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Precise detection of tiny birefringence with
accuracy reaching 10−11 level

Xiliang Zhang1,2, Yanwen Hu2,3, Shiwen Zhou2,3, Zepei Zeng2,3, Guohua Liu 2,3,
Haolin Lin2,3, Zhen Li2,3, Zhenqiang Chen2,3 & Shenhe Fu 1,2,3

High-precision birefringence detection is crucial in many fundamental and
applied research fields such as chirality detection, optical clocks and quantum
information. Although numerous techniques have been demonstrated to
detect birefringence in optical materials, the current detection precision
typically remains at 10−8. Herewe introduce a different physicalmechanism for
birefringence detection in the classical regime, achieving an accuracy at the
10−11 level. Our technique uses an effective photonic two-level system, dyna-
mically driven by a birefringence-sensitive synthetic magnetic field created by
propagation-invariant spin-orbit-coupled structured light in the sub-
wavelength regime. The magnetic field equivalent induces the Rabi oscillation
of photonic state, manifested as a nontrivial periodic spin-orbital angular
momentum conversion. The ultrahigh detection precision arises from high-
birefringence-sensitive topological transition between different oscillatory
modes with high Rabi frequencies. The detection precision is tunable by
controlling envelope size of structured light at the subwavelength scale. Our
technique benefits a broad range of applications involving optical
birefringence.

Linear birefringence in photonic materials is recognized as a funda-
mental effect, significantly affecting photonic spin-orbit coupling1–3,
particularly when the size of the light beam is at the subwavelength
level4. In addition, circular birefringence, a typical chiroptical effect5

that left- and right-handed circular polarizations of light propagate
through chiral materials at different speeds becomes a powerful tool
for detecting material chirality6. Acquiring an exceedingly precise
knowledge of the birefringence becomes necessary since it reveals
fundamental information about the materials such as their internal
structures and molecular orientations7,8. On the other hand, birefrin-
gence becomes undesirable in someparticular scenarios. For example,
some physical fields, such as optical clocks9,10 make use of a high-
finesse optical resonator11,12, which requires supermirrors that consist
of ideal isotropic coatings. However, the optical coating13, in general, is
stressed nonuniformly in the deposition process, adding a small
amount of stress-induced birefringence, which limits the

performances of the optical resonators. Another example is that
crystallized silicon being an important material in gravitational wave
detection exhibits small birefringence14–16, which largely reduces
interferometric contrast and generate signal disturbances in an inter-
ferometer. In optical communications, an extremely small amount of
birefringence produces light field distortions after photon propaga-
tion in thefiber17,18. Therefore, high-precisiondeterminationof the very
tiny birefringence for the photonic materials is essential in many
specific scenarios, for either better exploiting or avoiding it.

Many techniques for the determination of the photonic birefrin-
gence have been demonstrated. An early approach, which depends on
a photoelastic polarization modulator, has been demonstrated and
leads to a detection accuracy at the level of Δn ~10−3 19. Since then, a
number of birefringence detectionmethods have been demonstrated,
improving the precision. These include methods based on laser feed-
back effect (Δn ~10−4)20, total internal reflection (Δn ~10−5)21, Fabry-
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Perot cavity (Δn ~10−6)11 and interference (Δn ~10−7)22–25. Thesedetection
techniques are either sensitive to photon propagation path that is
difficult to be optimized or influenced by inhomogeneous thickness of
the optical materials. As a consequence, it seriously limits their mea-
surement accuracy, thus far, to the level of Δn ~10−7. Recently, high-
purity polarimetry, based on the high-brilliance synchrotron radiation,
has been demonstrated to probe the very low birefringence in the
condensedmatter systems26. By exploiting a combination of the weak-
value amplification (quantum weak measurement) technique27 and
ultrafast time-delay control method in the quantum regime, one has
achieved an improvement of the accuracy at the level of Δn ~10−8 28. In
this article, we report a different physicalmechanism for birefringence
detection in the classical regime, achieving an accuracy of birefrin-
gence at the level of Δn ~10−11, which is better than the previously
reported precision by three orders of magnitude.

Our technique relies on a fundamental phenomenon of the Rabi
oscillation, which was originally demonstrated as a quantum effect in a
quantum two-level system29. Such an important effect has stimulated a
number of applications ranging from quantum state measurements
and quantum computings30,31 to atomic spectroscopies32. Since its
discovery, the concept of Rabi oscillation has been extended to other
disciplines including optics33–36, acoustics37, and atomic physics38,
allowing to detect precise information about material structures39,
molecule reactions40,41, chemical environments42, etc. Although the
Rabi oscillations as well as the relevant Rabi coherent controls of
quantum states43 attract a great fundamental and applicable interest
across different domains, to our knowledge, this phenomenon has not
yet been exploited for precise detection of optical birefringence.

Todemonstrate our idea,we require to realize aunique spin-orbit-
coupled Rabi oscillation44, which incorporates photonic spin and
orbital angular momenta (SAM and OAM). This requires a spatially
structured light that comprises a coherent superposition of orthogo-
nal polarization eigenstates with nontrivial topological wavefronts44,45.
Our technique is therefore closely relevant to a nontrivial topological
transition of photonic state between two spin-orbit-coupled Rabi
oscillatory modes. To address this, we build a direct relationship
between the spin-orbit Rabi frequency and birefringence, by using a
uniquely size-controlled propagation-invariant structured light. Using
such a unique structured light, we are able to achieve tunable detec-
tion precision by spatially varying beam size. Specifically, if the beam
size is at the subwavelength region, a very tiny birefringence with a
value at the level of Δn ~10−11 is assuredly detected; while in the non-

subwavelength region, the Rabi oscillation frequency is considerably
decreased, which leads to less birefringence-sensitive topological
transition and a relatively poor detection precision at the level of
Δn ~10−9. The tunable light beam permits us to precisely control its
topological transition in the Rabi oscillations, providing an effective
technique for precise birefringence detection. We note that although
the phenomenon of the spin-orbit Rabi oscillation was first demon-
strated in ref. 44, here we apply such an effect to realize precise bire-
fringence detection, with tunable measurement sensitivity.

