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Spiking dynamics of individual neurons
reflect changes in the structure and function
of neuronal networks

Ruochen Yang1, Heng Ping1, Xiongye Xiao1,2 , Roozbeh Kiani 3,4 &
Paul Bogdan 1,5

Brain networks exhibit diverse topological structures to adapt and support
brain functions. The changes in neuronal network architecture can lead to
alterations in neuronal spiking activity, yet how individual neuronal behavior
reflects network structure remains unexplored. Therefore, mathematical tools
to decode and infer neuronal network structure and role from spiking behavior
need to be developed to relate the neuronal firing activity with topology and
goal of underlying network. Toward this end, we perform a comprehensive
multifractal analysis of the neuronal interspike intervals to characterize their
non-linear, non-stationary and non-Markovian dynamics. We explore the rela-
tionship of neuronal network connectivity with the multifractal spiking pattern
and show that such a measure is sensitive to network structure while relatively
consistent to stimulus. In addition, we reveal that the observed multifractal
profile is not influenced by the activity of unobserved neuronal ensembles. To
mimic neurons performing specific functions, we further train spiking neural
networks to generate goal-directed architectures and demonstrate that multi-
fractal analysis also enables differentiating networks with diverse tasks.

The brain’s cognitive capabilities, including perception, reasoning,
learning, and decision-making, arise from the complex interplay
among neuronal circuits. These circuits possess topologies and con-
nectivity patterns specialized for dedicated computations. Neuronal
network architecture is known to shapeneuronal spiking activity1–8, yet
the degree to which the spikes of individual neurons are diagnostic of
this architecture remains an underexplored frontier. In this study, we
venture into this frontier, making a pivotal discovery that opens the
way for inferring functional statistical features of network topology
from the spiking dynamics of its constituent neurons.

Faced with the limitations of brain sensing – such as the inability
to continuously monitor all neurons in a brain region or identify their
exact connectivity with each other – several critical questions arise:

1. Can we establishmathematicalmetrics to discern the structure of
underlying networks and subnetworks solely from neuronal
spiking behavior? The network topology determines signal pro-
pagation, which, considering the recurrent structure of brain
circuits, gives rise to multiscale spiking dynamics. We therefore
hypothesize that discovering the higher-order statistics of
observed neuronal spiking dynamics can shed light on the
unobserved network architecture.

2. Is it possible to develop mathematical metrics for inferring neu-
ronal networks that are resilient to variations in circuit inputs?
Subtle network changes, likemodifying connectivity probabilities
within the same architectural framework, affect firing rates. Yet,
firing rates can also be influenced by the strength of inputs from

Received: 24 August 2024

Accepted: 15 July 2025

Check for updates

1Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA. 2Min H. Kao Department of
Electrical Engineering and Computer Science, University of Tennessee, Knoxville (UTK), Knoxville, TN, USA. 3Center for Neural Science, New York University,
New York, NY, USA. 4Department of Psychology, New York University, New York, NY, USA. 5Thomas Lord Department of Computer Science, USC School of
Advanced Computing, USC Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA, USA. e-mail: xxiao9@utk.edu;
roozbeh@nyu.edu; pbogdan@usc.edu

Nature Communications |         (2025) 16:6994 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-0614-6791
http://orcid.org/0000-0003-0614-6791
http://orcid.org/0000-0003-0614-6791
http://orcid.org/0000-0003-0614-6791
http://orcid.org/0000-0003-0614-6791
http://orcid.org/0000-0003-2118-0816
http://orcid.org/0000-0003-2118-0816
http://orcid.org/0000-0003-2118-0816
http://orcid.org/0000-0003-2118-0816
http://orcid.org/0000-0003-2118-0816
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62202-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62202-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62202-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62202-1&domain=pdf
mailto:xxiao9@utk.edu
mailto:roozbeh@nyu.edu
mailto:pbogdan@usc.edu
www.nature.com/naturecommunications


external stimuli or other brain circuits. Thus, we need a robust
approach that is sensitive to network structure while remaining as
insensitive as possible to input strengths.

3. Can these metrics distinguish networks with different structures
designed for varied computational tasks? Networks executing
diverse functions necessitate distinct architectures. Exploring
how these functional shifts manifest in individual neuronal activ-
ity is crucial for a holistic understanding of the interplay between
network structure and neuronal response.

To bridge these knowledge gaps, we introduce a computational
framework that aims to infer functional statistical features of recurrent
neuronal networks from the spiking dynamics of neurons (Fig. 1a–c).
Given that neuronal spiking dynamics exhibit non-stationary, non-
Markovian, and non-Gaussian characteristics, we employ amultifractal
analysis approach to investigate higher-order statistics (detailed in the
“Methods” section). Figure 1d–f illustrates this process, which analyzes
interspike intervals across multiple timescales and characterizes their
higher-order statistics using the q-order Hurst exponent and multi-
fractal spectrum.

We validate our approach by simulating a variety of biological
spiking neural networks, in which the probability and strength of
connections among excitatory and inhibitory neurons vary as a func-
tion of their distances, and recurrent spiking neural networks trained

to perform a variety of cognitively relevant computations. Our multi-
fractal analysis successfully distinguishes different network topolo-
gies, is robust under partial observation scenarios, is robust to changes
in circuit inputs, and effectively differentiates networks performing
different functions without prior assumptions about con-
nectivity rules.

