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Genuine quantum scars in many-body spin
systems

Andrea Pizzi 1,2 , Long-Hei Kwan1, Bertrand Evrard 3, Ceren B. Dag2,4,5 &
Johannes Knolle 6,7,8

Chaosmakes isolated systems ofmany interacting particles quickly thermalize
and forget about their past. Here, we show that quantum mechanics hinders
chaos in many-body systems: although the quantum eigenstates are thermal
and strongly entangled, exponentially many of them are scarred, that is, have
an enlarged weight along underlying classical unstable periodic orbits. Scar-
ringmakes the systemmore likely to be found on an orbit it was initialized on,
retaining a memory of its past and thus weakly breaking ergodicity, even at
long times and despite the system being fully thermal and the eigenstate
thermalization hypothesis fulfilled. We demonstrate the ubiquity of quantum
scarring in many-body systems by considering a large family of spin models,
including some of themost popular ones from condensedmatter physics. Our
findings, at hand for modern quantum simulators, prove structure in spite of
chaos in many-body quantum systems.

Understanding and controlling many-body quantum systems out of
equilibrium is a key challenge of modern physics. Left to their isolated
dynamics, as becoming increasingly possible in ever improving quan-
tum computers and simulators1–6, these systems tend to quickly relax
to thermal equilibrium, effectively forgetting about their past in the
spirit of ergodicity7–9. This fate is as universal as tame, and under-
pinning it is the seemingly chaotic nature of the many-body Hamilto-
nian. Indeed, the statistical properties of the system’s eigenvalues and
eigenvectors are in many respect similar to those of certain random
matrices10.

It is known for single-particle systems, however, that chaos can be
hindered by quantum scarring11–13. This is the phenomenon whereby
the quantum wavefunction is enhanced along underlying classical
unstable periodic orbits (UPOs). Scarred eigenstates are less random
than chaos would suggest, increasing the chances of finding the sys-
tem on a UPO it was prepared on and challenging the notion of
ergodicity13,14. Scarring has long been known within single-particle
quantum chaos, but its generalization to many-body quantum sys-
tems, whose study requires modern quantum simulators and more

advanced numerical tools, has remained virtually unexplored, limited
to specific recent instances of interactingbosons in a ring lattice15 and a
periodically driven spin-1 chain16.

Here, we show that scarring is ubiquitous inmany-body systems.
For a large family of spin chains, we find that exponentially many
eigenstates are enhanced along the UPOs of the associated classical
dynamics. Initializing the system on a UPO enhances the probability
of finding it on the same UPO at later times. Even in the middle of the
spectrum, where entanglement is close to maximal and the eigen-
state thermalization hypothesis (ETH) fulfilled17, we show that the
eigenstates are less chaotic than expected and ergodicity is weakly
broken.

Our work adds quantum scarring to the (short) list ofmechanisms
yielding nontrivial effects in many-body quantum systems out of
equilibrium, such as integrability18,19, many-body localization20–23, Hil-
bert space fragmentation24,25, and non-thermal eigenstates in an
otherwise chaotic spectrum26–30. All these rely on an explicit or emer-
gent partial integrability and host ETH-breaking eigenstates. By con-
trast, scarring establishes a deviation from chaos in the thermal
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eigenstates of generic non-integrable many-body systems, where one
would least expect it.

A remark on nomenclature is due. Growing attention has been
recently devoted to certainmany-bodyquantumsystemshosting a few
eigenstates which violate ETH and are weakly entangled27–30. While
these have been dubbed “quantum many-body scars”, there is no
evidence that they are in fact scars, because they could not be related
to UPOs in a chaotic phase space, but rather were often associated to
its regular regions28,31–36. Such athermal eigenstates are not the focus of
our work. Instead, here we consider the thermal eigenstates of many-
body systems and show their genuine scarring, due to UPOs in a
chaotic phase space.

Beyond15,16, note that such genuine scarring has also been shown
in the Dicke model37 and for a spinor condensate19 (also observed in
experiments38), that with their all-to-all interactions sit somewhere in
between few- and many-body systems. Moreover, a semiclassical
analysis of the periodic orbits of a quantum many-body system was
presented for a periodically driven spin chain in39, although not in
relation to scarring.

