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improve risk prediction and reveal
mechanisms in atrial fibrillation

Received: 30 September 2024 Shuai Yuan

Accepted: 1 July 2025

Published online: 11 July 2025

M Check for updates

(i) 1,2,3,4,16

, Jie Chen ®3%®, Xixin Ruan®5, Yuying Li®3,

Sarah A. Abramowitz', Lijuan Wang ®7, Fangyuan Jiang’, Ying Xiong ®3,
Michael G. Levin ® *2, Benjamin F. Voight ® #°'°", Dipender Gill®"?,
Stephen Burgess ® >, Agneta Akesson ®2, Karl Michaélsson'®, Xue Li®?,
Scott M. Damrauer ® 217 & Susanna C. Larsson ® >'>"7

Atrial fibrillation (AF) is a common cardiac arrhythmia with strong genetic
components, yet its underlying molecular mechanisms and potential ther-
apeutic targets remain incompletely understood. We conducted a cross-

population genome-wide meta-analysis of 252,438 AF cases and identified 525
loci that met genome-wide significance. Two loci of PITX2 and ZFHX3 genes
were identified as shared across populations of different ancestries. Compre-
hensive gene prioritization approaches reinforced the role of muscle devel-
opment and heart contraction while also uncovering additional pathways,
including cellular response to transforming growth factor-beta. Population-
specific genetic correlations uncovered common and unique circulatory
comorbidities between Europeans and Africans. Mendelian randomization
identified modifiable risk factors and circulating proteins, informing disease
prevention and drug development. Integrating genomic data from this cross-
population genome-wide meta-analysis with proteomic profiling significantly
enhanced AF risk prediction. This study advances our understanding of the
genetic etiology of AF while also enhancing risk prediction, prevention stra-
tegies, and therapeutic development.

Atrial fibrillation (AF) is the most common arrhythmia, char-
acterized by disorganized atrial depolarizations, which can lead
to symptoms including palpitations and decreased exercise
capacity, as well as more serious complications. With an aging
global population, AF has become an epidemic and important
health issue with increasing incidence and prevalence’, particu-
larly in North America and Europe®. The Global Burden of Disease
2019 Study estimated that approximately 59.7 million individuals
live with AF, which is associated with 8.4 million disability-
adjusted life years worldwide’. Hence, there is an urgent need to
elucidate the etiological basis of AF to improve risk prediction,
prevention and treatment.

While environmental factors play a role in AF development, the
genetic contribution to AF susceptibility has been increasingly recog-
nized. Multiple genome-wide association studies (GWASs) have
uncovered over 100 risk loci, shedding light on AF’s genetic
architecture*®. However, existing studies have largely been conducted
in European populations, and a larger, more diverse GWAS—particu-
larly one including multi-populations—could enhance the discovery of
variants with smaller effects, as well as population-specific and
shared loci.

Genomic data are now widely leveraged to improve disease risk
prediction, identify risk factors, and facilitate therapeutic develop-
ment. While some studies have explored these aspects for AF,
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integrating cross-population genetic data with proteomic insights in a
large-scale study could further refine the identification of genetic sig-
nals, associated comorbidities, causal risk factors, and potential drug
targets. Thus, we conducted a cross-population GWAS meta-analysis
involving over 2 million individuals and performed comprehensive
downstream analyses to uncover unreported genetic loci, identify
causal risk factors, and enhance AF risk prediction and therapeutic
opportunities.

Results
Cross-population GWAS meta-analysis identified 379
unreported loci
We conducted a cross-population GWAS meta-analyses and a series of
downstream analyses on AF (Fig. 1). The European meta-analysis, which
included 228,926 AF cases from nine studies (Supplementary Data 1),
identified 493 genetic loci reaching genome-wide significance (Sup-
plementary Data 2). Among these, five loci showed significant evidence
of heterogeneity in effect estimates across the contributing GWAS
(heterogeneity test; P < 0.05/493, Supplementary Data 2). Of the 493
loci, 479 displayed consistent effect estimates between the discovery
and replication datasets (Supplementary Data 2 and Supplementary
Fig. 1), and 426 had P<0.05 in the replication study (Supplementary
Data 2). Using linkage disequilibrium score regression (LDSC) with the
1000 Genomes European reference panel, common variants explain
11.2% (95% CI: 9.2%-13.2%) of the variance in AF liability, assuming a 2%
disease prevalence.

The cross-population GWAS meta-analysis, which included
252,438 AF cases, identified 525 loci that met genome-wide

significance (Fig. 2a). Thirteen loci demonstrated significant hetero-
geneity in effect estimates (Ppe, < 0.05/525, Supplementary Data 3).
The majority of risk alleles conferred small-to-moderate effect sizes,
with odds ratios (ORs) ranging from 1.0 to 1.3 per allele (Fig. 2b).
However, six lead SNPs had ORs exceeding 1.3 and were located in loci
with genes SORCS3, POLDI, AGBL4, AC126283.1, PITX2, and FAM241A
(Fig. 2b). Among the 525 significant loci, the breakdown by population
revealed 483 loci in Europeans, 29 in East Asians, 5 in Africans, and 2 in
Admixed Americans (Fig. 2c). Two loci of PITX2 and ZFHX3 genes were
identified as shared across these populations (Fig. 2d).