Results
A heterogeneous spiking network with a similar connectivity
profile and spiking statistics as the sensory cortex
Excitatory and inhibitory neurons in the cerebral cortex make intri-
cately interconnected networks. The probability of a synaptic con-
nection in thesenetworks decreaseswith the distancebetweenpairs of
neurons9. By exploiting this principle, we simulate a simplified, two-
dimensional cortical sheet composed of excitatory cells (pyramidal
cells) and inhibitory cells (fast-spiking interneurons)9, as illustrated in
Fig. 2a. Figure 2b shows the Gaussian profile of the connectivity
probability of two neurons as a function of their distance. Moreover,
we simulated the weights of the connections to be proportional to the
inverse of distance, as shown in Fig. 2c (see the “Methods” section for
the parameters of edge probability and weight assignment).

To simulate external stimuli, we designed a transient input signal
that followed the shape of a log-normal function over time (Eq. (1),
“Methods” section), akin to the signals that the sensory cortex receives

Fig. 1 | Multifractal analysis of spiking dynamics as a tool to infer functional
network topology. Although it is well established that connectivity patterns (a)
shape spiking dynamics of neurons (b) in brain circuits, inferring the connectivity
from neuronal activity is fraught with challenges. We ask if specific features of
spiking dynamics are diagnostic for the topological features that determine the
circuit’s computations and function (c). d–f Multifractal analysis of spiking
dynamics. Recurrent networks are characterized by propagation of signals in
intricate loops with different lengths, which give rise to spiking dynamics with
multiscale temporal characteristics and multifractal properties. We hypothesize
that the higher-order statistics of spiking activity of individual neurons carry a
signature of the network’s topological features, adequate for identifying key

architectural differences across circuits. We show that the generalized Hurst
exponents with different orders (q) efficiently capture the diagnostic higher-order
spiking statistics. To calculate Hurst exponents for a neuron, we measure its suc-
cessive interspike intervals (d) and use detrended fluctuation analysis to calculate
the multifractal properties not captured by the first-order and second-order
moments (e). Interspike intervals of real neurons exhibit nontrivial higher-order
statistics over multiple timescales, reflected by a non-linear dependence of the q-
order Hurst exponent as a function of the q-th magnification factor (f). This non-
linear dependence (blue) is markedly different from the trend expected for a
Poisson process. The example for a single neuron in (d–f) is recorded from the
macaque motor cortex (adopted from ref. 42).
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from the thalamus following the onset of a brief stimulus (e.g., an
auditory tone). In Fig. 2a, the shaded area represents the region where
neurons receive direct thalamic inputs. We employed the Izhikevich
spiking neuronmodel, implementing an integrate-and-fire typemodel
capable of replicating the spiking and bursting behavior observed in
sensory cortical neurons10,11.

Our initial validation involved examining the network’s spiking
statistics. We simulated a neuronal network consisting of 900 excita-
tory cells and 225 inhibitory cells. Following the conventions of ref. 9,
our simulated network corresponds to a volume of ~220μm× ~220
μm×200μmof auditory cortex compressed into a 2D sheet. The cells
are arranged on a 2D grid with equal spacing in a 30× 30 layout. Cells
inside the region [6, 25] × [6, 25] in the grid received the thalamic signal
in addition to a Gaussian noise, while cells outside this region only
received the Gaussian noise. Figure 2d illustrates the magnitude and
time course of the thalamic input for different types of neurons. The
corresponding raster plot of spiking events for a subset of neurons is
shown in Fig. 2e. During the initial period (t =0 to 500ms) following
stimulus onset, neurons inside the signal input region (colored as dark
blue for excitatory neurons and red for inhibitory neurons) were
activated by the stimulus, resulting in an increasing firing rate. After
the signal input decayed to nearly zero at t = 7000–8000ms, the
neurons were driven solely by noise and reverberations within the
network, resulting in sustained low firing rates. Neurons outside the
signal input region (colored as light blue for excitatory neurons and
yellow for inhibitory neurons) also exhibited spiking activity during
both periods, indicating activation via synaptic connections from
neighboring spiking neighbors. Figure 2f shows a heatmap of spike
counts for excitatory neurons on the 2D sheet. Elevated activity is

observed in the central region, corresponding to neurons directly
driven by the thalamic input. In addition, surrounding neurons—
although not directly stimulated—exhibit spiking due to recurrent
connectivity within the network, reflecting reverberatory activity.

In addition to the sustained activity arising from reverberations,
we explored the firing variability of the neurons. Figure 2g shows the
Fano factor computed for time windows of size 50, 100, 150, and
200ms around stimulus onset. A key signature of the spiking activity
of cortical neurons is their high Fano factors. A Fano factor of 1 is
characteristic of a Poisson process, where the interspike intervals fol-
low an exponential distribution and spike times are unpredictable.
Sucha process automatically arises inbalancednetworkswhere a large
population of excitatory and inhibitory neurons is sparsely connected
with moderately strong synapses12,13. Cortical neurons often generate
Fano factors slightly above 1, whichcan typically arisewhen the activity
of neurons embedded in a balanced network is modulated over time14,
e.g., through slow reverberations. Further, the Fano factor of cortical
neurons typically shows a sharp reduction when neural responses are
aligned to external stimuli, decisions, or actions15,16, as they constrain
the set of possible neural activity patterns. Our simulated networks
replicated these key signatures. In the absence of a stimulus, neurons
in the network generated spiking activity with Fano factors slightly
above 1. Following the stimulus onset, we observed a sharp decrease in
the Fano factor. Overall, our biologically inspired spiking network
replicated several properties of spike trains of cortical neurons.