Results
Model, classical dynamics, and UPOs — Consider a chain of N spin s
particles subject to a magnetic field and nearest-neighbor interactions
(ℏ = 1)

Ĥ =
XN

j = 1

μ � ŝj +
1
s
ŝj Jŝj + 1

� �
, ð1Þ

where ŝ2j = sðs + 1Þ, ŝjJŝj + 1 =
P

α, β= x, y, z ŝ
α
j Jαβŝ

β
j + 1, Jαβ = Jβα, μ � ŝj =P

α = x, y, zμα ŝ
α
j , and periodic boundary conditions are assumed. This

Hamiltonian is very general, e.g., it describes any homogeneous spin
1/2 chain with nearest-neighbor reciprocal interactions, including
many prototypical models of condensed matter physics. For instance,
the Ising model with both transverse and longitudinal (integrability-
breaking) fields is obtained for μy = 0 and J = Jzzz ⊗ z, yielding
Ĥ = 1

2

P
jðμx σ̂

x
j +μz σ̂

z
j + Jzz σ̂

z
j σ̂

z
j + 1Þ, with σ̂ x, z

j standard Pauli operators.
TheHeisenberg, XX, andXXZmodels are obtained in a similarway. The

normalization s−1 in front of the interaction in Eq. (1) ensures a well-
defined limit s → ∞, for which the spins can be described as classical
rotors {sj}, with ∣sj∣2 = 1 and dynamics40

dsj
dt

= μ+ J sj�1 + sj + 1
� �h i

× sj: ð2Þ

The nonlinear dynamics in Eq. (2) is generally chaotic and
aperiodic41. There are however special families of spin configurations
forwhich the dynamics is periodic instead, see Fig. 1a. One is thatof the
translationally invariant (TI) states, in which all the spins are aligned,
fsjg= s, s, s, s, . . .ð Þ. Another, for N multiple of 4, is that of the interac-
tion suppressing (IS) states, in which the spins flip at every other site,
fsjg= +s, +s, �s, �s, +s, +s, �s, �s, . . .ð Þ. These states are special in
that the classical dynamics in Eq. (2) does not destroy their nature: a TI
state remains such, owing to translational invariance, and a IS state
remains such, because sj−1 + sj+1 = 0 and the interaction is suppressed.
The dynamics from these states is fully specified by the dynamics of
just one spin, say s, namely

ds
dt

=
μ+ 2Jsð Þ× s for TI states

μ× s for IS states

�
: ð3Þ

The vector s lives on the surface of a sphere, and its Hamiltonian
dynamics must be periodic, like any in two dimensions42.

Themany-body dynamics fromaTI or IS statewill also be periodic
but, crucially, generally unstable: a slight perturbation that breaks the
TI or IS character of the initial condition leads through chaos to a
highly unpredictable and nonperiodic trajectory exploring the many-
body phase space ergodically. For the IS states and ∣J∣ ≪ ∣μ∣, we com-
pute all the Lyapunov exponents analytically (see Supplemental
Information), showing that for N > 4 the IS states are indeed unstable
for all models but trivial ones (e.g., λ = 0 for the Ising model in a
longitudinal field). The TI and IS states thus constitute two manifolds
of UPOs within the classical many-body phase space, Fig. 1b. The
existence of continuousmanifolds of UPOs, rather than isolated UPOs,
is a favourable factor for scarring14.

Generic
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Fig. 1 | Classical spin dynamics and unstable periodic orbits. aThe dynamics of a
classical spin chain is generally chaotic, but yields unstable periodic orbits (UPOs)
for the TI states, with aligned spins (blue), and for the IS states, with spins alter-
nating every other site (green). b The TI states and IS states form two-dimensional
manifolds of UPOs within the highly-dimensional phase space. cQuantum scarring
is favoured for λ/ω < 1, with λ the Lyapunov exponent of the UPO and ω its

frequency. This condition holds throughout the whole considered parameter
regime, and especially for small ∣J∣/∣μ∣. In (c) we considered the Ising model with
μ = (2.4, 0, 0.4), N = 100, and the UPOs through s = y. The Lyapunov exponent is
computed numerically from the monodromy matrix59, and analytically (dashed
line) for the IS states and ∣J∣ ≪ ∣μ∣ (see Supplemental Information).
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We note that other such manifolds exist. The IS states are in fact
part of a broader manifold of periodic orbits, namely
fsjg= s1, s2, � s1, � s2, s1, s2, � s1, � s2, . . .

� �
, also yielding dsi

dt =μ× si.
We also note that the condition N = 4k led to special effects also in39,
resulting in periodic orbits with enhanced impact on the spectral
properties of a periodically driven spin chain, and in15, relating to
“hopping suppressing” UPOs of bosons in a lattice.