Results
Theoretical model
Figure 1a illustrates the operation principle. First, we define an
effective two-level system by considering two orthogonal photonic
states as pseudo spin up and spin down, written as
R̂= exp + i‘ϕð Þ x̂ � iŷ

� �
=
ffiffiffi
2

p
, and L̂= exp �i‘ϕð Þ x̂ + iŷ

� �
=
ffiffiffi
2

p
, respec-

tively, where x̂ and ŷ are unitary vectors in the cartesian coordinate
system (x, y) and ϕ= arctan y=x

� �
. ℓ represents a topological charge

of the state. These photonic states are spin-orbit coupled, uniquely
featured by a nontrivial helical wavefront (orbital angular momen-
tum) and a homogeneous circular polarization (spin angular
momentum). Second, we demonstrate the use of a synthetic mag-
netic field for adiabatically driving the “two-level” system. The phy-
sical origin of the synthetic magnetic field is connected to the two-
level quantum system, whose Hamiltonian (H = � σ � B̂, where σ
denotes the Pauli matrix vector46) is associated with an external
magnetic field B̂. We study the interaction between the spin-orbit
photonic state and photonic crystal, and develop an equivalent
Hamiltonian model H = −σ ⋅ B for the “two-level” system, where B is
an equivalent (synthetic) magnetic field. It is contributed from
inhomogeneous distribution of structured light and structural
parameters of the photonic crystal, hence being birefringence-
sensitive. In the presence of B, we realize photonic topological
transition, as a result of a precession of the state vector S around the
birefringence-sensitive magnetic field B (Fig. 1b). In this process,
we obtain a nontrivial coupling between R̂ and L̂, and a mixing state
expressed as Φ=ΦRR̂+ΦLL̂. The resultant state vector is therefore
defined as S =Φ†σΦ, where “†” denotes conjugate transpose opera-
tor. Obviously, the mixing state comprises different weights on
R̂ and L̂, which can be described in a normalized form
as47,48ΦR = sinðθ=2Þ expð+ iφ=2Þ and ΦL = cosðθ=2Þ expð�iφ=2Þ, where
θ and φ denotes polar and azimuthal angles, respectively. These sets

Fig. 1 | Operation principle of high-precision birefringence detection. a Our
precision detection technique is based on a spin-orbit two-level system driven by
the synthetic magnetic field which is birefringence-sensitive. The two-level system
is defined by two orthogonal spin-orbit photonic states R̂ and L̂, which represent
the pseudo spin up and spin down, respectively. An initial state comprising a
superposition of R̂ and L̂ is sent to the system and evolves adiabatically in the
presenceofbirefringence-sensitivemagneticfield. As a result, a slight change of the

birefringence leads to a significant topological transition of photonic states, as
manifested by a prominent variation of topological wavefront (featured by a
charged number ℓ). b A spin-orbit Poincaré sphere is defined for geometrical
representation of precession of the photonic state vector S around the synthetic
magnetic field B. The spin-orbit state vector exhibits evolution along a direction
perpendicular toB, leading to nontrivial mutual conversion between photonic spin
and orbital angular momenta (SAM and OAM).
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of fundamental parameters define a spin-orbit Poincaré sphere
(Fig. 1b), which unifies all possible photonic states via the Stokes
parameters (S1, S2, S3).

Our technique for tiny birefringence detection requires a high
birefringence-sensitive topological transition of the spin-orbit state.
We realize such a transition by precisely controlling Rabi frequency
shift between two different spin-orbit Rabi oscillatory modes through
action of the syntheticmagnetic field. Thus,we require to reveal a clear
relationship between the synthetic magnetic field and the birefrin-
gence, by exploiting analogies between the two-level system in a light-
crystal interaction process and the electron spin-1/2 system subjected
to an externalmagneticfield46. Thephotonic crystal is characterizedby
its refractive index along three principal axis: nx, ny, and nz. We con-
sider a state evolving along optical axis z of the crystal. In this limit, we
achieve magnetic-like Hamiltonian of the synthetic system (see
Methods), written as

H=
0,Δβ=2� i�γ∇2

yx=ð2�βÞ
Δβ=2 + i�γ∇2

yx=ð2�βÞ, 0

" #
ð1Þ

Here, Δβ = βy − βx (βx,y = k0nx,y) is a phase mismatch quantity arising
from the birefringence (Δn = ∣ny − nx∣). It features nontrivial coupling
between the two pseudo spins and mutual transformation between
SAM and OAM. k0 = 2π/λ denotes a free-space wavenumber, with λ
being the wavelength. We further introduce parameters γx, y = 1�
n2
x, y=n

2
z to describe crystal anisotropy. A small birefringence simplifies

the Hamiltonian and gives rise to �β � βx + βy

� �
=2 and �γ � γx + γy

� �
=2.

In this case, the Hamiltonian leads to an analogous spin-1/2 model

i
∂
∂z

ΦRðzÞ
ΦLðzÞ

� �
=

1
2M

P2
?~A� 1

2
σ � B

	 

ΦRðzÞ
ΦLðzÞ

� �
ð2Þ

where M = 2�β~A=ð2� �γÞ denotes effective mass of the spin-orbit state,
with ~A being an envelope field for carrying the state.P2

? = ½�∇2
?, 0;0, �

∇2
?� is a transverse momentum operator. Since equation (2) demon-

strates an identical mathematical form to the time-dependent
Schrödinger equation46, intriguing spin transport phenomena can be
emulated with structured light, under the action of the synthetic
magnetic fields49–52. In the circular basis, a theoretical model for the
synthetic magnetic field is derived as: B1 = � �γ∇2

xy
~A=ð�β~AÞ, B2 = 0,

and B3= −Δβ.
With an approximation of nondiffracting light beam, equation (2)

admits unique harmonic Rabi oscillatory solutions, manifested by a
periodic conversion between two photonic states with opposite heli-
cities (topological wavefronts). We demonstrate such harmonic solu-
tions in terms of the Stokes parameter defined as
S2ðzÞ= jΦRj2 � jΦLj2 = S3ð0Þ sinðΩ � zÞ+ S2ð0Þ cosðΩ � zÞ, with a phase
offset determined by an initial state vector S(0) = [S1(0), S2(0), S3(0)].
Here Ω represents the Rabi oscillation frequency expressed as

Ω= �γ∇2
xy
~A=ð�β~AÞ

��� ���2 + k0Δn
�� ��2� �1=2

ð3Þ

Equation (3) reveals that the Rabi oscillation depends on the envelope
field ~Aðx, yÞ and the birefringence Δn. It therefore allows to read out of
birefringence value by detecting the topological wavefront variation.