Single-population systems
We applied multifractal detrended fluctuation analysis (MFDFA) to
estimate the long-range memory and higher-order statistical behavior

Fig. 2 | Simulated spiking neural network with a biologically inspired archi-
tecture. a Network schematic. In the mammalian sensory cortex, excitatory and
inhibitory neurons are laterally connected with higher connection probabilities for
nearby neurons.We simulated a 2D sheet populated by interspersed excitatory and
inhibitory spiking neurons in the same ratio found in the cortex (4:1). A specific
sensory stimulus (e.g., an auditory tone) provides excitatory thalamic inputs to a
fraction of cells (neurons selective to the tone’s frequency; shaded region at the
center of the sheet). b Probability of synaptic connection between different types
of cells as a function of spatial distance of neurons. The x-axis represents the
distance between nodes measured in normalized units (i.e., distance of two hor-
izontal or vertical adjacent cells is 1), and distance of two diagonal adjacent cells isffiffiffi
2

p
. cWeight of synaptic connections between different cell types as a function of

spatial distance. d Temporal profile of thalamic excitation following the stimulus
onset (time 0) received by cells in different locations of the 2D sheet. e Raster plots
of representative excitatory and inhibitory neurons shortly after the stimulus onset
and at a later time when thalamic inputs have subsided to baseline. Neurons con-
tinue to generate spikes after the stimulus due to network reverberations.
f Heatmap of spike counts of excitatory cells on the 2D sheet. The central square
with more pronounced spiking corresponds to the sub-region directly excited by
the thalamic inputs (shaded region in a). g Spiking activity of simulated neurons is
stochastic. The average Fano factor of spike counts of excitatory cells is slightly
above onebefore the stimulus onset, andbriefly plummets after the stimulus onset,
matching past experimental observations (e.g.,15). Fano factors calculated with
sliding windows of different lengths show similar trends.
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of neuronal spiking. Similar to characterizingwhether a randomwalker
trajectory exhibits memoryless or long-range memory behavior,
MFDFA first detrends the interspike time series xt

� �T
t = 1 over different

segments of size s, and then calculates scale-dependent fluctuations.
The overallmultifractal q-order fluctuation function FMFDFA(q, s) is then
estimated as the summation across all scale (s) dependent fluctuations
using q-order statistical moments. The positive and negative q values
amplify and focus on large and small local fluctuations, respectively.
Multifractal time series xt

� �T
t = 1 exhibit a power-law relationship

between the overall fluctuation function and the scale of the time
window as FMFDFA(q, s) ∝ sH(q). We exploit the generalized q-order Hurst
exponent H(q), the multifractal spectrum with q-order singularity
exponent α(q) and the q-order singularity dimension f(α(q)) derived
fromH(q) as themultifractal metrics to characterize the complexity of
the neuronal spiking dynamics (more details of the multifractal ana-
lysis are provided in the “Methods” section).

To examine the multifractal properties of neuronal spiking
dynamics and their correlation with varying connection densities in
neuronal networks, we generated networks with different topologies
by scaling synaptic strengths. We varied the amplitude of Gaussian

distributions for the linking probability of the excitatory-to-excitatory
cell connections (αinhibitory→excitatory) as 0.07, 0.11, and 0.15. These net-
works included the same number of excitatory and inhibitory neurons
as in Fig. 2a. Recurring stimuli, modeled as right-skewed log-normal
functions, were applied to neurons inside the region [6, 25] × [6, 25]
with input strengths (A = 5K, 10K, 15K, 20K, 25K, 30K), while additive
white noise was applied to all neurons regardless of their locations.We
collected interspike intervals (ISIs) from neuronal spiking data and
performed multifractal analysis on the ISI time series of all excitatory
cells in the neuron sheet. Figure 3a displays the log–log relationship of
the q-order fluctuation FMFDFA(q, s) as a function of the scale s for an
excitatory cell located in the center of the neuron sheet. The straight
lines represent the power-law fitting, and the corresponding q-order
Hurst exponents are indicated in the legend. A power-law relationship
between the fluctuations and the scales is evident for positive q values,
while it is weaker for negative q values due to limited data. Therefore,
in the remainder of the paper, we focus on the multifractal pattern for
positive q values. Supplementary Fig. S1 further shows the relationship
of q-order fluctuation FMFDFA(q, s) and scale s for neurons at different
locations in the sheet.

Fig. 3 | Multifractal analysis of neuronal spiking dynamics captures variations
in network connectivity while being robust to changes in the thalamic input
strength. a A power-law relationship between the q-order fluctuations and the
scale indicates a multifractal structure for spiking dynamics of excitatory neurons
of the network in Fig. 2. Axes are plotted using a base-2 logarithmic scale. The
average q-order Hurst exponent (b) and the multifractal spectrum (c) of the exci-
tatory cells under different lateral connection probabilities and thalamic input
strengths. Curves cluster based on connection probability, not thalamic input

strength. d Spike counts of excitatory neurons scale linearly with the intensity of
thalamic inputs. Spike counts are calculated for the whole simulation with a
duration of 500s. In contrast to the large changes in spike counts, the q-orderHurst
exponent (e) and multifractal spectrum (f) are largely invariant to the thalamic
input strength. Yet, both multifractal metrics reliably capture changes in network
topology (lateral connectionprobabilities). The averageq-orderHurst exponent (g)
and multifractal spectrum (h) of Erdös-Rényi (ER), Barabási-Albert (BA), and Watt-
Strogatz (WS) network (net) model with varying thalamic input strengths.
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Figure 3b, c shows the average q-order Hurst exponent and mul-
tifractal spectrum of all excitatory cells in the system. Each curve is
calculated on a simulation with different combinations of network
connectivity and input signal strength. For clarity of the figure, here,
we choose to only display selected network connectivity and input
strength. Line color visualizes the peak edge probability of inhibitory
to excitatory cell connection αinhibitory→excitatory, and line style repre-
sents the strength of input stimuli. It can be observed that the lines
with the sample color are grouping together, indicating that the ISIs of
neuronal networkswith the sameconnectivity have similarmultifractal
patterns, regardless of the intensity of stimuli.

