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Pseudochaotic many-body dynamics as a
pseudorandom state generator

Wonjun Lee 1,2 , Hyukjoon Kwon 3 & Gil Young Cho 2,4,5

Quantum chaos is central to understanding quantum dynamics and is crucial
for generating random quantum states, a key resource for quantum informa-
tion tasks. In this work, we introduce a new class of quantum many-body
dynamics, termed pseudochaotic dynamics. Although distinct from chaotic
dynamics, out-of-time-ordered correlators, the key indicators of quantum
chaos, fail to distinguish them. Moreover, pseudochaotic dynamics generates
pseudorandom states that are computationally indistinguishable from Haar-
randomstates.We construct pseudochaotic dynamics by embedding a smaller
k-qubit subsystem into a larger n-qubit system. We demonstrate that a sub-
systemof size k =ωðlognÞ is sufficient to induce pseudochaotic behavior in the
entire n-qubit system. Furthermore, we construct a quantum circuit exhibiting
pseudochaotic dynamics and demonstrate that it generates pseudorandom
states within polylogðnÞ depth. In summary, our results constitute the dis-
covery of new quantum dynamics that are computationally indistinguishable
from genuine quantum chaos, which provides efficient routes to generate
useful pseudorandom states.

Quantum many-body dynamics represents a forefront of our modern
understanding of quantum mechanics with profound implications
across fields such as quantum information science1–4,
thermodynamics5–7, condensed matter physics8–10, and high-energy
physics11–13. However, due to the hardness of simulating the dynamics,
their properties are still not fully understood. One area of particular
interest is quantum chaotic dynamics, with prototypical examples
including the Sachdev-Ye-Kitaev (SYK)model14,15 and randomquantum
circuits16. A defining characteristic of chaos, both in classical and
quantum systems, is the butterfly effect17–19, which asserts that local
information in an initial state quickly scrambles across an exponen-
tially large space. Since tracking this scrambled information requires
exponential resources, simulating such quantum dynamics using
classical computers is generally intractable. This challenge has spurred
theuse of quantumdevices to studyquantumchaos4,20,21 with potential
applications in quantum supremacy tasks22–25. Discovering new classes

of quantum many-body dynamics could similarly yield unexpected
insights across these fields.

A deep connection between quantum chaos and randomness
offers a promising route for generating ensembles of quantum
states26–29 close to uniformly random (i.e., Haar-random) quantum
ensembles. As a quantum cryptographic primitive, Haar-random
quantum ensembles have crucial applications in quantum informa-
tion science including quantum cryptography30,31, quantum estimation
theory32–34, and quantum complexity theory35. However, preparing a
genuine Haar-random ensemble of quantum states demands expo-
nentially deep circuits36, which current technology struggles to
achieve. The recent formulation of pseudorandom quantum states37

has shed light on this problemby considering an ensembleof quantum
states that even quantum computers cannot distinguish from Haar-
random states within limited computation time, i.e., computationally
indistinguishable, but are preparable with lower circuit depth. The
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pseudorandomness in quantum states and associated computational
indistinguishability of various quantum resources like entanglement38,
magic39, and coherence40, have found a wide range of applications in
quantum information processing41–45.

Motivated by these previous developments, we introduce a new
class of quantum many-body dynamics for quantum simulations,
called ‘pseudochaotic dynamics,’ capable of generating pseudoran-
dom states. Although pseudochaotic dynamics are not chaotic and
thus fundamentally distinct from conventional chaotic dynamics, we
demonstrate that they are surprisingly indistinguishable within limited
computation time from chaotic ones through the defining metric of
chaos, namely out-of-time-ordered correlators (OTOCs)46, which
quantify the butterfly effect.