Comprehensive gene prioritization refined pathway exploration
Using a systematic prioritization framework, we nominated a likely
causal gene at each of the 504 genome-wide significant loci,
acknowledging that this assignment is based on available functional
evidence and may not be definitive for all loci. Among these, 70 genes
harbored protein-altering variants, and 47% of prioritized genes had
>80% agreement across available methods (Supplementary Data 4).
To gain mechanistic insights into AF, we performed pathway
enrichment analysis using these 504 prioritized genes. Enrichment
analysis in the Reactome database identified 5 out of 1131 pathways
significantly associated with AF after Bonferroni correction. Among
these, muscle contraction and cardiogenesis showed strong associa-
tions (Fig. 3a and Supplementary Data 5). In addition, we conducted
enrichment analysis using the Gene Ontology (GO) database. After
Bonferroni correction, we identified 50 biological processes (BP), 7
cellular components (CC), and 6 molecular functions (MF) (Fig. 3b and
Supplementary Data 6). GO enrichment analysis reinforced the role of
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Fig. 2 | Genetic loci associated with atrial fibrillation (AF) across populations of
different ancestries. a Manhattan plot of GWAS associations. The x-axis represents
the genomic positions of SNPs across chromosomes, while the y-axis displays the
-logl0(P) values, indicating the strength of the association. Each dot represents a
single SNP, positioned based on its genomic location and statistical significance.
The red dashed line marks the genome-wide significance threshold (P=5x1078).
The statistical test was two-sided, and the Bonferroni-corrected significance level
was applied. b Scatter plot of minor allele frequency (MAF) versus effect size

Population group

(log-odds ratio) for variant-AF associations. Two gray dashed lines indicate MAFs of
0.001 and 0.01. The loci with an effect of odds ratio > 1.3 were labeled with the gene
name. ¢ Distribution of loci identified across GWAS of different ancestries. d Venn
diagram of shared and unique loci across ancestries. Two loci near PITX2 and ZFHX3
were identified as shared across European (EUR), East Asian (EAS), African (AFR),
and Admixed American (AMR) populations. Source data are provided as a Source
Data file.

muscle development and heart contraction in AF onset while also
uncovering additional pathways, including cellular response to trans-
forming growth factor-beta (TGF-f3), artery morphogenesis, regulation
of cell communication via electrical coupling, and actin filament-based
movement (Supplementary Data 6).

Population-specific genetic correlations uncovered circulatory
comorbidities

After Bonferroni correction, AF was significantly associated with 95 of
128 circulatory endpoints in Europeans (Supplementary Data 7) and 18
of 95 in Africans (Supplementary Data 8). Among the traits assessed for
heterogeneity in genetic correlation with AF between European and
African populations, several phenotypes demonstrated substantial
population-specific differences. We identified conditions such as first-
degree atrioventricular block, abdominal aortic aneurysm, varicose
vein of lower extremity, deep vein thrombosis, tachycardia, transient
cerebral ischemia, and abnormal heart sounds as having significantly
heterogeneous genetic correlations with AF across ancestries (Fig. 4).

Mendelian randomization revealed modifiable risk factors

Among the 37 modifiable risk factors, genetically predicted body mass
index (BMI), waist-to-hip ratio, visceral adiposity, childhood BMI,
apolipoprotein A-l levels, apolipoprotein B levels, low-density lipo-
protein (LDL) cholesterol levels, type 2 diabetes, systolic and diastolic
blood pressure, thyroid-stimulating hormone levels, smoking initia-
tion, lifetime smoking index, alcohol consumption, leisure screen

time, and insomnia were significantly associated with AF risk after
Bonferroni correction (Fig. 5). The scatter plots of the effect of SNPs on
these traits and that on AF are shown in Supplementary Figs. 2-17.
These associations remained robust in sensitivity analyses (Supple-
mentary Data 9).

Bidirectional protein-wide Mendelian randomization identified
causal proteins

After pooling protein quantitative trait loci (pQTL) from deCODE and
UKB-PPP, the forward Mendelian randomization (MR) analysis (the
effect of genetically predicted protein levels on AF) included 2847
unique proteins with cis genetic variants as the instrumental variables.
After filtering the association with P < 0.05 after Bonferroni correction,
P for heterogeneity in dependent instruments (HEIDI) test > 0.05, we
identified genetically predicted levels of 95 circulating proteins were
associated with AF risk (Fig. 6a and Supplementary Data 10). Among
these, 21 and 16 protein-AF associations were identified as strong
colocalization evidence with PPH4 > 0.8, respectively, using traditional
colocalization (Fig. 6b and Supplementary Data 11) and Sum of Single
Effects (SuSiE) colocalization (Fig. 6¢ and Supplementary Data 11)
methods. In total, 28 proteins were deemed with potential causal
associations with AF, with one standard deviation increment con-
ferring an odds ratio of AF from 0.61 (95% CI 0.49-0.75) for ING1 to
1.68 (95% CI 1.35-2.09) for ATXN2L. Among these 28 proteins, 18
proteins had cis instruments available in the Fenland study, and 17
associations were replicated with P-value < 0.05 albeit the direction of
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the association was reverse for ICAM1, CCN3 (also known as NOV), and
QSOX2 (Supplementary Data 12).

Seven protein targets have corresponding drugs in clinical
trials or approved for other indications; however, none have been
explicitly approved for treating AF (Supplementary Data 13).
Nonetheless, certain targets, such as ICAM1, ANGPT1, and MAPK3,
may hold therapeutic potential due to their roles in cardiovas-
cular and inflammatory pathways, which are implicated in AF
pathophysiology.

In the reverse MR analysis, genetic liability to AF was associated
with levels of 16 unique proteins in deCODE or UKB-PPP (Supple-
mentary Data 14 and 15) after Bonferroni correction. In particular,
genetic liability to AF was associated with reduced levels of N-terminal
pro-brain natriuretic peptide (NT-proBNP). The association for
natriuretic peptide B was conflicting between deCODE and UKB-PPP.

Polygenic risk and protein score enhanced disease prediction
To evaluate the performance of the polygenic risk score in an inde-
pendent dataset, we tested it in the Penn Medicine BioBank (PMBB),
which is not used for PGS derivation. The polygenic risk score (PGS)
derived from this cross-population GWAS meta-analysis demonstrated
a dose-response association with AF prevalence in 4401 individuals
with AF and 32,760 individuals without AF from the PMBB (Fig. 7a-c).
Each standard deviation (SD) increase in PGS was associated with an
odds ratio (OR) of 1.82 (95% CI: 1.79-1.85) for AF. Compared to indi-
viduals in the first decile of the PGS, those in the tenth decile had a
sixfold increased risk of AF (OR = 6.38, 95% Cl: 5.30-7.75) (Fig. 7b). Our
PGS showed superior predictive performance compared to
PGS002814 from the Miyazawa et al. study, with an area under a
receiver operating characteristic (AUC) of 0.780 (95% ClI: 0.778-0.783)
and a Brier score of 0.092 (95% CI: 0.091-0.093), outperforming
PGS002814 (AUC=0.767, 95% Cl: 0.764-0.769; Brier score =0.094,
95% CI: 0.093-0.095) (Fig. 7c). The DeLong test showed that the AUC
of the PGS derived from our GWAS meta-analysis was significantly
higher than that of the Miyazawa PGS (P <2.2e-16).