To investigate whether multifractal analysis can inform us about
network density and assess robustness in response to various stimulus
strengths, we present several multifractal metrics in Fig. 3e, f. These
metrics were measured for a range of network connectivities
(αinhibitory→excitatory) and input strengths (A). In line with the power-law
behavior of the q-order fluctuations as a function of the scale magni-
tude (shown in Fig. 3a), we observe that the q-order Hurst exponent
and q-order singularity dimensions, as shown in Fig. 3b, c, respectively,
exhibit a non-uniform, non-linear behavior. The behavior confirms the
existenceofmultifractality in the spiking activity of individual neurons.
Additionally, Fig. 3d illustrates a linear relationship between the aver-
age total spiking count for all excitatory cells and the input strength,
highlighting sensitivity to input stimuli.

Figure 3e, f show the right tip of the q-order Hurst exponent
H(q = 5) and the left tip of the multifractal spectrum corresponding
to the q-order singularity exponent α(q = 5) for varying strengths
of the input signals under different network connectivities
(αinhibitory→excitatory =0.07, 0.11, 0.15). In other words, the spike count
analysis fails to distinguish changes in network connectivity from
changes in input strengths,whereas themultifractal analysis cando so.

The simulated networks have the connection probability
decreasing with the distance between neurons. This structure is
equivalent to a modified Erdös-Rényi (ER) model incorporating spatial
information. We also expanded our analyses to include modified
Barabási-Albert (BA)17 and Watt-Strogatz (WS)18 models, which simu-
late scale-free and small-world network architectures, respectively,
while preserving the biological property that neurons are more likely
to connect to nearby cells. All three network classes (ER, BA, and WS)
have identical network densities and consist of Izhikevich spiking
neurons. The results, presented in Fig. 3g, h, show clustering of net-
works with these different thalamic input strengths within each class,
similar to the patterns observed in Fig. 3b, c, as well as separation of
networks from different classes. These findings further support that
the MFDFA measures are robust to variations in input strength and
sensitive to network connectivity structure. Details are provided in
the Supplementary Information.

Multi-population systems
The brain comprises multiple circuits distributed across different
regions, each with specific functions. To investigate and understand
the multifractal phenomena in a multi-circuit system, we simulated a
modular neuronal network consisting of two subnetworks with dis-
tinct connectivities. Each subnetwork comprised 900 excitatory cells
and 225 inhibitory cells on a 30 × 30 neuronal sheet. The maximum
amplitudes of the Gaussian distribution of excitatory-to-excitatory cell
connections for subnetwork 1 and subnetwork 2 were set to 0.07 and
0.15, respectively. Inter-subnetwork connectionswere establishedwith
a much lower probability of 0.025 and had a low connection weight
(w = 2), resulting in a neuronal network with a community structure19.

The two subnetworks received separate thalamic inputs with dif-
ferent strengths, as illustrated in Fig. 4a. We validated the community
structure by providing a non-zero input signal to subnetwork 1 with
additive Gaussian noise, while subnetwork 2 only received the noise
from its thalamic inputs (Fig. 4b). Figure 4c shows the spiking activity

of neurons in the two-population system. Dark blue and red points
represent the excitatory and inhibitory neurons in subnetwork 1, while
light blue and yellow dots represent the spikes for excitatory and
inhibitory neurons in subnetwork 2. At stimulus onset (t =0ms), both
subnetworks elicited sporadic action potentials. As input to subnet-
work 1 increased, the spiking activity in this subnetwork increasedwith
a latency of ~100ms. Subnetwork 2 was then ignited by the rever-
beration from subnetwork 1 via the inter-subnetwork connections,
with a delay of ~20ms (right edge of box in the raster plot).

We further varied the thalamic input strength for each subnet-
work (A =0K, 2.5K, 5K, 15K). As before, the input signal, along with
additive Gaussian noise, was applied to all excitatory and inhibitory
cells, regardless of their locations in the neuronal sheet. To investigate
the multifractal behavior in this two-population system, Fig. 4d, e
shows the average q-order singularity dimension f(q) as a function of
the q-order singularity exponent α(q) calculated from higher-order
fluctuations of the ISI (spiking) trajectories of excitatory cells in the
two subnetworks. Line styles depict different input strengths for sub-
network 1, and line colors represent different input strengths for
subnetwork 2. For each subnetwork, we observe a grouping of f(α(q))
curves based on input strength to that subnetwork only. This suggests
that the multifractal pattern of ISIs from a certain subnetwork in a
community structure is more dominated by its own activation than by
inputs from the other communities.

To quantitatively measure the discrepancy among the various
multifractal spectrum curves, we use the q-order singularity exponent
at q = 0, i.e., α(q =0), as a multifractal metric (Fig. 4f, g). This corre-
sponds to the x-axis coordinate of the right tip of the multifractal
spectrum. Figure 4f shows the relationship between the α(q =0) of the
multifractal spectrum for subnetwork 1 and the intensity of input
applied to subnetwork 2. Each line represents a certain strength of the
input stimuli on subnetwork 1. Notably, there is no overlap in the range
of α(q =0) across different input strengths, indicating that the multi-
fractal analysis on the selected subnetwork is primarily affected by the
magnitude of the signal input on the same subnetwork, and is mar-
ginally influenced by the neuronal activity in the interconnected sub-
network. In addition, the slope of the curves is also decreasing as the
strength of input on subnetwork 1 increases, suggesting that the
impact of subnetwork 2 on the multifractal pattern of subnetwork 1
diminishes as subnetwork 1 is stimulated with stronger input signals. A
similar observation can be made when calculating α(q =0) for sub-
network 2, as shown in Fig. 4g. This observation further supports the
proposal that multifractal analysis can robustly characterize the spik-
ing behavior of a network controlled by an input signal in partially
observed cases where only one subnetwork can be accessed in amulti-
population system.