We produce large synthetic magnetic field strength, which leads
to a high Rabi frequency. Owing to the unique spatial gradient effect
(∇2

xy) on amplitude ~A, we achieve the high Rabi frequency by using a
nondiffracting subwavelength envelope ~Aðx, yÞ. The resultant mag-
netic field equivalent effectively inhibits decaying of the Rabi oscilla-
tion and thus generates a prominent phase shift (manifested by a
topological transition) in two slightly different Rabi oscillatorymodes.
We express the envelope as ~AðrÞ= J‘ðr=r0Þ, where Jℓ is the Bessel

function of order ℓ, and r = ðx2 + y2Þ1=2. r0 features the envelope width,
being an important beam parameter that is associated with the Rabi
frequency.

Figure 2 illustrates a theoretical result that a tiny birefringence at
the magnitude level of 10−11 can be identified, with a typical beam
parameter r0 = 130 nm. We consider a featured state initially located
at an equatorial position (θ,φ) = (π/2, π/2). This is because it contains
non-separable SAM and OAM (both SAM and OAM are zero), exhi-
biting a trivial topology (see starting point at c1 in Fig. 2a, as well as its
polarization and phase in Fig. 2d, h, respectively). Without birefrin-
gence (Δn = 0), the propagation-invariant synthetic magnetic field
yields a harmonic oscillation (Fig. 2a). We then select an appropriate
coupling length, such that the output photonic state returns to its
original equatorial position (seeoutput point c2 in Fig. 2a). Regarding
the coupling length, there is in principle no constraint on it. However,
the length should be chosen such that the undesired phase shift is
effectively eliminated. This requires the coupling length to be an
integer multiple of the Rabi oscillation period. For example, the
length L = 240μm is equal to four cycles of Rabi evolution, see Fig. 2a.
With a different length, one can appropriately adjust the incident
beam width r0 to eliminate the phase shift, since r0 is associated with
the Rabi frequency. We plot polarization and phase distributions of
the output state, which exhibits a space-variant linear polarization
(Fig. 2e) and trivial phase wavefront (Fig. 2i). These preliminary
results indeed suggest a complete cyclic evolution of state in the
crystal. By contrast, with birefringence (Δn ≠0), a Rabi frequency
shift given by ΔΩ= �β~Aðk0ΔnÞ2=ð2�γ∇2

xy
~AÞ leads to birefringence-

sensitive topological transition of spin-orbit state. Figure 2b shows
that introducing a tiny birefringence Δn = 10−11 leads to an obvious
phase shift, in comparison with the case without birefringence
(Fig. 2a). The output photonic state features a trivial-to-nontrivial
topological transition, as evident from its distinct inhomogeneous
elliptical polarization (Fig. 2f) and topological phase wavefront
(Fig. 2j). The larger birefringence value results in more pronounced
phase shift (Fig. 2c). As a result, the separated SAM andOAMbecome
more pronounced, see the near-circular polarization and helical
phase distributions in Fig. 2g, k. Thus, the birefringence-induced
change of topological wavefront allows us to quantitatively deter-
mine the change of optical birefringence.

Experimental demonstration
Experimentally, we should produce the nondiffracting envelope at
the subwavelength scale, which remains a challenge because topol-
ogy of the spin-orbit state is vulnerable when its transverse dimen-
sion is at the subwavelength level53,54. To overcome the obstacle, we
utilize a combination of an inhomogeneous optical wave plate and an
ultrathin metallic disc to prepare for the expected state. The wave
plate exhibits a space-dependent optical axis with its orientation in
the transverse plane described by a formula α = qϕ + α0

55, where q is a
charge number determining topology of the spin-orbit state, and α0
denotes its initial axis orientation. Its Jones matrix is given by
½cosð2αÞ, sinð2αÞ; sinð2αÞ, � cosð2αÞ�55. Given an incident plane-wave
polarization along the x-axis and a charge number q = 1/2, the resul-
tant polarization from the wave plate is denoted as
[cosðϕ+2α0Þ; sinðϕ+2α0Þ], which positions at the equator of the
first-order (ℓ = 1) Poincaré sphere (see “Methods”). At this stage, the
generated spin-orbit state is carried by the Laguerre-Gaussian (LG)
envelope. We then use an ultrathin metallic disc to transform the
large-scale LG envelope into weakly diffracting subwavelength-scale
Bessel-Gaussian (BG) envelope, whilemaintaining the spin-orbit state
unchanged. Note that we cannot generate such a subwavelength-
structured light that is completely nondiffracting because of the
Gaussian truncation. The BG envelope is a consequence of in-phase
superposition of many high-spatial-frequency propagating waves
excited by themetallic edge, while retention of the spin-orbit state is
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a result of circular symmetry of the disc that allows to fully recover
incident phase and polarization (see “Methods”).