As first shown for quantum billiards13, scarring can be expected
when λ/ω< 1, with λ the Lyapunov exponent of theUPOandT = 2π/ω its
period. That is, scars are expected when chaos, acting on a timescale
~ λ−1, does not prevent a classical trajectory nearby an UPO to return to
its neighborhood after one period. In Fig. 1(c) we compute λ/ω for
some cases of interest. The IS is unstable in all the considered para-
meter range,with λ/ω ~ ∣J∣/∣μ∣, suggesting that scarring canbe enhanced
by simply increasing the strength of the field ∣μ∣. The TI state also has
λ/ω < 1, but becomes stable (λ = 0) for small ∣J∣. In the following, we
consider TI and IS states only when they are unstable (λ > 0), which is
paramount when talking about quantum scars13.

Quantum scars — Let us go back to the quantum many-body
problem Ĥ∣En

	
= En∣En

	
. We shall here focus on the deep-quantum

limit of s = 1
2 (larger s are considered in (see Supplemental Information)

and yield similar results). The effective size of the Hilbert space is
reduced by exploiting the symmetries of the Hamiltonian and of the TI
and IS states, i.e., translation by 4n sites and mirror reflection, but
remains exponentially large in N (for a detailed discussion on sym-
metries, see Supplemental Information). The eigenstates, attained by
exact diagonalization, fulfill the ETH and are characterized by an
extensive bipartite entanglement entropy, see Fig. 2a, b. To look for
scarringweproject the eigenstates onto the classical phase space. Each
point {si} of the phase space is associated to a product state
∣fsig

	
= ∣s1

	� ∣s2
	� � � � � ∣sN

	
, with si the orientation of the i-th quan-

tum spin, ðsi � ŝiÞ∣si
	
= s∣si

	
; the projection of a wavefunction ∣ψ

	
on the

classical phase space then reads Q= ∣hfsigjψi∣2. Being increasingly
accessible in quantumcomputers and simulators,where for s= 1/2 they
are often called bitstring probabilities, such projections are quickly
emerging as a key object of investigation in many-body quantum
chaos43–50.

The high dimensionality of the classical phase space makes
visualizing Q generally complicated. Nonetheless, we are mostly
interested in projections along theUPOs,which lie on two-dimensional
manifolds parametrized by a polar angle θ and an azimuthϕ. For a few
eigenstates in the middle of the spectrum, in Fig. 2c we show the
projection Q on the manifolds of TI and IS states. Such projection
displays a distinctive feature of scarring, namely it reflects the under-
lyingUPOs andpeakson some. The degree of scarring, aswell as which
UPOs are responsible for it, varies from eigenstate to eigenstate.

Scarring is particularly remarkable for the IS manifold: not only are all
the considered eigenstates in the middle of the spectrum, En ≈ 0, but
the whole IS manifold is, because any IS state yields fsig



∣Ĥ∣fsig

	
=0.

That is, the structure in Q cannot be due to some UPOs being at a
special energy, whichmakes scarring evenmore surprising, in analogy
with quantum billiards in which the classical orbits are all at the same
energy p2

2m
11.

The eigenstates shown in Fig. 2 are selected to showcase the
structure ofQ in its various shapes and colors. But cherry picking is by
no mean required: Q reflects the underlying UPOs for the majority of
the eigenstates, whichwe also show for the XX and XXZmodels in (see
Supplemental Information). We also note that for the Heisenberg
model (J = JI, not shown), the projection Q of the eigenstates ∣Eni is
exactly constant along the IS orbits, owing to the underlying U(1)
symmetry ½Ĥ,

P
jμ � ŝj �=0. By contrast, in the models considered here

the structure of the eigenstates on the UPOs does not piggyback on
any symmetry.

Having seen in Fig. 2 the visual, qualitative features of scarring, we
now turn to a quantitative analysis, showing that the eigenstates are
anomalously large on the UPOs. We consider the mid-spectrum
eigenstates ∣En

	
of the symmetry sector with zeromomentumand left-

rightmirror parity + 1, and overlap themwith three types of states ∣ψ
	
:

Haar random states, phase-space states ∣fsig
	
, and IS states. To make

sure these are treated on par, namely that generic phase-space states
are not penalized for being less symmetric than the IS states, we
renormalize all the states to haveweight 1 on the considered symmetry
sector (details in see Supplemental Information). That is, we consider

the rescaled projection of ∣En

	
on ∣ψ

	
, namely x =D ∣hEn jψi∣2

hψjP̂P̂yjψi
, whereD is

the size of the considered symmetry sector and P̂y
the operator pro-

jecting on it. Sampling ∣En

	
and ∣ψ

	
yields a probability distribution for

x, shown in Fig. 3a. Haar random states yield the Porter-Thomas dis-
tribution e−x 43,51, setting a benchmark for quantum chaotic behaviour.
This benchmark is closely followed by the projections of the eigen-
states on generic points of the phase space {si}. A deviation from the
benchmark is found for projections on the IS states, yielding a fat tail in
the distribution of x. This is remarkable: it shows that, due to scarring,
the eigenstates can indeed have an anomalously large projection on
the UPOs.

