOS subgroup across these cohorts. Subse-
quently, we aggregatedmutation frequencies across three cohorts and
ascertainedwhether themutation frequencies of the high- and low-risk
group were significantly different using chi- square tests.

The calculation method for the HALLMARK pathway enrichment
score was the same as before. Differential pathway analysis and dif-
ferential gene expression analysis were conducted using the LIMMA
package96, in which selected genes with |logFC|>1 and P value < 0.05
were deemed differentially expressed genes.

Treatment response-related analysis
Gene set enrichment analysis (GSEA) was performed using the GSEA
function from the clusterProfiler package97, with gene ranking based
on the fold change values obtained from differential expression ana-
lysis using the limma package. The GSEA function was then applied,
and p value adjustment was conducted using the Benjamini–Hochberg
(BH) method to correct for multiple hypothesis testing. Specific code
used in these analyses is available in the Data and Code Availability
section. We used the genomics of drug sensitivity in cancer (GDSC)
database to predict sensitivity to common chemotherapeutic agents
for colorectal cancer. To analyze immune-related characteristics
within tumor samples, we used the xCell package98 to estimate the
abundance of various cells in different patient tumors and obtained
data of endogenous and exogenous immune responses using the
maftools package. The immune subtypes of TCGA patients were
obtained from ref. 35. TIDE score is often used to evaluate sensitivity of
immunotherapy, and we calculated TIDE score for each patient using
online tools (http://tide.dfci.harvard.edu/).

Morphological and Imaging of COCC
CT scans of all patients were obtained from COCC at the Sixth Affili-
ated Hospital of Sun Yat-sen University. We selected preoperative and
postoperative CT images of patients with complete imaging follow-up
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information, retrieved DICOM files, and extracted images at the tumor
level for display.

Formalin-fixed paraffin-embedded (FFPE) tumor tissue blockswere
cut into 4-µm sections for H&E and IHC staining. Paraffin-embedded
tumor tissue sections were dried at 65 °C for 15min and then placed in
an automatic IHC machine (BenchMark XT, Roche) for staining. The
following primary antibodies were used: MLH1 (mouse monoclonal,
clone ES05, Cat No. MAB-0789, MXB), MSH2 (rabbit monoclonal, clone
LBP2-MSH2, Cat No. IR376, LBP),MSH6 (rabbitmonoclonal, clone EP49,
Cat No. ZA-0541, ZSGB-BIO), PMS2 (rabbit monoclonal, clone EP51, Cat
No. ZA-0542, ZSGB-BIO), andKi67 (mousemonoclonal, cloneMIB-1, Cat
No. IR62661-2, Dako). All antibodieswere ready-to-use formulations and
applied according to the manufacturer’s instructions within the auto-
mated system. The positive signals presented as a brownish-yellow
color localized in the nuclei. All slides were reviewed by a pathologist
who confirmed the presence of tumor areas. Whole slide images (WSIs)
were acquired at a magnification of 40× on an Aperio scanner.

Single-cell analysis
We used the Seurat package to perform single-cell analysis. Expres-
sion data of GSE178341 was downloaded fromBroad Institute’s Single
Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/
SCP1162). All parameters were set the same as the original analysis.
To predict each patient’s PIANOS grouping, we aggregated the gene
expression data across all cell types for that individual, effectively
creating a patient-level gene expression profile. The resulting
patient-specific PIANOS groupings were then employed for sub-
sequent downstream analyses.

Statistics and reproducibility
The general study design involved retrospective cohort analysis.
Sample sizes for the cohorts used in this study were primarily deter-
mined by the availability of public datasets or the number of patients
enrolled in our in-house COCC cohort during the study period. No
statisticalmethodwas used to predetermine sample size. Patients with
mismatched gene expression data and clinical information were
excluded from the analyses to ensure data integrity; otherwise, no data
were excluded from the analyses beyond standard quality control
measures outlined for specific datasets. The experiments were not
randomized.

Figures were generated using R package ggplot2. The world map
data were sourced from maps package. The schematic diagrams in
Fig. 8B, D, E, G were drawn using Figdraw.