In a cohort of 3441 individuals with incident AF and 47,437 with-
out, with available proteomic and genetic profiles, we constructed a
protein score (ProS) using the LASSO method and a PGS to assess their
predictive value for AF risk. The ProS included 87 proteins listed in
Supplementary Methods. The ProS exhibited a positive association
with AF incidence (Supplementary Data 16) and demonstrated strong
predictive performance, achieving an AUC of 0.792 and a Brier score of
0.119 in the testing set (Fig. 7d). Similarly, the PGS also showed a robust
association with incident AF (Supplementary Data 17). Adding the ProS
to the PGS significantly enhanced the performance of AF risk predic-
tion. The combined model incorporating PGS and ProS achieved an
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Fig. 5 | Genetically predicted associations between 37 modifiable traits and
atrial fibrillation (AF). The estimates and p-values were derived using the inverse
variance weighted (IVW) method with a fixed-effects model for traits with <4
genetic instruments. For traits with >4 genetic instruments, the results were
obtained from MR-PRESSO, accounting for potential pleiotropic effects by
removing outlier SNPs where applicable. Detailed results are presented in Sup-
plementary Data 9. Supplementary Data 18 lists the number of instrumental

variables, the sample sizes of the source studies, and the units for each trait. The
Xx-axis represents the odds ratio (OR) of AF per unit increase in the genetically
predicted trait. Triangles indicate associations with P < 0.05 after Bonferroni cor-
rection, while red and blue dots represent positive and inverse associations,
respectively. Data are presented as ORs +/- 95% confidence intervals. The statistical
test was two-sided, and the Bonferroni-corrected significance level was applied.
Source data are provided as a Source Data file.

AUC of 0.823 and a Brier score of 0.059 (Fig. 7d). The combined score
incorporating both the PGS and ProS demonstrated superior pre-
dictive performance compared to either PGS alone (P=1.34 x10721) or
ProS alone (P=0.009).

Discussion

In this large-scale cross-population GWAS meta-analysis of AF, com-
prising 252,438 cases and 1,959,739 controls, we identified numerous
previously unreported genetic loci, refined the genetic architecture of
AF, and emphasized the importance of population-inclusive research
in uncovering both shared and population-specific risk variants.
Notably, our population-specific analysis revealed significant dis-
parities in genetic risk loci, with a majority identified in Europeans and
relatively few in non-Europeans. This imbalance likely reflects differ-
ences in sample sizes across ancestries, underscoring the urgent need
to increase representation of underrepresented populations in future
genetic studies to ensure equitable and comprehensive genetic
discovery’.

While most risk alleles had small-to-moderate effect sizes, we
identified six lead SNPs with larger effect sizes in loci prioritized by
SORCS3, POLDI1, AGBL4, AC126283.1, PITX2, and FAM241A genes, sug-
gesting stronger genetic contributions at these loci. PITX2 has a well-
documented role in AF through mechanisms involving electrical and
structural remodeling, as well as calcium handling'®2. AGBL4 has been
revealed to be associated with AF in previous GWASs”*. However, the
involvement of SORCS3, POLD1, ACI26283.1, and FAM24IA in AF
remains to be clarified through future studies.

PITX2 and ZFHX3 are well-established AF-associated genes; our
findings reaffirm their consistent association across four population

groups’®, further supporting their pivotal role in AF susceptibility.
Regarding mechanisms, a knockout mice study revealed that ZFHX3
loss in mice leads to atrial dysfunction, arrhythmogenic remodeling,
and increased AF susceptibility'. However, no drugs targeting the two
gens have been proved or developed, thus whether these two targets
can be used for therapeutic development needs to be investigated.

We employed a comprehensive gene prioritization strategy,
identifying putative causal genes for 504 loci, providing functional
insights into AF pathogenesis. This approach enhanced pathway
enrichment analyses, reaffirming muscle contraction and cardiac
development’ as core AF mechanisms while uncovering additional
pathways, including TGF-p signaling, vascular remodeling®, electrical
coupling, and cytoskeletal regulation'. These findings highlight
potential therapeutic opportunities, such as targeting TGF-3-mediated
fibrosis or refining anti-arrhythmic strategies through ion channel
modulation”, paving the way for potential interventions in AF pre-
vention and treatment.

We observed significant heterogeneity in the genetic correlation
between AF and several circulatory phenotypes across European and
African populations. While these findings suggest the possibility of
population-specific differences in the shared genetic architecture
between AF and its comorbidities, we acknowledge that these results
are exploratory and require validation in independent cohorts. Due to
the limited number of prior genetic studies addressing population-
specific correlations for these traits, we refrain from drawing strong
conclusions about the direction or clinical implications of individual
trait differences. Instead, our findings underscore the broader need for
population-informed genetic analyses and increased representation of
diverse populations. Facilitating this type of research may improve the

Nature Communications | (2025)16:6426


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-61720-2

a. b. c.
= 00 1.00
°
PPH
.75
20 N Ho
o 050 H1
o
H2
.25 N
° Ha4
LRIG1 .00 0.00 L
SPON1 T & -
T Q9 z0.C _Furolyd.® = a8rcc 0ERQy
® LoXapres-Z20+5-E8592ER8x3, SpTcd¥EE g REESN S -
20 LRRC37A2 5%5528§§3§%5§2§&d§58§§%’3 26220352558 28583322
3 - FOOOSgRE RS IE 2820 8L ¢ QrosEEzE Eggpd==
s (2] (2]
g APOH
% e
> d.
k= ERNT
°
Ty gL 20
PMVK FB2 +
°
10 e °TTE A v e < cdoo? ¢
SCAMP3 @ © gNME4 ® 510 e0®e00®
ANXA4 gESTDh ..OLAZG.IED T 4o0° oo 600 OO
ABHD10 ° TXN: é .
NOS3 ST'M;s. '..SLC.QABRZ.AX 2L o é -@ Decreasing Risk
G CING1 8 DG
HERD NG Loncisa @ Increasing Risk
05
CTOWVWIENR IO NN - OO - ZS JdF s =N
@ © @ P M 1] { sed = I = . o Zn Jd oo
" 22583555 E08322553085%558365¢%
o O é&&ﬁmo g I 8 z o Q T Q k
. I . %) o ow o o < 2«
-0.5 0.0 0.5 @