In this work, we provide a systematic construction of these
dynamics by embedding the unitary dynamics of a k-qubit subsystem
into the entire n-qubit quantum system. Remarkably, this approach is
feasible even with a very small subsystem size with k =ωðlognÞ and a
circuit depth of ωðlognÞ. This depth without any conditions almost
touches the shallowest depth for generating pseudorandom states
made by assuming cryptographic assumptions38,47. Moreover, the
subsystem’s dynamics need not be inherently chaotic, which contrasts
strongly with our common understanding of quantum chaos. We also
discuss how the properties of pseudochaos are related to coherence
generated by the subsystemdynamics40, and other quantum resources
studied in the context of pseudorandom quantum states, such as
entanglement38, magic39.

Results
Pseudochaotic dynamics
We define pseudochaotic dynamics as a non-chaotic unitary time
evolution with i. computational indistinguishability from chaotic time
evolution via OTOCs, and ii. capability to generate pseudorandom
states. The latter implies that the pseudochaotic dynamics loses its
initial information over a certain time scale as like the former does.

Computational indistinguishability viaOTOC. The OTOCof a unitary
operatorUwith Pauli like local operatorsV andW,V2 =W2 = 1, at infinite
temperature is46

OVW ðUÞ= 1
2n

tr VUWUyVUWUy� �
: ð1Þ

This can be estimated in experiments by reverse time evolution or
interferometric measurements48,49. OVW(U) can be thought of as an
observable when we replace the trace operation by the inner product
with the Bell pair state in the double copy space, and thus it can be
estimated by measurements in that space.

In quantumchaotic systems,OVW(U) converges to zeroas the time
interval increases for any local operators V and W. In addition, the
values of these converged OTOCs decrease exponentially with the
system size19. Detecting this characteristic exponential decay in system
size requires the uncertainties in the estimated OTOCs to also decay
exponentially. However, if the number of realizable copies is limited to
a polynomial in the system size, the uncertainties in estimating the
OTOCs by a poly-time quantum algorithm scale at best asΩ(1/poly(n))
when the algorithm saturates the Heisenberg limit, making it impos-
sible to observe the exponential decay of the OTOCs. Consequently,
any dynamicswithOTOCs scaling negligibly, i.e.,OVW ~ o(1/poly(n)), for
all time t ≥ t* for some constant t* > 0 becomes computationally
indistinguishable from chaotic one by OTOCs. We take this indis-
tinguishability as one criterion for U to be pseudochaotic.

Capability to generate pseudorandom states. An ensemble of
chaotic unitary operators can generate Haar-random states50. We
require that pseudochaotic dynamics produces a pseudorandom state

ensemble37 in the same way. This capability of generating pseudoran-
dom states is another manifestation of the indistinguishability of
pseudochaotic dynamics from chaotic ones. For this, we note that a
pseudorandom state ensemble is an ensemble that cannot be dis-
tinguished from a truly random ensemble using only a polynomial
number of measurements and a poly-time quantum algorithm. This
immediately implies that an ensemble of states generated through
pseudochaotic dynamics as we explained above should be indis-
tinguishable from one generated by fully chaotic dynamics within
polynomial copies by any polynomial time (quantum) algorithm. Fig-
ure 1a illustrates this concept of the pseudochaotic dynamics.

Explicit construction
We introduce a systematic construction for pseudochaotic dynamics,
which we term ‘random subsystem-embedded dynamics (RSED)’. The
RSED consists of two components: a random subset isometry Oa and
an embedded unitary operator u in the subsystem. The random subset
isometry is defined as

Oa =
X

b2f0, 1gk
ð�1Þf ðbaÞ ∣pðbaÞ� ba

�
∣, ð2Þ

where k ≤ n represents a subsystem of size kwithin the total system of
size n, and p and f are random permutation and function, respectively.
Our key observation is that k =ωðlognÞ is necessary for RSED to be
pseudochaotic. Below we always set k =ωðlognÞ. The term a∈ {0, 1}n−k

serves as the seed for these randommappings. This isometry embeds a
unitary operator u, acting on the 2k-dimensional subsystem Hilbert
space, into the 2n-dimensional Hilbert space of the entire system.