To quantify at the same time both aspects of scarring, namely the
visual features of Fig. 2 and the fat tail of the projection in Fig. 3a, we
introduce a “scarness” parameter S=4D×maxIS

H
Qψ, where ∮Q

denotes averaging ofQ along each UPO, andmaxIS maximization over
the IS UPOs (details in see Supplemental Information). Sampling ∣ψ

	
yields a probability distribution for S, shown in Fig. 3b. While the
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Fig. 2 | Quantumscars inmany-body spin chains. a,bThemany-bodyeigenstates
∣Eni are fully thermal: the expectation value of local observables, e.g., En



∣σ̂x

1 ∣En

	
,

only depends on the energy17, as does the bipartite entanglement entropy S, which
is extensive, S ~ N. c Projection of selected eigenstates ∣En

	
onto the TI and IS

manifolds of the classical phase space (top and bottom, respectively). The many-

body eigenstates are scarred, that is, enhanced along certain UPOs (white lines).
The considered eigenstates aremarked in (a, b) by crosses, and sit in the middle of
the thermal spectrum. For each plot we define Qmax =maxθ,ϕQðθ,ϕÞ. Here, we
considered the Ising model with s = 1

2, μ = (2.4, 0, 0.4), Jzz = − 1.8, and N = 16.
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mid-spectrum eigenstates are often compared to Haar random states,
they yield a distribution of the scarness S with a much fatter tail.
Indeed, the S of many eigenstates is larger than the S of most Haar
states, and the number of scarred eigenstates Mscarred grows expo-
nentially with the considered system sizes N (inset).

The eigenstates are not directlymeasurable, but the dynamics is,
and this must reflect the properties of the eigenstates. Indeed, while
the thermal spectrum underpins the equilibration of local obser-
vables within short times, the scarring of exponentially many
eigenstates leaves a mark on the long-time dynamics of the return
probabilities. In analogy to single-particle quantum chaos13, prepar-
ing the system on a UPO increases the probability of finding it on the
same UPO at later times. This effect is shown in Fig. 4 by considering
two initial conditions: the IS state with axis y, namely ∣ψ0

	
=�N

i = 1∣νiy
	
,

and the IS state with axis μ, namely ∣ψ0

	
=�N

i= 1∣νiμ=jμj
	
, with

fνig= + + ��+ + �� . . .ð Þ. For both we numerically integrate the
Schrödinger dynamics and compute the time-averaged projection
�Q= limt!1

1
t

R t
0 dτQð∣ψðτÞ

	Þ on the manifold of IS states. For the Ising,
XX, and XXZ models in a field, we observe that the system is more
likely to be found on the UPO it started from, even long after
thermalization.

We emphasize that this effect is not due to the initial condition
overlapping with a few non-thermal eigenstates27, but to many of the
thermal eigenstates being scarred. This is a genuinely quantum effect:
due to ergodicity, a classical ensemble prepared nearby an IS UPO will
at long times spreaduniformly across the phase space at E = 0, in a way
that does not depend on the specific initial condition, see Fig. 4a. By
striking contrast, it is more likely to find the quantum system on the
UPO it started from. In other words, scarring makes the quantum
system remember its pastbetter thana classical systemwould, in a rare
example of weak ergodicity breaking.

We use the adjectiveweak because, while the enhancement of the
phase-space projection on theUPOs is large in relative terms, it is small
in absolute terms, e.g., Qmax � 5 × 10�4 in Fig. 2 and �Qmax � 3 × 10�5 in
Fig. 4. A scaling analysis is presented in Fig. 4b, c, showing that �Q
decays exponentially with N while its relative enhancement does not,
exhibiting a memory effect. Due to translation symmetry, the Hilbert
space is divided in N momentum sectors, each of size � eOðNÞ=N, and
we expect the average overlap to scale as the inverse sector size,

Q � Ne�OðNÞ. Scarring should be seen as a small albeit measurable
correction to the picture of thermalization in isolated quantum
systems7,9, not contradicting paradigms such as the ETH17. Indeed, as
long noted by Srednicki52, in many-body systems the effect of scarring
is mostly washed away when integrating over the phase space, as
effectively done when computing the expectation value of simple
observables (e.g., hszj i).