Association with AF

Fig. 6 | Genetically predicted levels of 2847 proteins associated with atrial
fibrillation (AF). We analyzed 2847 unique proteins with cis-instrumental variables
derived from the deCODE and UKB-PPP datasets. For proteins present in both
datasets, data from UKB-PPP were prioritized due to its larger sample size. All
associations were scaled to a one standard deviation increase in genetically pre-
dicted protein levels. a volcano plot of protein-AF associations using SMR analysis.
The x-axis represents the effect size of protein-AF associations, while the y-axis
shows the -logl0(P) values. The statistical test was two-sided, and the Bonferroni-
corrected significance level was applied. Associations with P < 0.05 after Bonferroni
correction and HEIDI test P> 0.05 are labeled. Red and blue dots indicate positive

Circulating Protein

and inverse associations, respectively. b traditional colocalization analysis results.
Only protein-AF associations with PPH4 > 0.7 are displayed due to space con-
straints. The gray line indicates PPH = 0.8, a commonly used threshold for strong
colocalization evidence. ¢ SuSiE colocalization analysis results. Similar to panel b,
only protein-AF associations with PPH4 > 0.7 are shown. The gray line indicates
PPH = 0.8. d forest plot of associations meeting the criteria of Bonferroni-corrected
P <0.05, HEIDI P> 0.05, and colocalization PPH4 > 0.8. Data are presented as

ORs +/-95% confidence intervals. The statistical test was two-sided, and the
Bonferroni-corrected significance level was applied. Source data are provided as a
Source Data file.

accuracy of risk stratification, inform targeted screening strategies,
and reduce disparities in cardiovascular outcomes across diverse
patient populations.

Our MR analyses identified obesity’s, type 2 diabetes”,
hypertension®, high TSH levels”, smoking?, and insomnia® as causal
risk factors for AF, consistent with previous studies. However, for
dyslipidemia®, alcohol consumption®, and sedentary behavior®—
traits with conflicting evidence in prior research—our well-powered
MR analysis leveraging a larger sample size strengthened their asso-
ciations with AF. Mechanistically, obesity, lipid imbalances, and
hypertension may drive atrial remodeling and inflammation, while
smoking, alcohol consumption, and insomnia could exacerbate auto-
nomic dysfunction and electrical instability, increasing AF suscept-
ibility. Clinically, these findings emphasize the need for targeted AF
prevention strategies, including weight management, lipid-lowering
therapies, blood pressure control, and behavioral interventions to
reduce sedentary behavior. Addressing these modifiable risk factors
through lifestyle changes and medical interventions could play a cru-
cial role in reducing AF incidence and its associated complications.

Our study identified 28 circulating proteins with potential causal
roles in AF, some of which have been previously associated with the
condition®*?”. Among these, our MR associations for ICAMI* and
CD40% were directionally opposite to prior observational studies, likely
reflecting compensatory or feedback mechanisms®?. The positive
association for FURIN aligns with its role in pro-fibrotic and inflam-
matory pathways”, while ADM’s association supports its involvement
in vascular regulation®, both of which may contribute to AF onset.
Although none of these proteins have been established as direct ther-
apeutic targets for AF, our findings provide valuable insights into AF
pathophysiology and highlight promising candidates for further
investigation®**. Nonetheless, we observed that a subset of associa-
tions could not be replicated in the independent dataset. While such
discrepancies may arise from differences in genetic regulation across
populations, platform-specific variation in protein quantification, or

measurement error in replication analyses, they do not necessarily
invalidate the MR results. However, they do warrant caution in inter-
preting these findings. Importantly, the associations identified in our
study are based on protein levels measured in circulation and may not
fully capture tissue-specific effects relevant to AF pathogenesis. Further
validation in independent cohorts and functional characterization of
these proteins in cardiac-relevant tissues and models will be essential to
confirm their causal roles and assess their translational potential.

MR revealed that genetic liability to AF is paradoxically associated
with lower circulating NT-proBNP levels, in direct contrast to case-
control studies reporting elevated NT-proBNP among AF patients®°.
This discordance implies that the NT-proBNP elevations seen in AF
may largely reflect secondary hemodynamic stress and atrial stretch
rather than a primary effect of AF itself. Moreover, we observed
inconsistent associations between genetic liability to AF and NPPB—the
prohormone precursor to NT-proBNP—across two independent pro-
teomic datasets, underscoring additional complexity. Although long-
itudinal cohorts have linked higher baseline NT-proBNP to subsequent
AF”, our SMR analyses did not support a causal influence of genetically
proxied NT-proBNP or NPPB on AF risk. Together, these data argue
against a simple, unidirectional causal relationship between AF and NT-
proBNP, and highlight the need for detailed longitudinal and
mechanistic studies to untangle cause from consequence in the
AF-NT-proBNP axis.