The full unitary evolution of RSED is given by

U =
X

a2f0, 1gn�k

OauO
y
a: ð3Þ

Figure 2b illustrates how dynamics in the subsystem is embedded into
the entire system by an isometry Oa. The effect of the conjugation by
{Oa} is equivalent to applying random permutation with random sign
factors on the unitary operator in the entire space, u⊗ I⊗(n−k). The time
evolution operator with an evolution time t is

Ut =
X

a2f0, 1gn�k

Oau
tOy

a, ð4Þ

because of Oy
aOa0 = δa,a0 . In principle, arbitrary u is allowed. However,

for a RSED to be pseudochaotic, it is sufficient for ut to have negligibly
small elements for all time t ≥ t* for some positive constant t* as we
explain below. More details on the RSED can be found in Supple-
mentary Note 1.

Interestingly, the level statistics of a pseudochaotic RSED differ
drastically from those of conventional chaotic systems due to expo-
nential degeneracies in its energy spectrum. Thus, evenwhen a chaotic
u is chosen, the level statistics of the corresponding RSEDdeviate from
the standard Wigner-Dyson distribution51,52. In contrast, the spectral
form factor of the RSED closely follows the behavior of that of u.
Further details can be found in Supplementary Note 10.

Negligible OTOC
We first show that if elements of u have negligible magnitudes in the
computational basis, i.e., the diagonalizing basis of Oa, then an indi-
vidual realization of theRSEDhas negligibleOTOCs and thus cannot be
distinguished from chaotic unitary evolutions via OTOC. Here, negli-
gible, or negl(n) appeared below, means the magnitude of a quantity
decays faster than inverse of any polynomial function of n.

Article https://doi.org/10.1038/s41467-025-62081-6

Nature Communications |         (2025) 16:6800 2

www.nature.com/naturecommunications


Theorem 1. OTOCs with local operators are negligible with prob-
abilities higher than 1 − negl(n) in the system size n for an individual
realization of the RSED with an embedded unitary operator u of the
dimension 2k with k =ωðlognÞ (sampled from an ensemble) if the
maximum (averaged) magnitude of elements of the embedded
operator u is O(2−k/2).

Proof. Details are in Theorem 5 of Supplementary Note 3.

Such u naturally includes general chaotic dynamics following the
random matrix theory, whose time evolution operators have the
matrix elements of order O(2−k/2) for all time t ≥ t* for some constant
t* > 0. In literature, such t* is called the intermediate time regime for
chaotic dynamics53.

Notably, non-chaotic u can alsohave such property. An example is
the product of Hadamard gates H⊗k with a random sign operator P in
the subsystem, namely u = H⊗kP. The matrix elements of ut are on
average order of 2−k/2 for t ≥ t* ≈ 1 (See Supplementary Note 7). Thus,
this RSED is expected to demonstrate negligible OTOCs for all t ≳ 1,
according to Theorem 1. Indeed, we numerically confirm that indivi-
dual realizations of the RSED exhibit negligibly small OVW as shown in
Fig. 2a, b. By passing, wemention that without the sign randomization
P, u = H⊗k alone cannot produce pseudochaotic dynamics and OTOCs
are not suppressed as the matrix elements of ut do not persistently
scale with 2−k/2 (Supplementary Note 8).

We also computeOTOCs of the RSEDby embedding the Pauli SYK
model54, which is chaotic. As expected, this RSED demonstrates van-
ishingOTOCs, see Fig. 2c, d. Importantly, the late-time saturated values
ofOVW for u =H⊗kP scale as negl(n), as clearly demonstrated in the log-
log plot of OVW versus system size n (Fig. 3). Minor numerical details
and additional data are available in Supplementary Note 7. By passing,
we note that OTOCs at finite temperatures and those with non-local
Pauli operators are also negligible (Supplementary Notes 4, 8).

The exponential decay of OTOCs in evolution time and their
associated exponents, known as Lyapunov exponents, are also well-
established signatures of quantum chaotic systems13,53. However, for
systems governed by nonlocal Hamiltonians, such as the pseu-
dochaotic dynamics considered here, a well-defined Lyapunov expo-
nent does not exist. Further details on this issue are provided in
Supplementary Note 6.