We build an experimental setup (Fig. 3a) for characterizing the
prepared state and hence detecting the tiny birefringence with it. A
linearly polarized He-Ne laser (λ = 632.8 nm) is divided by a beam
splitter, forming a Mach–Zender interferometer. One of the separated
beam (signal beam) passes through the combined element (inset I),
generating the spin-orbit state at the subwavelength scale (more
details see Supplementary Fig. 1 in Sec. A). A microscopic system
comprising an objective lens (Nikon, 150× , numerical aperture 0.9), a
tube lens and a charge-coupled device (pixel size 1.85μm) is utilized to
measure the envelope field. Figure 3b illustrates the recorded intensity
distribution, showcasing the BG envelope profile, with the beam
parameter measured as r0 = 130 nm and a peak-to-peak envelope
width measured as 466 nm (more details see Supplementary Fig. 2 in
Sec. A). To characterize the spin-orbit state, we insert a linear polarizer
into the system, measuring its horizontal and vertical polarization
components, see Fig. 3c and d respectively. These measurements are
in accordance with the simulations (Fig. 3e–g) performed with a state
positioned at (θ =π/2,φ =π/2) of the first-order (ℓ = 1) Poincaré sphere.
To detect the wavefront, we superimpose the state with another
separated beam as a reference beam. Figure 4a presents the recorded
spherical-wave interference pattern, in an agreement with the simu-
lated outcome (Fig. 4d). Both the interferograms exhibit concentric
circular fringes, indicating a trivial non-helicalwavefront. This suggests

a generated equatorial spin-orbit state. Our setup includes a high-
precision position tracking system (inset III in Fig. 3a), allowing to
characterize nondiffracting property of the subwavelength BG envel-
ope and monitor wavefront variations of the spin-orbit states. The
tracking system is realized by mounting the objective lens onto an
electrical-control piezoelectric transducer stage with a step resolution
up to 5 nm. It not only allows to characterize the envelope field at
specific propagation distance (see Supplementary Fig. 2 in Sec. A), but
also permits us to find an appropriate envelope width to calibrate the
Rabi frequency for a given coupling length. This allows to eliminate
additional phase shift of the emerging state from the crystal with
respect to the incident one.

We perform a non-contacting experiment based on an electrically
engineering lithium niobate (LN) crystal (inset II in Fig. 3a), which can
reduce instability caused by man-made operation. In the presence of
transverse modulation, the refractive index along the principal axis is
given by nx =no +0:5n

3
o d22E?, ny =no � 0:5n3

o d22E?
56, where

no = 2.2863 denotes the ambient refractive index, d22 = 6.8 pm/V (at
λ = 632.8 nm) the electro-optic coefficient, and E⊥ the transverse
electric field applied to the crystal. Therefore, the birefringence in our
setting is electrically controlled and expressed asΔn = n3

o d22E?. Since
the coupling length of the LN crystal is insufficient to deposit efficient
coatings and apply electrodes on the top and bottom surfaces, we add
contacts to its front and back faces with transverse dimension: b ×
b = 10 × 10mm (inset II in Fig. 3a). The effective electric field applied to
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Fig. 2 | Theoretical demonstration of birefringence-sensitive topological
transition. a–cHarmonic Rabi oscillations of a photonic state between the pseudo
spin up and spin down components, represented as S2(z) = ∣ΦR∣2 − ∣ΦL∣2. These
harmonic oscillations are achievedwith an initial state [located at (θ,φ) = (π/2,π/2)]
carried by a subwavelength BG envelope (envelope parameter r0 = 130 nm), in
different conditions of birefringence: a n =0; b Δn = 10−11; and c Δn = 10−10. For a
given coupling length L = 240μm, the output spin-orbit state exhibits a prominent

birefringence-sensitive phase shift indicated by points c2, c3, and c4, with respect
to the incident one (point c1). The resultant Rabi oscillation period is calculated as:
a Λ = 60.00μm; b Λ = 58.43μm; and c Λ = 56.84μm. d–g Inhomogeneous polar-
ization distributions of the photonic state at the initial (d, input point c1) and final
(e, f, and g, output points c2, c3, and c4) positions of the crystal.
h–k Inhomogeneous phase distributions of the photonic state at positions corre-
sponding to (d–g), featuring OAM variations.
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the crystal is denoted as E⊥ =U/d, whereU is the external voltage, d the

relative distance d = ½ðb� b0Þ2 + L2�
1=2

/cos(η), b0 the width of the con-
ducting films and η is defined in the inset (more details see Supple-
mentary Fig. 3 in Sec. B).

We first observe the spin-orbit Rabi oscillation without birefrin-
gence modulation (Δn =0). We present the measured and theoretical
spherical-wave interference patterns (Fig. 4b, e), with a beam para-
meter r0 = 130nm, showcasing the expected circular fringes after
calibrating the detection system. These results are similar to those

Fig. 3 | Initialpreparation for the subwavelengthspin-orbit photonic state. aAn
experimental setup. A linearly polarized He-Ne laser operating at the fundamental
Gaussianmodewithwavelength λ = 632.8 nm is separated into twopaths by a beam
splitter (BS). One path as the signal beam passes through a combined optical ele-
ment (inhomogeneous wave plate plus ultrathin metallic disc, see inset I), gen-
erating the expected equatorial spin-orbit state at the subwavelength scale. The
initially prepared state is then sent to an electrically engineered photonic crystal
(see inset II), whose birefringence can be transversely modulated through an
external voltageU. Amicroscopic system [comprisingobjective lens (OB), tube lens

(TL), polarizer (P) and charge-coupled device (CCD)], together with a precision
position tracking system (inset III), is built for observing the birefringence-sensitive
spin-orbit topological transition. Another path as a reference beam interferes with
the emerging beam from the crystal, detecting the phase wavefront of the output
photonic state. b–d Experimental characterization of the initial state at the input
end of the crystal: b the experimentally recorded BG envelope field with envelope
parameter measured as r0 = 130nm (the peak-to-peak size 466 nm); c the hor-
izontal polarization; and d the vertical polarization. e–g Simulation results corre-
sponding to b–d. b–g share identical scale with scale bar being 500 nm.
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free-space measurements (Fig. 4a, d), suggesting that the spin-orbit
state exhibits a periodic evolution in the presence of the synthetic
magnetic field and indeed returns to its original equatorial position.
When the voltage is increased to U = 7.0 × 10−3 V, corresponding to a
birefringence of Δn = 9.48 × 10−11, we observe irregular interference
patterns (Fig. 4c, f): the interferograms contain a form of spiral fringes
rather than the regular circular ones. This distinct wavefront variation
is caused by an inclusion of the tiny birefringence, which leads to an
increase of the Rabi frequency in the system (see Eq. 3) and hence
causes a more rapid conversion between the pseudo spin up and spin
down states, as compared to the case without birefringence. The
measurement indicates anoutput photonicwavefrontwith a nontrivial
topological charge being ℓ = 1. On the other hand, we present addi-
tional plane-wave interference patterns, observing a prominent bifur-
cation point in the fringes, which corresponds to a vortex phase
singularity (ℓ = 1). This also shows sharp contrast to those regular
plane-wave fringes both in free space and in crystal but without bire-
fringence modulation (see Supplementary Figs. 4 and 5 in Sec. C).
These experimental observations are in agreement with the simulation
outcomes. To measure the uncertainty, we maintain experimental
conditions unchanged and repeat the measurements for 30 times (see
Supplementary Fig. 6 in Sec. D). The recorded voltage shows slight
fluctuation. The uncertainty of the birefringence is measured as
±7.23 × 10−12, according to the uncertainty of the recorded voltage.
Clearly, the uncertainty is significantly below the detection precision,
demonstrating reliability of our technique. More details are presented
in Supplementary Fig. 6 in Sec. D.