Our study highlights the strong predictive value of a PGS derived
from a cross-population GWAS, demonstrating superior performance
compared to previous PGSs®. The enhanced predictive accuracy has
significant implications for risk differentiation at the population level.
In addition, we developed a ProS and found that combining the ProS
with the PGS significantly improved risk prediction, aligning with
findings from prior studies. A UK Biobank-based study demonstrated
improved disease prediction when integrating a protein score with a
clinical score®, while another UK Biobank study found a significant
improvement when combining a protein score with a PGS®. Even
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Fig. 7 | Polygenic risk score (PGS) and protein score (ProS) for atrial fibrillation
(AF) risk prediction. The analysis for panels (a, b, and c) was based on the Penn
Medicine Biobank (PMBB, 4401 individuals with prevalent AF and 32,760 indivi-
duals without) and the analysis for panel d was based on the UK Biobank (3441
individuals with incident AF and 47,437 without). Panels (a and b) plots show the
prevalence and odds ratio of AF across deciles of our PGS vs. the PGS002814 from

False positive rate (1 - specificity)

the Miyazawa et al. study, respectively. Data in panels (a and b) are presented as
mean values +/- SD and ORs +/- 95% confidence intervals, respectively. Panel ¢ plot
compares the prediction ability between two PGS (AUC for our PGS =0.780 and
AUC for PGS002814 = 0.767). Panel (d) plot compares the prediction ability
between PGS, ProS, and their combination. AUC, area under its receiver operating
characteristic curve. Source data are provided as a Source Data file.

though different protein selection methods were used between pre-
vious studies and the current study, the findings remained consistent.
Collectively, these results underscore the value of multi-omic
approaches in refining AF risk assessment. Future research should
focus on validating these models in diverse populations and evaluating
their potential clinical applications to further enhance personalized AF
prevention and management strategies.

This study has several limitations. First, although we included data
from non-European populations, the statistical power for these ancestries
may be limited due to smaller sample sizes, potentially affecting the
identification of population-specific associations. Second, despite
employing multiple prioritization strategies, some degree of gene mis-
assignment is likely inevitable due to the limitations of current functional
annotation resources. While many genes at these loci were prioritized

based on proximity to the lead variant, we have explicitly noted when
proximity was the sole criterion and, where possible, incorporated sup-
porting evidence from eQTL colocalization and fine mapping to
strengthen biological plausibility. Third, although we applied a MAC <50
threshold to exclude rare variants, a small number of variants with minor
allele frequency (MAF)<1% remained in the analysis (5 out of 493 in
European GWAS and 7 out of 525 in cross-population GWAS). However,
nearly half of these variants were replicated in our independent replica-
tion dataset or have been previously reported in association with AF in
other studies. Given their limited number and supporting evidence, we
believe that the inclusion of these variants does not materially affect the
comparability of our results with earlier GWAS. Fourth, while there were
some sample overlaps in the MR analysis, the potential bias is likely
minimal due to the small proportion of overlapping samples and the
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strong validity of the genetic instrumental variables used. Fifth, the
inclusion of coding variants may alter epitope binding in aptamer-based
proteomic analyses for certain proteins, potentially introducing mea-
surement bias that could affect the accuracy of MR results*. Lastly, all
analyses were conducted using in silico approaches, emphasizing the
need for further validation through functional studies and experimental
research to confirm the biological relevance of the identified associations.

In summary, this cross-population GWAS meta-analysis identified
525 genetic loci for AF, refining its genetic architecture and biological
pathways. Mendelian randomization revealed causal risk factors and
circulating proteins, offering insights for prevention and therapeutic
development. The cross-population-derived PGS, combined with a pro-
tein score, significantly improved risk prediction. This study integrates
genetic discovery, causal inference, and multi-omic data, advancing AF
risk stratification, prevention, and potential therapeutic strategies.

Methods

Ethics

The study complied with all relevant regulations governing the use of
human participants and was conducted in accordance with the prin-
ciples of the Declaration of Helsinki. Participants in the FinnGen study
provided informed consent for biobank research, with the study pro-
tocol (No. HUS/990/2017) approved by the Coordinating Ethics
Committee of the Hospital District of Helsinki and Uusimaa (HUS). The
UK Biobank received ethical approval from the North West Multi-
center Research Ethics Committee (approval number: 11/NW/0382),
with all participants giving informed consent. The Million Veteran
Program (MVP) was approved by the VA Central Institutional Review
Board (IRB), and participants provided informed consent. The Penn
Medicine Biobank (PMBB) was approved by the University of Penn-
sylvania Institutional Review Board, and all participants gave informed
consent. The Swedish Ethical Review Authority granted ethical
approval for SIMPLER and the current protocol (no. 2019-03986), and
all participants gave informed consent. Each study adheres to rigorous
ethical guidelines to ensure the protection of participants and the
integrity of the research.

Study design and participants

Figure 1 summarizes the study design. We first performed a GWAS
meta-analysis across eight studies as the discovery analysis in Eur-
opean populations. This was followed by a replication analysis using
data from the UK Biobank, resulting in a European GWAS meta-analysis
that included a total of 228,926 AF cases and 1,611,415 controls. Next,
we extended the analysis to include data from East Asians, South
Asians, Africans, and Admixed Americans, enabling a cross-population
meta-analysis comprising 252,438 AF cases and 1,959,739 controls.
Detailed descriptions of included studies are shown in Supplemen-
tary Methods and Supplementary Data 1. Using this large-scale AF
GWAS, we conducted comprehensive downstream analyses to prior-
itize related genes, explore potential etiologies, assess genetic corre-
lations, identify risk factors, and evaluate risk prediction models.

Cross-population GWAS meta-analysis

Eight studies (the Nord-Trgndelag Health Study [HUNT], deCODE,
DiscoverEHR, Michigan Genomics Initiative [MGI], AFGen consortium®,
FinnGen R12, Swedish Infrastructure for Medical Population-Based
Life-Course and Environmental Research [SIMPLER, https://www.
simpler4health.se/], and Million Veteran Program[MVP]) contributed
to the discovery analysis for the European GWAS, comprising 192,851
atrial fibrillation (AF) cases and 1,239,541 controls®***, We performed
GWAS association testing using individual-level genotype and pheno-
type data from participants in the SIMPLER cohort. By incorporating
replication data from the UK Biobank (36,075 cases and 371,874 con-
trols), the total sample size for the European GWAS reached 228,926
cases and 1,611,415 controls. To expand the analysis, we included data

from four additional ancestries represented in Biobank Japan*’, Genes
& Health**, and MVP*, culminating in a cross-population meta-analysis
with 252,438 AF cases and 1,959,739 controls. Detailed descriptions of
the study populations, genotyping procedures, and quality control
protocols are provided in the Supplementary Methods, while AF
definitions and sample sizes for each included study are summarized in
Supplementary Data 1.