Pseudorandom State Generator
Wefirstdemonstrate thatRSEDwith chaoticu is a pseudorandomstate
generator. More precisely, we show that if an ensemble of u generates
a pseudorandom state ensemble in the subsystem, then the corre-
sponding ensemble of U in Eq. (3) produces a pseudorandom state
ensemble in the entire Hilbert space.

Theorem 2. RSEDs with an ensemble of embedded unitary operators
that generate a pseudorandom state ensemble in the subspace with a
negligible error generate a pseudorandom state ensemble in the
entire space.

Proof. This is proven in Theorem 6 of Supplementary Note 9.
Such an ensemble of chaotic u can be constructed by sampling

time evolution operators from a single, fixed chaotic u, provided that
the time interval exceeds its relaxation time. This immediately implies
that the corresponding U produces a pseudorandom state ensemble
by sampling states in time. This is nicely parallel to the generation of
the Haar random state ensemble by sampling states in the time tra-
jectory of a state under chaotic dynamics at a sufficiently long time
interval50.

Next, we consider an ensemble ofuwith negligibly small elements
with the unbiased mean magnitude of 2−k/2, e.g., ut for t ≥ t* ≈ 1 with
u = H⊗kP, and show that the corresponding ensemble of RSED can also
produce a pseudorandom state ensemble. Hence, such RSED serves as
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Fig. 1 | Overview. aA quantum computer simulates dynamics either from a chaotic
ensemble or a pseudochaotic ensemble. Any poly-time quantum algorithm A on a
polynomial number of copies with poly-time classical post-processing fails to pin
down whether the dynamics is chaotic or not by measuring OTOC. An example of
pseudochaotic dynamics is obtained by conjugating the dynamics in a subspace by
a random permutation. To make this dynamics pseudochaotic, the dimension of
the subspace 2k should be given by k =ωðlognÞ with the number of qubits n, which
ismuch smaller than the entire space dimension 2n. A circuit implementation of this
dynamics requires polylogðnÞ depth with all-to-all connectivity. b We can schema-
tically classify how the late-time 1/OVW scales with n into three different regimes. In
a chaotic system (orange color), this scaling is exponential in n. For a system with

local scrambling (blue color), the scaling is atmost polynomial in n. Pseudochaotic
dynamics (peach color) exhibits the scaling which falls between these two. cThe 2k-
dimensional subspace is mapped to the entire space by isometries {Oa}. Vsub is the
space spanned by an ensemble of unitary operators {u} in the subspace, which
could be non-chaotic. Through the action of Oa, Vsub is mapped to V within the
entire Hilbert space, preserving its dimension. Remarkably, even if the subspace
dimension is negligibly smaller than the entire space dimension, its ensemble
average over random isometries cannot be distinguished fromchaotic dynamics by
any poly-time quantum algorithms with access to polynomially many copies of
evolved states.
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another example of pseudochaotic dynamics. We highlight that the
subspace dynamics u does not need to be ergodic, as illustrated
in Fig. 1c.

Theorem 3. Let Ek be an ensemble of unitary operators in a k-qubit
subsystem with dimension K = 2k. Let us assume that for all u 2 Ek ,

there exists ϵ > 0 such that

Pr ∣ub,b0 ∣2 ≥K�ϵ� �
≤neglðnÞ ð5Þ

for all b and b0. In addition, let us assume that Eu�Ek
∣ub, b0 ∣2
� �

=K�1

holds for all b and b0. Then, an ensemble of RSEDs with Ek generates an
ensemble of pseudorandom states.