Decreasing the Rabi frequency relatively degrades the detection
precision. For example, we select two larger BG envelopes: r0 = 0.55
and 2.76μm. We observe the corresponding birefringence-induced

topological transitions. Without birefringence, we observe regular
circular fringes in the spherical-wave interferograms in both envelope
cases (Fig. 5a, c). These measurements confirm that the associated
spin-orbit states undergo a full cycle evolution in the respective Rabi
oscillatorymodes and then return to their original equatorial position.
However, in the case of r0 = 0.55μm, the observation of a significant
topological transition (Fig. 5b) requires to increase the applied voltage
to U = 1.23 × 10−1 V ± 6.31 × 10−4 V, corresponding to a birefringence
Δn = 1.67 × 10−9 ± 8.54 × 10−12; whereas with an even larger BG envelope
r0 = 2.76μm, the topological transition (Fig. 5d) requires a larger
birefringence Δn = 7.14 × 10−9 ± 2.06 × 10−11 (the corresponding voltage
is U = 5.27 × 10−1 V ± 1.51 × 10−3 V). This phenomenon is explained by
insufficient phase shift in the Rabi oscillatory mode with smaller fre-
quency. Thus, a large birefringence compensates for the topological
transition.

We demonstrate detection precision Δn(r0) as a function of the
envelope width (Fig. 6a, blue curve). Depending on this relationship,
we cautiously classify the detection precision into subwavelength and
non-subwavelength regions, separated by r0 ≈0.5λ. At the sub-
wavelength region I, we obtain ultrahigh detection precision with
birefringence value reaching 10−11 level. The precision increases dra-
matically with a decrease of the envelope width (inset in Fig. 6a). To
quantitatively characterize the detection sensitivity to the variation of
r0, we calculate the curve slope using the experimental data at the
subwavelength region I, approximately yielding ½Δnðr20Þ �
Δnðr10Þ�=ðr20 � r10Þ � 1:44× 10�11 nm−1. Such a relationship indeed sug-
gests an important technique to detect very tiny birefringence by
shrinking structured light to the subwavelength scale. By contrast, a
larger envelope at the non-subwavelength region II reduces the
detection precision. Particularly, when r0 is considerably larger than

Fig. 4 | Experimental identification of a tiny birefringence manifested by the
observed birefringence-sensitive topological transition. The experiments are
performed based on the prepared initial state (π/2, π/2) and the subwavelength BG
envelope (r0 = 130 nm). a–c Experimentally recorded spherical-wave interference
patterns: a at the input end of the crystal; b at the output end of the crystal but

without birefringencemodulation (Δn =0); c at the output end of the crystal with a
tiny birefringence (Δn = 9.48 × 10−11 ± 7.23 × 10−12). d–f The simulation outcomes
corresponding to the experiments a–c. All panels share identical scale, with scale
bar being 10μm.
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Fig. 5 | Influence of the BG envelope width on the birefringence detection
precision. The experiments are performed based on two different BG envelopes:
r0 = 0.55μm (a, b) and r0 = 2.76μm (c, d), while maintaining the initial state
unchanged. a, c Experimentally recorded spherical-wave interference patterns at
the output end of the crystal without birefringence modulation (Δn =0);

b, d Experimentally recorded spherical-wave interference patterns at the output
end of the crystal with birefringence modulation, yielding the detection accuracy:
b Δn = 1.67 × 10−9 ± 8.54 × 10−12 (r0 = 0.55μm) and d Δn = 7.14 × 10−9 ± 2.06× 10−11

(r0 = 2.76μm). e–h The simulation outcomes corresponding to the experiments
(a–d). All panels share identical scale, with scale bar being 10μm.
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envelope parameter r0, for twodifferent coupling lengths: L = 180μm(red line) and
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detection precision into regions I and II, where the sensitivity (curve slope) to the
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respectively. Values of experimental data in (a) are fitting plus s.e.m (10%).
b Difference between detection precisions obtained by these two different cou-
pling lengths. c, d Experimentally recorded spherical-wave interference patterns at
the output end of the crystal: cwithout birefringencemodulation and d, with a tiny
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the wavelength, the detection precision is reduced to the level of 10−9

while the sensitivity becomes 2.59 × 10−12 nm−1. Figure 6 suggests a
different physical mechanism, namely considering structured light to
effectively tune the detection precision.