Each dataset underwent rigorous quality control, including initial
preprocessing, genotype imputation, post-imputation filtering, and
association testing, with adjustments for age (or birth year), sex, and
principal components as covariates. Post-GWAS quality control was
performed using GWASinspector*’, and SNPs with minor allele counts
<50 were excluded. Meta-analyses were conducted using METAL",
employing the fixed-effect inverse-variance-weighted method. After
meta-analysis, variants that were present in only one cohort were
excluded from downstream analysis.

We applied LDSC to evaluate the contributions of population
stratification and polygenicity to GWAS test statistic inflation’.
Although the genomic inflation factor (AGC) was 2.04, the LDSC
intercept (1.34) and ratio (15%) indicated that most of the inflation
could be attributed to a true polygenic signal rather than confounding
biases. Genome-wide significant SNPs were grouped into loci if they
were within 1Mb of each other®. Loci were defined by (1) identifying
genome-wide significant variants (P<5x1078) from association
results, (2) extending the region by 500 kb on either side of these
variants, and (3) merging overlapping regions. Genetic loci in the
European analysis were defined based on a GWAS meta-analysis that
combined both the discovery and replication datasets. This integrated
approach maximized statistical power, enabling the identification of
several loci that reached genome-wide significance only after the
datasets were meta-analyzed. Loci were annotated as unreported if loci
had no overlapping coordinates with previously reported genome-
wide significant variants (P<5 x1078) associated with AF based on a
comprehensive evaluation. This included PheWAS lookups using the
Open Targets platform (https://genetics.opentargets.org/, integrating
data from the GWAS Catalog, UK Biobank, and FinnGen), as well as
cross-referencing with prior AF GWAS reports, including those by
Thorolfsdottir et al. (2017)*, Nielsen et al. (2018)°, Roselli et al. (2018,
2025)’*°, Miyazawa et al. (2023)%, Verma et al. (2024)*, Choi et al.
(2025)*°, and other relevant studies.

Gene prioritization

We applied six complementary gene prioritization approaches to iden-
tify the most confident locus-gene pairs: (1) nearest gene annotation, (2)
MAGMA-based gene prioritization®, (3) Polygenic Priority Score
(PoPS)%, (4) eQTL colocalization, (5) CARMA (Credible-variant Analysis
for Regional Meta-Analysis)-based functional gene prioritization®, and
(6) transcriptome-wide association study (TWAS)*. For each genomic
locus, the prioritized gene was determined by selecting the gene with
the highest count of selections across these six methods. In cases where
multiple genes had the same count, prioritization was refined by first
considering genes encoding variants within CARMA-identified credible
sets, followed by the nearest gene™. Below is a detailed description of
each approach:

Nearest gene annotation

The gene closest to the lead SNP in each locus was identified based on
its physical distance to the gene body. This analysis was performed
using the get_nearest_gene() function from the gwasRtools R package
(https://github.com/Icpilling/gwasRtools).

MAGMA-Based gene prioritization

We utilized MAGMA to annotate genes within genomic loci using the
1000 Genomes Project as the reference panel®. SNPs were mapped to
genes based on their physical positions, including the gene body and
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flanking regions (+ 10 kb). Gene-level p-values were then calculated by
aggregating SNP association statistics while accounting for linkage
disequilibrium (LD) structure. The gene with the smallest p-value
within each locus was selected as the prioritized gene.

PoPS

PoPS, a similarity-based gene prioritization tool, integrates publicly
available datasets, such as RNA sequencing data, curated pathway
annotations, and predicted protein-protein interaction networks®.
Based on the premise that causal genes share similar functional char-
acteristics, PoPS calculates gene-level association statistics using
GWAS summary statistics and MAGMA-based gene annotations. It then
selects relevant features from precomputed statistics and assigns a
score to each gene, reflecting its likelihood of being causal. For each
genome-wide significant locus, genes within 1 Mb of the index variant
(in both directions) were ranked by their PoPS scores, with the highest-
ranked gene prioritized.

eQTL Colocalization

Colocalization analysis was conducted using the coloc R package,
which applies an approximate Bayes factor framework to assess whe-
ther two traits share a causal genetic signal®®. Using the coloc.abf()
function (https://github.com/chrlswallace/coloc), we calculated pos-
terior probabilities for five hypotheses: (HO) no association with either
trait; (H1/H2) association with only one trait; (H3) association with both
traits but different causal variants; and (H4) association with both traits
with the same causal variant. A high posterior probability for H4
(PP4 > 0.8) was considered evidence of colocalization”. For this ana-
lysis, we used eQTL data from eQTLGen Phase I’® and the Genotype-
Tissue Expression (GTEx) Project v8* for heart atrial appendage and
heart left ventricle tissues. Variants within 500 kb of each GWAS index
variant were extracted to perform colocalization analysis.

CARMA-Based functional gene prioritization

We applied CARMA, a Bayesian fine-mapping approach®, to identify
credible sets of variants within each genomic locus. CARMA accounts
for LD structure and aggregates association signals across studies or
populations to identify variants most likely to be causal. For each locus,
CARMA generated a credible set with a high posterior probability (e.g.,
95%) of containing the causal variant(s). Functional annotation of these
variants was performed using Open Targets (https://www.opentargets.
org/), which provides information on coding, regulatory, and splicing
effects®. If a causal variant was located within or directly affected a
gene’s function, that gene was assigned to the locus.

TWAS

We performed TWAS using MetaXcan®* to estimate the relation-
ship between genetically predicted gene expression and AF.
MetaXcan integrates GWAS summary statistics with precomputed
gene expression prediction models to identify genes associated
with the phenotype. For this analysis, we used expression pre-
diction models for the heart atrial appendage, artery tibial, and
heart left ventricle, leveraging LD reference data from GTEx v8%°
and cross-population AF-GWAS summary statistics. For the TWAS,
the target tissues were selected based on results from MAGMA
tissue enrichment analysis and stratified-LDSC®, both of which
were conducted using gene expression data from GTEx v8.
MAGMA tissue enrichment analysis identifies tissues where genes
associated with the trait of interest are significantly enriched by
testing the relationship between GWAS association signals and
tissue-specific gene expression profiles. S-LDSC further refines
this by partitioning heritability across genomic regions annotated
with tissue-specific gene expression and estimating the con-
tribution of each tissue to the trait heritability. Using these
complementary approaches, tissues such as the heart atrial

appendage, heart left ventricle, and artery tibial were identified as
relevant for atrial fibrillation (Supplementary Fig. 18). These
selected tissues were then used to predefine the expression pre-
diction models for the TWAS. Bonferroni correction was applied
to account for multiple testing, and the gene with the lowest
p-value within each locus was prioritized.