Proof. Let us consider an initial computational state ∣pðbaÞ�. This
evolves under the subsystem embedded dynamics U with an embed-
ded dynamics u as

U ∣pðbaÞ�=
X

b02f0, 1gk
ub0 ,bð�1Þf ðbaÞ+ f ðb0aÞ ∣pðb0aÞ�: ð6Þ

Let ρ be Hybrid 3 of ref. 38, and σ be the ensemble average ofU ∣pðbaÞ�
over Ek , random permutations p, and random functions f. Then, the
triangular inequality gives

TD σ,ρHaar

� �
≤TD ρ,ρHaar

� �
+TDðρ, σÞ ð7Þ

with ρHaar =
R
dψHaar∣ψ

�
ψ
�

∣�t . The first term on the right-hand side is
negligible due to Lemma 3 of ref. 38. In addition, the second term
TD(ρ,σ) is is negligible due to the assumptionofEu�Ek

∣ub,b0 ∣2
� �

=K�1 as
shown in the proof of Theorem 7 of Supplementary Note 9.

While unitary operators in a general random ensemble have
unbiased elements, it is not a necessary condition for a pseudochaotic
dynamics. Indeed, even when elements are biased, RSED is pseu-
dochaotic if u generates maximal relative entropy of coherence55 in
computational basis with a negligible deviation. This sufficient condi-
tion is consistent with the necessary condition of ωðlognÞ coherence
introduced in ref. 40. More details can be found from Theorem 8 of
Supplementary Note 11.

(b)(a)

(d)(c)

Fig. 2 | Time dependence of OTOCs.Here we compute the OTOCs ofOVW of (a, b)
the Pauli SYK model and (c, d) H⊗kP with V = Zi and W = Zj with i ≠ j. a, c OVW of
independent realizations. b, d Averaged OVW over random subset isometries and

random realizations of the embedded u’s for various system sizesn.Ep, f OVW in the
caption denotes that the averaged OTOCs are computed using the closed formula
in Method Eq. (12). For all cases, the subspace dimension is 2k with k = 10.

Fig. 3 | Scaling of late-time OTOCs OVW for random-phase Hadamard gates
u = H⊗kP. In evaluating OTOCs Eq. (1), we chose V = Zi,W = Zj, i ≠ j, and k = ðlognÞ2.
The OTOCs are averaged over random isometries and random phase gates P. The
time t at which the OTOC values are extracted is fixed to t = 4 for all system sizes n.
Since the OTOCs approaches to the infinite-time values for t ≳ 1, any such value of t
is sufficient to capture the late-time behavior. If the OTOCs scaled as an inverse
polynomial inn, thedatawould appear as straight lines in the log-logplot.However,
the observed curve (red solid line) is concave, indicating that the OTOCs decay
faster than any inverse polynomial. The linear function fit with the numerical data
(blue straight line) has the slope ≈ −2.85 in this log-log plot.
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Quantum circuit and its resources
We present an explicit quantum circuit for pseudochaotic RSED and
the resources required to implement it.

The circuit consists of three steps, as shown in Fig. 4. The first and
last steps apply quantum secure pseudorandom function and per-
mutation in the entire systemwith polylogðnÞ depth circuits under the
assumption of the sub-exponential hardness of the Learning with
Errors (LWE) problem56–59. In the middle, only the subsystem evolves
under dynamics generating nearly maximal coherence in the compu-
tational basis. The generation of maximal coherence can be achieved
by products of Hadamard gates, so the time complexity for themiddle
step is Ω(1).

The pseudochaotic RSED can be turned into a truly chaotic
dynamics by increasing the number of entangling and non-Clifford
gates in random permutation and function (the first and last steps in
Fig. 4a), coherent gates in the subsystem dynamics, and the size of the
subsystem (the middle step in Fig. 4a), which brings the ensemble of
resulting states closer to Haar random states. More explicitly, the
exponential decay of OTOC in system size, which is expected for
general quantum chaotic systems, can be achieved once pseudoran-
dom isometries are replaced by truly random unitaries by using
exponentiallymany non-Clifford and entangling gates and embedding
Ω(n) Hadamard gates60. On the other hand, using only one of these
resourceful gates cannot decrease OTOCs and the trace distance with
Haar random states. Thus, such a process cannot turn the RSED into
chaotic dynamics.

Theorem 4. Each of entanglement, magic, and coherence of a pseu-
dochaotic RSED can be increased independently without changing
other resources and making the RSED chaotic.