Goal-directed networks
The diverse topologies of neuronal networks enable the brain to
implement complex computations. However, capturing these diverse
network structures with a single generating rule remains a challenge.
Furthermore, understanding the direct relationship between the net-
work structure and its emerging functionality remains unclear. Despite
these challenges, we can train artificial neuronal networks to perform
diverse computations essential for goal-directed, cognitive behavior20.
We can explore the relationship between the topology and activity of
these networks through the formalism we developed in the previous
sections.

We trained recurrent, spiking neural networks (SNNs) with the
First-Order, Reduced andControlled Error (FORCE) algorithm21,22. Each
network consisted of 1000 Leaky integrate-and-fire (LIF) neurons
(Fig. 5a). The dynamics of neuronal activity were shaped by recurrent
synaptic weights, which enable communication among neurons, as
well as by input signals and feedback. The output of the SNN was
computed as the inner product of the outputweights and the vector of
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neuronal firing rates. The recurrent synaptic weights and output
weights of the SNNwere trainable, while we kept the input weights and
feedbackweights fixed for simplicity (theseweights were generated as
Gaussian random variables). Trainable weights were updated to mini-
mize themean squared error between the network output and a target
signal (Tension package in Python23). Although the second type of
network is trained to perform functional tasks, our focus remains on
analyzing its structural connectivity rather than functional con-
nectivity. That is, we study the intrinsic neuronal wiring rather than
statistical dependencies inferred from neural activity patterns.

We trained three groups of SNNs, each dedicated to a specific
computational task: integration, differentiation, or delayed replication
(see the “Methods” section). To account for the variability that arises
from different starting values for synaptic weights, we trained 10 SNNs
with different starting weights for each of the three target computa-
tions. The trained networks successfully performed integration, dif-
ferentiation, or delayed replication of their inputs, as illustrated by
representative trials from three example networks in Fig. 5b (the out-
put of each SNN in bluematches well with the target signal in red). The
mean absolute error averaged on 10 trained SNNs for integration,
differentiation, and delay was low (0.1356, 0.0025, and 0.2537,
respectively).

Using the ISIs of individual neurons in each SNN, we computed
their multifractal properties. Figure 5e shows the distribution of the q-
order Hurst exponent of neurons for networks performing different
computations (calculated at q = 2). Figure 5f illustrates the average
multifractal spectrum for positive q values. The multifractal patterns
differentiated among the networks trained for different tasks, indi-
cating that different computations are associated with distinct multi-
fractal properties in spiking statistics.

Howwell do thesemultifractal properties of single-neuron spiking
activity reflect differences in network connectivity? We addressed this
question by quantifying the topological similarity of different SNNs

and then calculating how well they mapped to similarities of q-order
Hurst exponents. The exact connection matrices of networks trained
to perform the same computation (e.g., integration) are quite distinct,
as the input and output weights of individual neurons are rarely
replicated across networks. However, the networks performing the
same computation must share higher-level connectivity patterns that
enable the target computation. To compare these connectivity pat-
terns across SNNs, we calculated the node-based fractal dimension,
which captures scale-dependent topology of complex networks24 (see
the “Methods” section). We calculated the node-based fractal dimen-
sion separately for the positive and negative recurrent synaptic
weights and the outer product of the output weights and feedback
weights. Then, we quantified the distance between the connectivity
patterns of pairs of SNNs as the Kolmogorov–Smirnov test statistic
of the distribution of node-based fractal dimensions. Figure 5c, d
shows these pairwise distances for our 30 trained, grouped by their
computations: integration, differentiation, and delayed replication.
Node-based fractal dimension successfully captured similar con-
nectivity patterns of networks performing similar computations
and differences of networks performing different computations.
Following this success, we quantified whether differences in the Hurst
exponent of single-neuron ISIs across SNNs correlated with the
Kolmogorov–Smirnov distance of node-based fractal dimensions.
Figure 5g shows a correlation between the dissimilarity of spiking
patterns and the dissimilarity of network connectivity (Spearman
correlation coefficient r =0.87). This finding indicates that the multi-
fractal features of spiking activity are not only influenced by the
function performed by the network but also reflect differences in its
underlying structural organization. Together, these results suggest
that multifractal analysis captures information about both network
function and connectivity.

We further conducted analyses using real experimental data from
the Visual Coding Neuropixels dataset from the Allen Brain

Fig. 4 |Multifractal analysis primarily detects variationswithinneurons’native
circuits and is minimally influenced by adjacent network structures.
a Schematic of a network that comprises two interconnected subnetworks of
spiking neurons. Subnetwork structures follow the same principles as in Fig. 2.
Subnetworks receive distinct thalamic inputs. The connection probability between
the subnetworks is 0.025. b, c Activation of one subnetwork by thalamic inputs
reverberates to the other subnetwork through their connections. d, e Average

multifractal spectrum of all excitatory cells in subnetwork 1 and subnetwork 2 for
variations of thalamic input strength into the two subnetworks. The curves cluster
based on input strength to the neurons' native subnetwork. f, g Quantified multi-
fractal tokens of subnetwork 1 minimally vary with input strength to subnetwork 2
(f). Similarly, the multifractal spectrum of subnetwork 2 is maximally sensitive to
input strength to subnetwork 2 andminimally influenced by input to subnetwork 1.
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Institute25,26, which provides large-scale electrophysiological record-
ings from awake mice during visual stimulation. Our analysis focused
on four brain regions: the anterior pretectal nucleus (APN), involved in
visual processing and sensorimotor integration; the hippocampal CA1
region, critical for memory formation and spatial navigation; the
dorsolateral geniculate nucleus (LGd), the primary thalamic relay for
visual information; and the rostrolateral visual cortex (VISrl), involved
in higher-order visual processing. Recordings were collected during
presentation of several stimulus classes, including “natural scenes”
(images of real-world environments), “static gratings” (stationary
sinusoidal patterns with varying orientations and spatial frequencies),
and “flashes” (brief full-field luminance changes). This diversity
allowed us to evaluate multifractal features across distinct circuits and
input conditions. Supplementary Fig. S2 shows the results from two