Finally, weexamine influenceof a different crystal coupling length
on the detection precision. We choose a smaller coupling length as
L = 180μm, while maintaining the envelope width (r0 = 130nm)
unchanged. Such a coupling length is three times the period of the
Rabi oscillation. Without birefringence, our measurement suggests
that the spin-orbit state returns to its original equatorial position after
evolution along the crystal, as manifested by the regular circular frin-
ges in Fig. 6c. Thenwe detect the topological transition by introducing
a tiny birefringence of Δn = 2.38 × 10−10 ± 7.04 × 10−12 with an voltage
U = 1.79 × 10−2 ± 9.00 × 10−4 V. A generation of spiral fringes with a
topological charge of ℓ = 1 is observed (Fig. 6d). The experimental
measurements (Fig. 6c, d) match well to the corresponding simula-
tions (Fig. 6e, f). These results, together with those obtained by a
coupling length L = 240μm, suggest that decreasing the coupling
length would reduce the measurement precision. We present more
experimental data to confirm the assertion, see the plot which shows
thedetectionprecision as a function of r0 (red curve in Fig. 6a). Clearly,
the detection precision is relatively poor for smaller coupling length
(L = 180μm),while it showsa similar trend to the curveΔn(r0) achieved
with L = 240μm. Note that because of weakly diffraction of the BG
envelope, we cannot obtain unlimited increase in detection sensitivity
by extrapolating the coupling length. Figure 6b depicts the difference
between precisions obtained by these two different coupling lengths,
showing an approximately linear increasing function of the BG envel-
ope parameter. It means that the detection precision is not obviously
different when the beam parameter r0 locates at the subwavelength
region; however, at the non-subwavelength region, even if the cou-
pling length of the crystal is only different by one cycle, the difference
in detection accuracy becomes non-negligible for a given r0.

Discussion
In summary, we have reported theoretical and experimental observa-
tions of birefringence-sensitive topological transitions of photonic
states in a synthetic two-level system, and demonstrated successful
application of such a topological phenomenon in the precision detec-
tion of tiny birefringence, with accuracy reaching Δn ~10−11 level. The
nontrivial topological transition is resulted from a pronounced
birefringence-induced phase shift between different photonic Rabi
oscillatory modes with high oscillating frequencies. We have presented
a formulism that clearly shows the magnetization-birefringence con-
nection and reveals how to enhance the synthetic magnetic strength
using thepropagation-invariant subwavelength envelope. Suchaunique
synthetic magnetic field allows precise engineering of the Rabi oscilla-
tory modes, opening up an efficient manner to effectively control the
topological transition of photonic states. Thus, our detection technique
uniquely combines subwavelength generation of nonspreading envel-
ope for the photonic state, high-frequency photonic Rabi oscillations
enabled by the strong synthetic magnetic field, and electrically con-
trolled topological transitions. As a result, the presented technique
offers much higher sensitivity and less systematic instability than pre-
vious demonstrations19,20,22–25. We emphasize that tiny birefringence
detection with ultrahigh precision has been recognized as an important
technique in testing small birefringence in an optical fiber and coating
process for opticalmirrors, benefitingmany applicablefields11,12,15. In this
aspect, we also demonstrate how our results are closely connected to
the interesting fields such as precisely detecting THz wave frequency,
manipulating quantum entangled states and significantly improving
sensitivity of birefringent interferometer. Specific applicable schemes
are presented in Supplementary Figs. 7 and 8 in Sec. E.

In addition, our demonstration suggests precise detection of a
tiny variation of structured light with nanometric spatial resolution.

Figure 6a suggests that the Rabi oscillations demonstrate an ultra-
high sensitivity to the beam parameter, which provides a different
technique for precise detection of the beam variation. To achieve
this, it requires to produce a fast Rabi oscillation between pseudo
spin down and spin up. Obviously, the Rabi oscillation is highly
sensitive to the spatial variation of structured light, leading to high-
sensitive beam-dependent Rabi oscillatory modes. We therefore
expect that a very tiny change of the beam parameter results in
significant topological transition. Moreover, the presented two-
level system, which is equivalent to those governed by the Pauli
wave equation46, allows us to investigate other intriguing
birefringence-sensitive or beam-dependent topological phenom-
ena such as the topological Hall effect57 and Stern-Gerlch effect51,52

using the spin-orbit photonic states. These prospects are intriguing
and become possible by appropriately engineering the synthetic
magnetic fields either by the designed structured light or the bire-
fringence of the photonic crystal. Our results, together with these
prospects discussed above, hold immense potential across various
applications48.

Methods
Derivation of the theoretical model
We introduce an effective two-level system with the pseudo spin up
and spin down being two orthogonal spin-orbit photonic states R̂ and
L̂, respectively. Such spin-orbit states are defined in the higher-order
optical regime, exhibiting nontrivial topological wavefront, which
allows to realize topological transition in the presence of
birefringence-sensitive synthetic magnetic field.

We begin our derivation from the following Maxwell’s equation

�∇× μ�1 � ∇× ~Ψ
� �h i

= ϵ̂ � ∂
2 ~Ψ

∂t2
ð4Þ

where ~Ψ denotes a complex amplitude in the spatiotemporal domain
(x, y, z, t). ϵ̂ and μ express fundamental dielectric tensor and perme-
ability of the photonic crystal, respectively. We examine spin-orbit
state evolution along propagation direction z based on the Maxwell
wave equation. This can be achieved by expressing the complex light
field in a form written as44

~Ψ x, y, z, tð Þ=Ψ x, y, zð Þ exp �iωtð Þ ð5Þ

where ω is the carrier-wave frequency. Ψ=Ψxx̂ +Ψyŷ+Ψz ẑ (x̂, ŷ, ẑ are
unitary vectors associatedwith x, y, z axis, respectively) denotes spatial
components of the complex amplitude. In the Cartesian coordinate
system, we obtain a three-component coupled-wave equation, written
as follows

∇2Ψx + β
2
xΨx = ∂

∂x ∇ �Ψð Þ
∇2Ψy + β

2
yΨy = ∂

∂y ∇ �Ψð Þ
∇2Ψz + β

2
zΨz = ∂

∂z ∇ �Ψð Þ
ð6Þ

where βj =ω
ffiffiffiffiffiffiffi
μϵj

p
j = x, y, zð Þ represents propagation constant of the

wave component Ψj in the photonic crystal. We take into account a
solution of the coupled-wave equation as follows

Ψx x, y, zð Þ = Ax x, y, zð Þ exp iβxz
� �

Ψy x, y, zð Þ = Ay x, y, zð Þ exp iβyz
� �

Ψz x, y, zð Þ = Az x, y, zð Þ exp iβzz
� � ð7Þ

and consider approximation of the slowly varying amplitude with

propagation distance, i.e., ∂2Ax
∂z2 ≪ βx

∂Ax
∂z and

∂2Ay

∂z2 ≪ βy
∂Ay

∂z . Under these
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conditions, we simplify the above coupled-wave equation as