Proof. Entanglement, magic, and coherence can be controlled inde-
pendently by attaching random Clifford gates, random T-gates, and
random Hadamard gates, respectively, to the end of the circuit in
Fig. 4. Details can be found in Supplementary Note 12.

Discussion
In this work, we propose a new concept called pseudochaotic
dynamics, which is a non-chaotic dynamics that cannot be dis-
tinguished from the maximally chaotic dynamics using polynomial
resources. We further introduce the RSED as a systematic way to
construct pseudochaotic dynamics and pseudorandom states. This

dynamics can be implemented by pseudorandom permutation and
function, which can be implemented by polylogarithmic depth
circuits56,57,61,62, for example in Rydberg atoms or ion-trapped
qubits63,64. Using this, we expect that pseudochaotic dynamics can
be realized in near-term devices with a few dozens of qubits (Sup-
plementary Note 13). Although it is not the primary focus of this
work, an RSED can generate an approximate state t-design with the
shallowest circuit depth among currently known protocols26–29,65–67,
which will be detailed separately in ref. 60. These together make our
RSED highly efficient for tasks such as classical shadow
tomography33, benchmarking quantum circuits68, and even studying
black holes69–72.

Let us highlight the distinctions between our work and previous
studies38,39,73,74. First, our approach clearly contrasts with prior
investigations of pseudorandom quantum states38,39, which primarily
focused on quantum resource requirements. Instead, we emphasize
the dynamical properties such as OTOCs of quantum circuits that
generate pseudorandom states. Second, our construction of a
pseudorandom state generator is distinct from prior work based on
random gates74, which exhibit suppression of OTOCs on average by
the operator mean field theory73. In contrast, our pseudochaotic
RSED exhibit suppression of OTOCs for each individual realization.
Additionally, we assume the hardness of the LWE problem which is
believed to be secure against quantum attacks38,58,59, while ref. 74
relies on the assumption that security against a classical adaptive
chosen-plaintext and chosen-ciphertext attack implies quantum
security. Third, our work introduces a Hamiltonian-based RSED for
generating pseudorandom states, opening the door to their realiza-
tion in analog quantum simulators. This stands in sharp contrast to
previous works38,39,74, which rely on quantum circuits implemented
on digital quantum computers. Lastly, our pseudochaotic RSED
achieves the known lower bound on circuit depth for generating
pseudorandom states38,74.

We finish by discussing interesting future research directions.
First, it will be interesting to clarify the relation between the two
properties, having negligible OTOCs and generating pseudorandom
states, of the pseudochaotic dynamics are related. Second, it would be
also interesting to study dynamical properties of RSEDs with various
embedded Hamiltonians including integrable ones, which could
potentially lead to the discovery of a new class of quantummany-body
dynamics. Another interesting question is to investigate whether
typical pseudochaotic dynamics can be used to construct

polylog

Ω 1=

Pseudorandom 
func�on & permuta�on

Chao�c / 
coherent 
evolu�on

Pseudorandom 
func�on & permuta�on

m
t

m

(a) (b)

polylog

Fig. 4 | Schematic circuit for RSED. Coherent evolution in (a) refers to unitary
dynamics generating nearly maximal coherence in the subsystem. The sum of
subsystem dynamics conjugated by random isometries in (b) can be implemented
by pseudorandom function and permutation in the entire space in (a). This identity

can be derived by inserting a resolution identity operator in the computational
basis at the straight lines of the middle step in (a). See Supplementary Note 1 for
details.
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pseudorandom unitaries and whether these dynamics are difficult to
simulate with classical algorithms. If both are true, the quantum
advantage in random circuit sampling, which relies on typical circuits
being close to Haar-random unitaries35,45,75, could be demonstrated
with significantly lower circuit depth by replacing them with pseu-
dochaotic dynamics. Answering these questions could, therefore,
provide a new perspective on the connection between quantum
computational advantage and quantum chaos26,76. Finally, we note a
recent related work that introduces a similar concept of
pseudochaos77. While our definition of pseudochaotic dynamics only
requires negligible OTOCs and the generation of a pseudorandom
state ensemble, ref. 77 imposes an additional constraint on the defi-
nition of pseudochaos to avoid producing states with high entangle-
ment and magic. Notably, our construction of RSED encompasses the
pseudo-Gaussian unitary ensemble introduced in ref. 77, by embed-
ding an ensemble of unitaries whose eigenvalues follow Wigner’s
semicircle distribution without level repulsions. Clarifying the precise
relationship between the two definitions of pseudochaos remains an
important direction for future work.