experimental sessions. First, we observed that distinct region-specific
multifractal signatures were evident. The CA1 region consistently
exhibited higher Hurst exponents than LGd, VISrl, or APN, suggesting
stronger long-range temporal correlations in hippocampal activity.
Second, within each brain region, multifractal properties remained
remarkably robust across stimulus types. For example, in CA1, the
multifractal spectra under natural scenes and static gratings were
highly overlapping, despite the very different visual inputs. Third,
across all analyzed regions, the q-order Hurst exponents varied non-
linearly with q, confirming the multifractal nature of ISI statistics in
biological networks. These results support the utility of MFDFA for
capturing intrinsic network-level properties of neural circuits. The
differences observed between hippocampal and sensory regions
reflect their distinct underlying architectures and functional

Fig. 5 | Goal-directed networks trained to perform distinct computations have
distinct single-neuron spiking dynamics arising from differences in con-
nectivity patterns. a Recurrent SNN architecture. A one-dimensional input is
projected to the recurrently connected units within the SNN.The output is fed back
to the network.We trained SNNs to perform integration, differentiation, or delayed
replication of inputs. b Representative trials of three trained SNNs. Networks suc-
cessfully performed the computations they were trained for.
c Kolmogorov–Smirnov distance of node-based fractal dimensions or recurrent
weights between pairs of trained SNNs. Distances of positive (top) and negative
(bottom) recurrent weights are shown separately. Networks are ordered by their
trained computations. d Same as (c) by for the outer product of output and

feedback weights. e Distributions of generalized Hurst exponent at q = 2 of exci-
tatory units in the SNNs performing different computations. f Averagemultifractal
spectrum of the interspike interval of SNNs performing different computations.
g Network connectivity patterns are closely correlated with single-unit spiking
dynamics. The x-axis shows the averaged Kolmogorov–Smirnov distance of the
node-based fractal dimensions of trained SNNs from the 10 SNNs performing
delayed replication. The y-axis shows the difference in the Hurst exponent of SNNs
from the representative SNN performing delayed replication. Note the positive
correlationof network connectivity and single neurons' spiking dynamics, aswell as
clustering of SNNs in the scatter plot based on their trained computations.
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specializations. Our analysis of real neurophysiological data thus pro-
vides strong empirical validation for our theoretical framework:
MFDFA features are robust to variations in external inputs and sensi-
tive to differences in network connectivity. Details are provided in
the Supplementary Information.

Discussion
The spiking activity of neurons in brain circuits is intricately related to
and controlled by the topology of neural circuits, the network of
synaptic connections through which neurons communicate. Several
past studies have established that the wiring diagram of networks
shapes the spiking of neurons1–6. However, it remains underexplored
which features of network connectivity patterns could be inferred from
the spiking activity. We know that without sparsity assumptions, infer-
ence of the exact network topology from the covariance of spiking
activity across neurons is an ill-defined problem27,28. We also know that
for small networks (e.g., triplet interactions) connected with strong
synapses, connection strengths can be approximated under simplifying
assumptions29. Further, approximate inference of the connectivity sta-
tistics within a network may be possible with a statistical physics-
inspired approach that captures the causal information flow in the
network30,31. However, a metric that can establish differences in the
underlying network topology based on the spiking statistics of indivi-
dual neurons has been lacking up to now. Such a metric, if possible,
would substantially advance our ability to distinguish network archi-
tectures, reducing the need for complex and costly experiments that
directly measure synaptic connections in large neural circuits.

In this paper, we establish the feasibility of a metric that captures
network topology patterns based on the spiking activity of individual
neurons (Figs. 3–4). The key intuition is that the network topology
creates a multitude of paths for signal propagation, causing rever-
berations that alter higher-order statistical features of spiking activity.
Because of these higher-order statistical features, neuronal spiking in
the brain is non-linear, non-stationary, and non-Markovian with long-
range temporal correlations characterized bymultiscale dynamics and
multifractal properties32–34. The key mechanism underlying our
approach is the observation that neuronal circuits exhibit intrinsic
connectivity patterns that are rich in recurrence. These recurrent
connections create reverberatory dynamics: spikes generated within
the circuit propagate and influence future spiking activity over
extended timescales. As a result, interspike interval (ISI) sequences
carry long-range temporal dependencies that reflect the underlying
connectivity structure. Multifractal detrended fluctuation analysis
(MFDFA) is well-suited to capture such dependencies. By analyzing
interspike interval fluctuations across multiple timescales and orders
of statistical moments, MFDFA reveals higher-order temporal struc-
ture beyondwhat is accessible through simpler second-order or short-
range statistics. These higher-order structures are critical for distin-
guishing network architectures (Fig. 3). The q-order Hurst exponent
provides a more sensitive differentiation of network architectures at
larger q, highlighting distinctions that remain subtle or undetectable
for the second-order Hurst exponent at q = 2, or the lower
range 0 < q < 2.