∇2
?Ax + i2βx

∂Ax
∂z

� �
exp iβxz

� �
= ∂

∂x ∇ �Ψð Þ

∇2
?Ay + i2βy

∂Ay

∂z

� �
exp iβyz

� �
= ∂

∂y ∇ �Ψð Þ
ð8Þ

where ∇2
? =∇xx +∇yy denotes a Laplace operator. We expand the term

∇ ⋅ Ψ in the Cartesian coordinate system, and consider using the
constraint condition

ϵx
∂Ψx

∂x
+ ϵy

∂Ψy

∂y
+ ϵz

∂Ψz

∂z
=0 ð9Þ

As a consequence, we obtain a general Schrödinger-like equation
governing the evolution dynamics of photonic state in the crystal. It is
expressed as

i2�β
∂
∂z

Ax

Ay

 !
=

�∇2
? + �γ∇xx �γ∇yx exp + iΔβ � zð Þ

�γ∇xy exp �iΔβ � zð Þ �∇2
? + �γ∇yy

" #
Ax

Ay

 !

ð10Þ

where �β � βx +βy

� �
=2 for a shallow birefringence. We introduce

another parameter: γj = 1� n2
j =n

2
z (j = x, y and nj =

ffiffiffiffi
ϵj

p
) to describe

photonic anisotropy. The value of γj can be either negative or positive,
relying on crystal polarity. Given shallow birefringence, we reasonably
assume �γ � γx + γy

� �
=2. Δβ is a phase mismatch, defined as

Δβ = βy − βx. It arises from birefringence of the crystal which leads to a
mutual coupling between Ax and Ay.

Since the Schrödinger-like equation contains rapid oscillatory
terms expð± iΔβ � zÞ, it is relevant to demonstrate photonic spin-orbit
dynamics in a rotating frame44,49. We achieve this by using the fol-
lowing transformation

Ax x, yð Þ = exp + iΔβ � z=2� �
~Ax x, yð Þ

Ay x, yð Þ = exp �iΔβ � z=2� �
~Ay x, yð Þ

ð11Þ

In this rotating frame, the Schrödinger-like equation is modified as

i2�β
∂
∂z

~Ax

~Ay

 !
=

�∇2
? + �γ∇xx

� �
+ �βΔβ �γ∇yx

�γ∇xy �∇2
? + �γ∇yy

� �
� �βΔβ

2
64

3
75 ~Ax

~Ay

 !

ð12Þ
To obtain an equivalent of the Pauli equation, which describes

spin dynamics of a quantum particle in a driven magnetic field46, we
further transform the present setting from the Cartesian basis (x, y)
into the circular basis (R̂, L̂), via a transformationmatrix T = 1, � i; 1, i½ �.
This transformation yields a magnetic-like Hamiltonian

H=
0,Δβ=2� i�γ∇2

yx=ð2�βÞ
Δβ=2 + i�γ∇2

yx=ð2�βÞ, 0

" #
ð13Þ

In the circular basis, the complex light field can be expressed as a
superposition of R̂ and L̂with differentweightsΦR andΦL, i.e., it can be
written as

~A x, y, zð Þ= ~A x, y, zð Þ ΦR zð ÞR̂+ΦL zð ÞL̂
h i

ð14Þ

These weight coefficients become propagation-variant during state
evolution and can be expressed in a normalized form as
ΦR zð Þ= sin θ zð Þ=2� 


exp + iφ zð Þ=2� 

and ΦL zð Þ= cos θ zð Þ=2� 


exp
�iφ zð Þ=2� 


, respectively47,48. Thus, a pseudo spin defined in this setting
can be denoted as Φ = (ΦR; ΦL), which can be geometrically

represented as a point on the normalized higher-order Poincaré
sphere47. Substituting the expressionof ~A x, y, zð Þ into the Schrödinger-
like equation, we obtain the Pauli equation equivalent represented in
the spin-orbit framework as

i
∂
∂z

ΦR zð Þ
ΦL zð Þ

� �
=

1
2M

P2
?~A� 1

2
σ � B

	 

ΦR zð Þ
ΦL zð Þ

� �
ð15Þ

where P2
? = �∇2

?, 0;0, � ∇2
?

h i
, and M =2�β~A= 2� �γð Þ is the equivalent

mass of the spinΦ. Here σ is the Pauli matrix vector σ = σ1, σ2,σ3

� �
, in

the circular basis having the following form

σ1 =
0 �i

i 0

� �
, σ2 =

1 0

0 �1

� �
,σ3 =

0 1

1 0

� �
ð16Þ

B represents a magnetic field equivalent presented in the rotating
frame. It is a three-component vector field B= B1,B2,B3

� �
, where

B1 = � �γ∇2
xy
~A= �β~A
� �

, B2 = 0, and B3 = −Δβ. In the presence of the
synthetic magnetic field B, the left- and right-circular polarization
componentsbecomemutually coupling in the courseof spin evolution,
manifested as a conversion between the spin and orbital angular
momenta. Particularly, the Pauli equation admits harmonic oscillatory
solutions, when B is propagation-invariant. With an initial state
denoted as S = [S1(0), S2(0), S3(0)], we demonstrate such harmonic
solutions in terms of: ∣ΦR∣

2 � ∣ΦL∣
2 = S3 0ð Þ sin Ω � zð Þ+ S2 0ð Þ cos Ω � zð Þ,

where the oscillation frequency is expressed as

Ω= �γ∇2
xy
~A= �β~A
� ���� ���2 + k0Δn

�� ��2� �1=2
ð17Þ

This formula reveals a close relationship between the spin-orbit
oscillation and the birefringence Δn, allowing us to reveal birefrin-
gence value by measuring the topological wavefront variation.