Methods
Out-of-time ordered correlators
A Poisson-bracket out-of-time ordered correlator quantifies how a
local operatorW spreads under a unitary evolutionU bymeasuring the
magnitude of parts ofUWU† commuting with another local operatorV.
Formally, it is defined as

CVW ðUÞ= 1

2n+ 1 tr ½UWUy,V �y½UWUy,V �
� 	

: ð8Þ

If U does not spreadWmuch, then V at almost everywhere commutes
withUWU†. Thus,CVW(U) is vanishing. On the other hand, ifU is chaotic
so makes UWU† be a sum of arbitrary non-local Pauli strings, then CVW

saturates to unity. When local operators satisfy V2 =W2 = I like as Pauli
operators, then it becomes

CVW ðUÞ= 1�<½OVW ðUÞ�: ð9Þ

Here, OVW(U) is the OTOC used in the main text. Any chaotic Umakes
OVW(U) vanishingly small.

Calculation of OTOCs
Estimation of OVW(U) of a chaotic system is generally challenging as it
requires to simulate the system.However, for theRSED, it is possible to
calculate OVW(U) both analytically and numerically. Here, we compute
OVW(U) with V = Zi and W = Zj with i ≠ j.

Let p and f be a random permutation and function, respectively.
Then, OVW(U) is given by

OVW ðUÞ= 1
2n

X

faig4i= 1, fbig8i= 1

ð�1Þ
P8

i= 1
f ðbiaiÞ

×Vpðb8a4Þ,pðb1a1ÞUb1 ,b2
Wpðb2a1Þ,pðb3a2ÞU

y
b3,b4

×Vpðb4a2Þ,pðb5a3ÞUb5, b6
Wpðb6a3Þ,pðb7a4ÞU

y
b7,b8

:

ð10Þ

Here, {bi} and {ai} are summed over {0, 1}k and {0, 1}n−k, respectively.
Since V = Zi and W = Zj, this can be simplified as

OVW ðUÞ= 1
2n

X

a, fbig4i= 1

Ub1 ,b2
Uy

b2,b3
Ub3, b4

Uy
b4, b1

× ð�1Þ½pðb1aÞ�i + ½pðb2aÞ�j + ½pðb3aÞ�i + ½pðb4aÞ�j :

ð11Þ

Numerically, this can be approximately computed by the importance
sampling on a ∈ {0, 1}n−k. The ensemble average of OVW(U) over f is

given by

Ef ½OVW ðUÞ�= 1

2k
tr ðU: � U: � UÞUy� �

, ð12Þ

since that of ð�1Þ½pðb1aÞ�i + ½pðb3aÞ�i is δb1 ,b3
. Here, A. *B is the element-wise

multiplication of A and B. More details are deferred to Supplementary
Notes 2 and 3.

Pseudorandom state ensemble
Apseudorandomstate ensemble E is an ensemble of states that cannot
be distinguished by any polynomial copies of states and any poly-time
quantum algorithms. For any t = poly(n), there is no poly-time quan-
tum algorithm A that satisfies

∣AðρÞ �AðσÞ∣≥ 1
OðpolyðnÞÞ ð13Þ

with ρ=Eϕ�E ∣ϕ
�
ϕ
�

∣�t
h i

and σ =Eψ�Haar ∣ψ
�
ψ
�

∣�t
h i

.

Data availability
The authors declare that the main data supporting the findings of this
study are available within the article and its Supplementary Informa-
tion files. Source data have been deposited in the Mendeley Data (10.
17632/h7gsjtv27p.1)(ref. 78).
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