Multifractal detrended fluctuation analysis (MFDFA) has pre-
viously been applied toneuronal spikingdata, demonstrating its ability
to capture spike response tuning35, characterize neuronal responses to
optogenetic activation36, and reveal multifractal firing patterns related
to memory processing in hippocampal spike trains32. In contrast to
these earlier studies, we focus on how MFDFA of spiking data can
reveal the underlying structural connectivity of neural circuits. Speci-
fically, we show that two multifractal measures–the generalized Hurst
exponent and the multifractal spectrum–efficiently capture the
higher-order statistical patterns of spiking dynamics, enabling us to
distinguish hidden structural features of neural circuits based on
single-neuron activity.

Moreover,we show that for awell-knownconnectivitymotif in the
mammalian cortex – laterally connected excitatory and inhibitory
neurons receiving feedforward inputs – our multifractal metrics
are sensitive to the statistical properties of recurrent connections
and rather insensitive to the input strengths (Figs. 3 and 4). Finally, we
show that when the topology of spiking neural networks is altered to
acquire different functions, our multifractal metrics capture the
functional changes of topology, while being largely insensitive to non-
functional, idiosyncratic differences caused by pre-training topologi-
cal differences or variability of training trajectory (Fig. 5). These
achievements put our multifractal metrics in stark contrast with the
more traditional single unit or population-level firing rate analyses
which are strongly affected by external inputs to the circuit, and are
equally sensitive to connectivity patterns that support functional and
non-functional features of ensemble activity. A fruitful next stepwould
be to extend out multifractal metrics to population-level activity to
further boost its sensitivity to functionally relevant connectivity
patterns.

The full characterization of synaptic connections and overall cir-
cuit topology remains challenging due to the immense scale and
complexity of brain networks, as well as limitations in simultaneously
measuring spiking activity and network connectivity. Our analyses
suggest that electrophysiological data–even from single neurons or
ensembles–contain rich information about underlying connectivity
and may be leveraged to infer coarse-grained features of network
topology, offering a complementary approach to existing anatomical
methods.

A remarkable insight from our study is that it is unnecessary to
record from all or even a large fraction of neurons to establish
differential functional topologies between circuits. Even recordings
from relatively small subsets of neurons can reveal meaningful
distinctions. For example, in our analysis of the Allen Institute’s data-
set, the neurons from each brain region represented less than one
percent of the total neuronal population. Crucially, we also show that
the topological signatures embedded in the spiking dynamics of
individual neurons preferentially represent the computations carried
out by the circuit. The connectivity of individual neurons in two cir-
cuits performing the same function (e.g., integration) could be sub-
stantially different, but at a network level, the circuits share
connectivity patterns that implement their target computation. Inter-
estingly, the average Hurst exponents of neurons reflect the topolo-
gical features that shape the computation, and are rather insensitive to
the variations in single-neuron connectivity patterns within and across
networks (Fig. 5g).

Ourmultifractal analysis of neuronal spiking dynamics, combined
with our multifractal topological analysis of neuronal connection
strengths, forges a link between the spatial patterns in complex neural
networks and their temporal activity patterns. Given that complex
networks are prevalent in nature, our insights hold potential for
broader applications, extending to social and biological networks of
comparable complexity. An exciting future direction involves lever-
aging our methodology to glean deeper insights into both neuronal
and non-neuronal network structures. This could open additional
possibilities for controlling and manipulating network dynamics and
functionality.

While our study examined networks with distinct connectivity
rules and computational tasks, it did not address variability in network
size or dynamically evolving architectures, which introduce additional
complexity to network architecture and their representation. In the
brain, for instance, connectivity patterns of neurons can change across
developmental stages or during aging, even when performing the
same task. Understanding how multifractal or other measures of
neuronal spiking respond under such biologically realistic, time-
varying conditions remains an important direction for future investi-
gations. Future research directions should also include a more
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comprehensive study of multifractal patterns in real-world datasets,
where neural activity is recorded in complex scenarios involving noise,
background activity, and partial observations. Examining the robust-
ness andgeneralizability of theMFDFAmethodunder these conditions
will be critical for advancing its application to empirical neu-
roscience data.

Methods
Neuronal networks
To investigate the interplay between the topological structure of a
neuronal network and the emerging multifractal structure of the
spiking activity of its individual neurons, we studied artificial neuronal
networks consisting of spiking excitatory and inhibitory units con-
nected by weighted synapses. We explored two classes of spiking
neural networks. The first class mimicked a topological structure
known to exist in biological circuits of the mammalian cortex. The
second class included recurrent networks trained to perform key
computations utilized during cognitive behaviors such as decision-
making.

The spiking networks inspired by the known cortical topology
included Ne = 900 excitatory units and Ni = 225 inhibitory units dis-
tributed uniformly on a 2D grid of size [30 × 30] to mimic the con-
nectivity structure in a simplified cortical sheet, adapted from ref. 9.
The connection probability of biological neurons drops as a function
of the distance between neurons. We simulated this principle by con-
necting units in our network according to a Gaussian process
Pij =α exp �d2

ij=ð2σ2Þ
� �

, where dij is the Euclidean distance between
units i and j. Connection probabilities between different unit types
(excitatory to excitatory, excitatory to inhibitory, inhibitory to exci-
tatory, or inhibitory to inhibitory) were differentially parameterized to
match experimental results for the connection probability of excita-
tory pyramidal cells and fast-spiking interneurons9,37. In all these net-
works, if a synaptic connection existed between two units, the
connectionweightwas defined aswði, jÞ= 32

1 +dij
. This weight assignment

ensured that neurons that were physically closer to each other had
stronger connections, too.