Differences in continuous values between two groups were
examined using a two-sided Wilcoxon rank-sum test. Differences in
categorical variables were examined using the chi-square test. To test
for a significant association betweenmultiple categorical variables, we
used the chi-square test. Pearson’s correlation analysis was used to
compare clinical characteristics. The calculation of C-index and D-
index, as well as model comparison were conducted by the survcomp
package99. A hypergeometric test was used to evaluate the association
between categorical factors. Statistical significance was set at P <0.05.
All analyses were performed using the R language (version 4.3.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Gene data and clinical information from all public datasets are
available online, with the URLsmentioned in the Supplementary Data
31, including ACICAM [https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC10202816/]: Datasets of RNA-Seq, whole-exome sequencing,
TCR sequencing of 348 CRC samples and adjacent normal tissue
samples, TCGA [https://portal.gdc.cancer.gov/]: Datasets of RNA-seq,

whole-genome sequencing of 633 CRC samples and adjacent normal
tissue samples, IMvigor210 [https://pubmed.ncbi.nlm.nih.gov/
29443960/]: RNA-seq of 298 pretreatment tumor tissue samples
from metastatic urothelial carcinoma patients treated with atezoli-
zumab, NIHMS1737783 [https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC8493486/]: Whole-exome sequencing and mRNA-seq of 886
baseline tumor tissue samples from advanced renal cell carcinoma
patients, PRJEB23709 [https://linkinghub.elsevier.com/retrieve/pii/
S1535-6108(19)30037-6]: RNA-seq of 158 tumor biopsy specimens
from metastatic melanoma patients, PRJEB25780 [https://www.
nature.com/articles/s41591-018-0101-z]: RNA-seq of 61 pretreatment
tumor tissue samples frommetastatic gastric cancer patients treated
with pembrolizumab, GSE104645: Expression profiling by array of
193 formalin-fixed, paraffin-embedded primary colorectal cancer
tumor samples, GSE31595: Expression profiling by array of 37 stage II
and III colon cancer tumor samples, GSE39582: Expression profiling
by array of 585 colorectal tissue samples, GSE35640: Expression
profiling by array of 65 pretreatment tumor biopsy samples from
metastatic melanoma and early-stage non-small-cell lung cancer
patients, GSE14333: Expression profiling by array of 290 primary
colorectal cancer tumor samples, GSE39084: Expression profiling by
array of 70 primary colorectal cancer tumor tissue samples,
GSE28722: Expression profiling by two-color microarray of 129 pri-
mary colorectal tumor tissue samples hybridized against a pooled
common reference, GSE41258: Expression profiling by array of 390
colorectal patient tissue samples, GSE178341: Single-cell RNA-seq of
371,223 dissociated cells from primary, treatment-naïve colorectal
cancer tumors and adjacent normal mucosa, spanning 28 mismatch-
repair proficient and 34 mismatch-repair deficient patients,
GSE17538: Expression profiling by array of 232 primary colorectal
cancer tumor samples, GSE38832: Expression profiling by array of
122 primary colorectal cancer tumor tissue samples, GSE63624:
Expression profiling by exon microarray of 52 primary proximal
colon cancer tumor tissue samples, GSE75315: Expression profiling
by exon microarray of 211 primary colorectal cancer tumor tissue
samples, GSE136961: Targeted RNA sequencing of 21 pretreatment
non-small cell lung cancer tumor tissue samples, GSE91061: RNA-seq
of 118 tumor biopsy samples from 65melanoma patients, GSE143985:
Expression profiling by array of 91 primary colorectal tumor samples
and GSE87211: Expression profiling by array of 363 rectal cancer and
matched mucosa samples from 243 patients. The sequencing data
and associated clinical information for the COCC cohort generated in
this study have been deposited in the China National Center for
Bioinformation (CNCB) BioProject database under accession code
HRA007315: Datasets of genome, transcriptome, epigenetics of 1050
CRC samples and adjacent normal tissue samples, DNBSEQ-T1×5RS.
Due to patient privacy regulations and legal restrictions regarding
the sharing of human genomic data, access to the COCC cohort data
is available under restricted access. Access can be obtained by con-
tacting the corresponding author, Dr. Xiaojian Wu(wuxjian@mail.-
sysu.edu.cn), with an appropriate data access agreement
(Supplementary Note 1). Source data are provided as a Source Data
file. Source data are provided with this paper.

Code availability
All the codes were implemented in R (version 4.3.1). Packages used
are available online, with the URLsmentioned in Supplementary Data
31. The scripts to replicate each step of results and plots can be
accessed in a GitHub repository100 (https://github.com/LidocaineQ/
PIANOS and https://doi.org/10.5281/zenodo.15396780) under the
Apache License 2.0.
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