Pathway enrichment

Pathway enrichment analysis was performed to identify biological
pathways and functional categories associated with the prioritized
genes. Reactome®” enrichment was conducted using Enrichr (https://
maayanlab.cloud/Enrichr/), enabling the exploration of curated
pathways®. Gene Ontology (GO) enrichment analysis®*, which pro-
vided insights into biological processes, molecular functions, and
cellular components, was carried out using the enrichGO
function from the clusterProfiler Bioconductor R package (https://
bioconductor.org/packages/release/bioc/html/clusterProfiler.html).
To minimize false-positive findings, Bonferroni correction was applied
to account for multiple testing, with the significance threshold set at
P<0.05/number of tests performed.

Population-specific genetic correlations with circulatory
endpoints

Using LDSC, we calculated the genetic correlations of AF with 130 and
97 circulatory endpoints defined by phecodes, separately for Eur-
opeans and Africans in the MVP cohort. The MVP GWAS included up to
449,042 European participants and 121,177 African participants®.
Genetic correlations with rg>1.25 or <-1.25 were removed due to
poor inheritability (h? estimates was very close to zero). To account for
multiple testing and reduce the likelihood of false-positive results, the
Bonferroni correction was applied. To objectively compare genetic
correlations between populations, we applied Cochran’s Q test to
assess heterogeneity in the correlation estimates between European
and African populations. Traits were considered to exhibit population-
specific differences if they showed evidence of substantial hetero-
geneity, defined as an /2 statistic greater than 75% and a Cochran’s Q
test P-value less than 0.05.

Mendelian randomization analysis for modifiable risk factors
MR is an analytical approach that strengthens causal inference by
leveraging genetic variants (IVs) as instrumental variables to estimate
the causal effect of an exposure on an outcome. A comprehensive
description of the MR design is provided in the Supplementary
Methods. Using GWAS meta-analysis data, we conducted MR to eval-
uate the associations between 37 modifiable risk factors and AF risk.
These modifiable factors span multiple categories, including adiposity,
blood lipids, type 2 diabetes and glycemic traits, other metabolic traits
(e.g., blood pressure, thyroid function, and kidney function), lifestyle
factors (e.g., smoking, alcohol and coffee consumption, and physical
activity), sleep behaviors, and dietary factors (e.g., circulating levels of
vitamins and minerals). The selection of these factors was guided by a
recent comprehensive review of AF risk factors®. Detailed information
on the GWAS data sources for these traits is summarized in Supple-
mentary Data 18.

Genetic variants associated with the exposures were selected at a
genome-wide significance threshold of P<5x107% To ensure inde-
pendence among instrumental variables, SNPs were pruned at
R?<0.01, minimizing the effects of collinearity due to LD. The strength
of the instrumental variables was assessed using F-statistics®, with all
variants meeting the threshold of F>10. Data harmonization was
performed to align effect and non-effect alleles consistently between
the exposures and outcomes. Detailed information on the used genetic
instruments is presented in Supplementary Data 19.

For exposures with fewer than five genetic instruments, the
inverse variance weighted (IVW) method with a fixed-effects model
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was used. For exposures with five or more genetic instruments, we
employed MR-PRESSO as the primary analysis method, as it accounts
for pleiotropic effects by identifying and removing outlier SNPs®’. In
the absence of outlier SNPs, MR-PRESSO provides estimates equivalent
to the IVW method. Sensitivity analyses included the IVW method with
random effects, the weighted median method®®, and MR-Egger
regression®. Heterogeneity among SNP-specific estimates was asses-
sed using Cochran’s Q test, while the MR-Egger intercept test was used
to evaluate the presence of horizontal pleiotropy. The scatter plot was
used to visualize potential pleiotropic SNPs. To minimize false-positive
findings, we applied Bonferroni correction to account for multiple
testing.

MR and colocalization analyses for circulating proteins

For the MR analysis of circulating proteins, we utilized two large-scale
pQTL (protein quantitative trait loci) datasets, deCODE”® and UKB-
PPP”, for IV selection (Supplementary Fig. 19). After excluding over-
lapping proteins, a total of 2847 proteins with cis-SNPs were included
in the analysis. For proteins present in both datasets, we prioritized
data from UKB-PPP due to its larger sample size and the fact that it
identified a greater number of cis-pQTLs using the Olink’%. Importantly,
the associations of overlapping proteins with AF showed strong con-
sistency between the two datasets, supporting the robustness of the
findings. To validate the results, we used the Fenland study as a
replication dataset”, focusing on proteins with available Vs in this
study to replicate the observed associations.

We used the lead cis-SNP associated with plasma protein
levels at P<5x1078 as the genetic IV. Cis-SNPs were defined as
variants located within 250 kb of the encoding gene. Detailed
information on selected genetic IVs is shown in Supplementary
Data 20. The Summary-data-based Mendelian Randomization
(SMR) method was employed to estimate the association between
genetically predicted protein levels and AF risk’*. SMR integrates
GWAS and pQTL summary statistics to evaluate whether the
genetic association with a phenotype (i.e., AF) is mediated
through the genetically regulated protein levels. To evaluate
potential pleiotropy, we performed HEIDI (Heterogeneity in
Dependent Instruments) analysis’*. HEIDI assesses whether the
association between the protein and the phenotype is driven by
the same causal variant or by independent variants in LD. The
analysis uses 3-20 SNPs in the cis region of the encoding gene to
test for heterogeneity. A HEIDI p-value >0.05 suggests no evi-
dence of pleiotropy and supports the hypothesis of a shared
causal variant. To further rule out false-positive associations
caused by LD, we conducted traditional’® and SuSiE (Sum of
Single Effects)” colocalization analyses, using all SNPs in the cis
gene region as input. As described in detail in the eQTL coloca-
lization section, strong evidence of shared causal variants
between protein levels and AF was indicated by PP.H4>0.8, a
stringent but widely accepted threshold in colocalization studies.
We applied Bonferroni correction to account for multiple testing.
Associations were considered potentially causal if they met the
following criteria: adjusted P< 0.05 for the SMR analysis, adjusted
P>0.05 for the HEIDI test (indicating no pleiotropy), and colo-
calization posterior probability PP.H4 >0.8. Bonferroni correc-
tion was used for multiple testing for SMR analysis.