Generation of initial spin-orbit photonic states
We design a space-variant wave plate to generate the expected spin-
orbit photonic state that is initially represented as an equatorial point
of the higher-order Poincaré sphere. To realize such a wave plate, we
consider using the nematic liquid crystal sandwiched between two
planar glasses and form a 2 × 2mm (transverse dimension) planar
cell58. We choose an appropriate thickness of the liquid crystal to be
6μm (in the beam propagation direction) such that we can achieve a
half-wave retardation between two orthogonal polarization compo-
nents Ax and Ay, at a specific operation wavelength of λ = 632.8 nm. In
this case, we express the Jones matrix of the wave plate as55

M=
cos 2αð Þ sin 2αð Þ
sin 2αð Þ � cos 2αð Þ

� �
ð18Þ

whereα = qϕ + α0 represents space-dependent orientation angle of the
optical axis of the wave plate, with α0 being an initial angle which can
be changed by rotating the wave plate with respect to z axis. Here,
ϕ= arctanðy=xÞ, and q features its topological number, which is
connected to the topological property of the spin-orbit state. With an
incident polarization state of light denoted asΦin = (Px; Py), the output
polarization state from the wave plate takes a form of

Φout =
cos 2αð ÞPx + sin 2αð ÞPy

sin 2αð ÞPx � cos 2αð ÞPy

" #
ð19Þ

To illustrate its performance, we consider a setting of topological
number as q =0.5. As a result, the output spin-orbit state Φout can be
geometrically represented by the first-order Poincaré sphere. Particu-
larly, if we consider an incident polarization that is along the horizontal
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direction, i.e.,Φin = (1; 0), the output state becomes

Φout = cos ϕ+2α0

� �
x̂ + sin ϕ+2α0

� �
ŷ ð20Þ

Clearly, this outcome is expected, in accordance with the equatorial
spin-orbit state, see the Poincaré sphere (Fig. 1b) at an angle of θ =π/2.
We emphasize that we can generate all the equatorial spin-orbit state
simply by changing the orientation angle α0. This is possible by
rotating thewave plate in a specific experimental setup. Since the spin-
orbit state contains equal weights on R̂ and L̂, both the SAM and OAM
of the initial state are zero, which facilitates experimental observation
of the expected topological transitions.

Subwavelength generation of the nonspreading spin-
orbit states
Our theoretical model reveals that the high-frequency spin-orbit Rabi
oscillation requires a generation of the non-spreading (propagation-
invariant) Bessel envelope at the subwavelength scale. We achieve this
by utilizing an ultrathinmetallic discwhich is able to convert the large-
scale spin-orbit state carried by the LG envelope into the
subwavelength-scale one carried by the nearly nonspreading BG
envelope. We theoretically demonstrate this possibility. When an LG
structured light propagates through the metallic disc, a partial com-
plex amplitude is binary truncated, leading to high-spatial-frequency
diffractive waves, which originate from sharp-edge diffraction of the
metallic disc59. The BG-structured light is a result of a coherent
superposition of these diffractive waves in the far field.

Theoretically, the envelopefieldbehind themetallic disc iswritten
as

~Aðx, y, zdÞ= ~Aðx, yÞ � tðx, yÞ Φxx̂ +Φyŷ
� �

ð21Þ

Here zd denotes a position where the metallic disc is placed, and t(x, y)
is a transmission function of the disc. Note that the spin-orbit state is
presented in the cartesian coordinate system. We solve the diffractive
field based on the Rayleigh-Sommerfeld theory60. The envelope field
after passing through the metallic disc can be written as

~Aðx, y, zÞ= 1
iλ

Z Z
~Aðx0, y0, zdÞ

z

R2 exp i2πR=λ
� �

dx0dy0 ð22Þ

where R = ½ðx � x0Þ2 + ðy� y0Þ2 + z2�1=2. Owing to the circular symmetry
of the metallic disc, we reveal the nonspreading propagation property
of the diffractive field in the cylindrical coordinate: x0 = ρ0 cosðϕ0Þ and
y0 = ρ0 sinðϕ0Þ. The vectorial field at the propagation distance z is
obtained as

~Aðρ,ϕ, zÞ= z
R0

exp i
2π
λ

R0 +ρ
2=R0

� �� �
J1ðξÞ � Φxx̂ +Φyŷ

� �
ð23Þ

where R0 = z
2 +ρ2

0 (ρ0 is radius of the disc), and J1 is the first-order
Bessel function with the variable being ξ = 2πρ0ρ/(λR0). It shows that
the generated BG structured light exhibits an identical spin-orbit
state to the initial one, even though the envelope becomes the Bessel
form. It means that this particular element allows to completely
recover the initial pseudospin state when it passes though the
ultrathin disc. It also allows us to detect significant pseudospin
precession caused by the subwavelength-induced strong synthetic
magnetic field.

Fabrication of the ultrathin metallic disc
To fabricate the metallic disc, we consider using a 50-nm-thick gold
film that is initially deposited on a substrate (the thickness is 0.3mm).
To stabilize the disc, we should deposit another chromium film (10 nm
thickness) between the gold film and the substrate. These can be done

using the physical vapor deposition method. After these processes, a
positive photoresist is spin-coated on the gold film. We then bake the
sample for several minutes at a temperature of 100 °C, in order to
evaporate the solvent as well as to enhance the viscosity of the pho-
toresist. We prepare amask and place it onto the photoresist. We use a
ultraviolet source to shine the sample for about oneminute. The shape
of themask is then transferred to the photoresist. Finally, we utilize the
ion beam to peel off the undesired gold film from the pattern, and
obtain the expected metallic disc with a thickness of only 60 nm. An
example of the metallic disc with a radius of ρ0 = 300μm is presented
in Sec. A of Supplementary. Such a disc is able to partially truncate the
complex amplitude of light field at the element edge, which, due to the
cylindrical symmetry of the disc, causes significant in-phase diffractive
waves and generates the expected nondiffracting Bessel beam at the
subwavelength scale.

Data availability
All data that supports the plots within this paper and other findings of
this study are available from the corresponding authors upon request.

Code availability
The custom code used in this study is available from the correspond-
ing authors upon request.
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