Discussion
Analysing a broad family of spin chains, including any uniform spin-
1/2 chain with nearest-neighbor interactions, our work proves the
ubiquity of quantum scarring in many-body systems. In single-
particle systems, chaos–and consequently scarring–become mean-
ingful only in the semiclassical regime, such as at sufficiently high
energies in quantum billiards11. By contrast, many-body systems can
achieve a quantum chaotic regime through sufficiently large system
sizesN. This distinction enables a fundamentally new type of scarring
unique to many-body systems. For instance, we found that the s → ∞
classical dynamics in Eq. (2) scars the quantum system all the way
down to the deep-quantum limit of s = 1

2. Scarring enhances the
eigenstates ∣En

	
along certain UPOs and makes a system better

remember its past, curbing chaos even in fully thermal and non-
integrable many-body systems.

Our predictions can be straightforwardly verified in state-of-the-
art quantum simulators for spin Hamiltonians2–6, opening new possi-
bilities for the experimental observation of scars53–57. In particular, by
repeatedly preparing a product state, letting it evolve, and measuring
it in a different basis, one should be able to show that the system is
more likely to be found on theUPO it was prepared on (Fig. 4), which is
a direct consequence of quantum scarring. This protocol is in very
close analogy with what has been done in43,44, in which the many-body
bitstring probabilities – essentially the sameas our projectionQ – have
been measured to detect genuine quantum effects. Indeed, accessing
complex quantities not described by ETH, such as the bitstring prob-
abilities, allows to search for new physics in spite of the thermalization
of local observables, as we have proven for scarring. Our work opens
many avenues for theoretical research, posing questions regarding the
role of lattice geometry and interaction range, the fate of scarring in
the limits s → ∞ and N → ∞, the effect of Hamiltonian terms beyond
those in Eq. (1), and possibilities with other fermionic and bosonic
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Fig. 3 | Quantitative features of scarring. aDistribution of the rescaled overlaps x
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Haar random states (red) have distribution e−x (dashed), similarly to the overlaps
with generic points {si} of the phase space (green). By striking contrast, the overlaps
with the IS states (blue) yield a much fatter tail, that is, scarring makes some
eigenstates anomalously large on the UPOs. b The distribution of the scarness
parameter S for mid-spectrum eigenstates (blue) has a long tail compared to Haar
random states (red). Indeed, the numberMscarred of scarred eigenstates, defined as
the number of eigenstates with S larger than the 90-th percentile of the Haar states

(red dashed line), minus 10% (see Supplemental Information), is large and appears
to grow exponentially with system size (inset). In (a, b) the eigenstates are uni-
formly sampled from the middle of the spectrum, namely among the 10% eigen-
states with lowest ∣E∣. In (a), the phase-space states are obtained sampling the spins
{si} uniformly and independently from the sphere, and the IS states are obtained
sampling s1 uniformly from the sphere and alternating the other spins at every
other site as in Fig. 1(a). Here, N = 20 except where otherwise and explicitly spe-
cified. All other parameters are as in Fig. 2.
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particles15. Realizing that the atypical eigenstates in so-called “many-
body quantum scars” are in fact not scars is not merely a matter of
terminology31: it opens the door to a whole new field of research, that
of scars – genuine scars11– inmany-body systems, andpaves theway to
a better understanding of the quantum-classical correspondence. We
conclude by noting that, shortly after the completion of this work, the
problem of genuine scarring in spin chains was also addressed in58.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its supplementary information files.

Code availability
The code used for the current study is available from the corre-
sponding author on reasonable request.
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focus on the time-averaged returnprobabilities (�QðyÞ for ∣ψ0

	
= ∣ISy

E
, denoted y→ y,

and �QðμÞ for ∣ψ0

	
= ∣ISμ

E
, denotedμ→μ) and cross probability (�QðyÞ for ∣ψ0

	
= ∣ISμ

E
,

and viceversa, denoted y ↔ μ). While �Q decays exponentially in N, scarring makes
the return probabilities consistently larger than the cross probabilities, indeed by a
factor >4 for all considered system sizes. In (a) we considered s = 1

2, N = 20, and
μ = (2.4, 0, 0.4), and chose J ensuring that the system is fully thermal: Jzz = −1.8 for
the Isingmodel, Jxx= Jyy = −0.4 and Jzz = −1.8 for theXXZmodel, and Jxx= Jyy = −1.4 for
the XX model. In (b, c) we considered the Ising model.
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