The druggability of identified proteins was assessed using multiple
drug databases, including DrugBank’®, DepMap”’, and OpenTargets®.
Based on their therapeutic potential, proteins were classified into five
categories: (1) approved drug targets, (2) in clinical trials, (3) preclinical
candidates, (4) druggable, and (5) not currently listed as druggable
targets.

To examine the effect of genetic liability to AF on blood proteins,
we conducted a reverse MR analysis using 624 SNPs as instrument
variables for AF (P<5x107 and £ for linkage disequilibrium < 0.01)

and protein GWAS data from deCODE and UKB-PPP. Bonferroni cor-
rection was used for multiple testing.

Joint performance of PGS and protein score (ProS)

PGS analysis. The weights of the polygenic scores (PGS) in the current
study were generated using the “auto” setting of PRS-CSx’®, incor-
porating summary statistics from the meta-analysis and corresponding
EUR, AFR, AMR, EAS, or SAS LD reference panels derived from 1000
Genomes Project Phase 3 samples. This approach eliminates the need
for independent training data. The effective sample size was calculated
as 4/((1/ncases) + (I/ncontrols)). For the score applied to the UK Bio-
bank, weights were derived using data that excluded summary statis-
tics from UK Biobank participants. As a reference, we used the PGS
(PGS002814) from the Miyazawa et al. study®, which was derived using
the Pruning and Thresholding method (¥ =0.5and P=5 x107*; https://
www.pgscatalog.org/score/PGS002814/). We used the DeLong test”’,
implemented in the pROC R package, to statistically compare the
AUROC of the polygenic scores and evaluate whether the difference in
predictive performance was significant. We calculated PGS for 4401
individuals with AF and 32,760 individuals without from the Penn
Medicine BioBank (PMBB)®°, an ongoing study that integrates genomic
and electronic health record data to investigate the genetic and clinical
determinants of various diseases. The population breakdown of PMBB
participants is predominantly European (~ 70%), followed by African
(~25%), with smaller proportions of South Asian, East Asian, Admixed
American, and other populations (Supplementary Fig. 20). The study
was approved by the University of Pennsylvania Institutional Review
Board. To standardize the scores, we applied a principal component
analysis-based method, normalizing both the mean and variance to the
1000 Genomes reference panel. The association between PGS and
prevalent AF was assessed using a generalized linear regression model
with a logit link, adjusting for age and sex as covariates. We evaluated
the PGS effect size using odds ratios and assessed model performance
by calculating the area under the receiver operating characteristic
curve (AUROC) and Brier score. Using the ‘tidymodels’ R package
(https://github.com/tidymodels), we performed V-fold cross-valida-
tion to validate model performance. The same approach was used to
test PGS performance in the UK Biobank, including 3441 individuals
with incident AF and 47,437 without incident AF with available pro-
teomic profiles.

Protein score analysis. We derived a protein score (ProS) for AF using
individual-level data from the UK Biobank, a large, ongoing
population-based prospective cohort study with extensive proteomic
and phenotypic data. To rule out proteins with reverse associations, we
first conducted a prospective cohort analysis. Participants with base-
line AF or those diagnosed with AF within the first two years of follow-
up were excluded, leaving 50,878 participants with proteomic data.
Proteins with a missing rate exceeding 30% were also excluded,
resulting in a final dataset of 2920 proteins. After adjusting for age, sex,
ethnicity, Townsend deprivation index, education, body mass index,
smoking status, drinking status, and physical activity, 459 proteins
were significantly associated with incident AF after Bonferroni cor-
rection (Supplementary Data 21). We then used the Least Absolute
Shrinkage and Selection Operator (LASSO) method to construct the
ProS®'. We applied LASSO logistic regression to identify candidate
proteins associated with AF, using five-fold cross-validation to deter-
mine the optimal penalty parameter (A). A weighted protein score
(ProS) was then constructed based on the proteins selected via LASSO.
Specifically, a Cox regression model was used to estimate the log-
hazard ratios for each protein and the baseline hazard function. The
individual risk score for each participant was subsequently calculated
using: Risk Score = h(t) x exp(Bi X1 + B, X5 + - -+ + B,X,,), where X, is the
level of the n-th selected protein, and S, is the corresponding coeffi-
cient from the Cox model. Participants were randomly split into
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training and validation cohorts in a 7:3 ratio using the R package caret
(https://github.com/topepo/caret). The model demonstrating the best
predictive performance in the training cohort were then validated in
the remaining 30% of participants and ultimately combined into a final
model for predicting the risk of AF onset.

Joint performance. The AUROC analysis was performed to assess the
predictive performance of the selected key proteins for AF, both
individually and in combination with the PGS in the UK Biobank. The
DeLong test’’ was used to statistically compare the AUROC of these
scores and their difference in predictive performance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The UK Biobank data are available through an application (https://
www.ukbiobank.ac.uk/). The summary-level data of FinnGen (https://
storage.googleapis.com/finngen-public-data-r12/summary_stats/
release/finngen_R12_19 AF.gz) and MVP (https:/ftp.ncbi.nlm.nih.gov/
dbgap/studies/phs002453/analyses/GIA/) are publicly online. The
GWAS data generated in this study have been deposited in the NHGRI-
EBI GWAS catalog database under accession codes GCST90624411
(cross-population GWAS), GCST90624412 (European GWAS),
GCST90624413 (European GWAS after excluding UK Biobank), and
GCST90624414 (UK Biobank GWAS). Source data are provided in
this paper.
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