To test the sensitivity of spiking dynamics of individual neurons to
changes in the network topology, we modestly varied connection
probabilities between excitatory–excitatory and inhibitory–excitatory
unit pairs, as elaborated in Table 1. Specifically, we simulated three
connectivity regimes by varying αexcitatory→excitatory. To ensure that
networks remained in a balanced excitation-inhibition regime, we
chose αinhibitory→excitatory for each network to be Ne

Ni
×αexcitatory!excitatory.

This ensured that each excitatory unit received balanced excitation
and inhibition from its upstream units. Connection weights were
defined as above.

Individual neurons in the network were governed by the Izhike-
vich model, which offers an efficient way to simulate the membrane
voltage of spiking neurons with Hodgkin–Huxley-type10,11. The Izhike-
vichmodel iswell-suited for this purpose, as it captures awide range of
biologically realistic spiking behavior, including bursting, spike-
frequency adaptation, and rebound spiking—properties that are
important for studying intrinsic network dynamics in sensory circuits.
We simulated the activity of each network for 500 s with a temporal
precision of 1ms (500,000 timestamps).

The simulation period included 10 stimuli separated by random
intervals drawn from an exponential distribution. Each stimulus pro-
vided an input signal to the network that rose rapidly and decayed

slowly according to a log-normal function:

I0ðt; tonsetk Þ= A 1
ðt�tonsetk Þσ

ffiffiffiffiffi
2π

p expð� ðlnðt�tonsetk Þ�μÞ2
2σ2 Þ t ≥ tonsetk

0 t < tonsetk

8<
: , ð1Þ

where μ = 7.5 s and σ = 1 s. The total input signal at each time, t, is tonsetk
as IsignalðtÞ=

P
k I0ðt; tonsetk Þ, where k = 1…10. To mimic stimuli with

different strengths, we chose A ranging from 0K to 30K in
our experiments, yielding a maximum peak of Isignal(t) of around 10.
The exponential distribution that governed the interval between
consecutive stimulus onsets was pð 110Δtonset = τ; λÞ= λ expð�λτÞ with
λ = 5 s. tonset > 500 is discarded in the simulation. To mimic the
stochastic nature of inputs in a balanced, high-input regime, we added
Gaussian noise, Inoise(t), to the stimulus input. The noise was generated
as Inoise(t) = 0.6e, where pðeÞ= 1ffiffiffiffiffi

2π
p expð� 1

2 e
2Þ. The input received by

eachunit at coordinates (x, y) of the network at discretized times t = 1…
500, 000 was Itypeðx, y, tÞ= stype* cðx, yÞ*IsignalðtÞ+ InoiseðtÞ

� �
, where

c(x, y) is an indicator function that determined whether the
neuron located at coordinates (x, y) receives the stimulus input,
and type indicates whether the unit is excitatory or inhibitory.
stype for the excitatory and inhibitory units were sexcitatory = 5 and
sinhibitory = 2. Figure 2 shows the spike patterns derived from the
network.

Multifractal detrended fluctuation analysis
Multifractal detrended fluctuation analysis (MFDFA), which gen-
eralizes the detrended fluctuation analysis (DFA)38, enables us to
estimate the multifractal metrics (e.g., generalized Hurst exponent,
generalized fractal dimension, Lipschitz–Holder exponent, and the
multifractal spectrum) for non-stationary time series by investigating
multiscale fluctuations39,40. In a nutshell, the calculation of the
MFDFA consists of the following steps. Given a time series Xt, t = 1…T,
we first construct a zero-centered time series X 0

t by subtracting the

original mean, X 0
t =

Pt
i = 1 xi � < x >

� �
, where < x > = 1

T

PT
t = 1 xt is the

average value of time series Xt. Next, we divide X 0
t into Ns consecutive

segments of size s. Within each segment j, a linear local trend
Yj,t(s) = β1,j(s) + β2,j(s)t is computed via a least squares fitting such

that β1, jðsÞ,β2, jðsÞ= argminβ1, j ðsÞ, β2, j ðsÞ
Pjs + s

t = js + 1 X 0
t � Y j, tðsÞ

� �2
.

The local root-mean square variation for segment j with scale s is

calculated as Fðj, sÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s

Pjs + s
t = js + 1 X 0

t � Y j, tðsÞ
� �2

r
. In DFA, the total

fluctuation function is defined as FDFAðsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ns

PNs
j = 1 Fðj, sÞ2

q
. Fractal

time series exhibit a power-law relationship between the FDFA(s) and
the scale s, in the form FDFA(s) ∝ sH with Hurst exponent H.

In contrast, theMFDFA further generalizes the DFA by computing
q-order fluctuation FMFDFAðq, sÞ= 1

Ns

PNs
j = 1 Fðj, sÞq

� �1
q
. Positive q values

amplify the effect of local variations with large amplitudes, whereas
negative q values amplify local variations with small amplitudes. The
scaling behavior is commonly depicted in a log–log plot of FMFDFA(q, s)
as a function of scale s,

FMFDFAðq, sÞ / sHðqÞ, ð2Þ

whereH(q) is the q-order generalized Hurst exponent. Note that when
q = 2, H(q) is equivalent to the Hurst exponent H obtained by the DFA.

Table 1 | Gaussian parameters of neuronal connections

connection type excitatory → excitatory excitatory → inhibitory inhibitory → excitatory inhibitory → inhibitory

α 0.07/0.11/0.15 0.27 Ne
Ni
*αexcitatory!excitatory

1.08

σ 10 10 10 10
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H < 0.5 suggests that xt arises from an anti-correlated process;
H = 0.5 suggests that xt is equivalent to white noise or a Markovian
(memoryless) process; lastly, H >0.5 suggests that xt arises from a
positively correlated or persistent process (i.e., possessing long-range
memory or long-range-dependence properties).

To parameterize the structure of a multifractal time series, we
further compute the multifractal spectrum, which serves as the dis-
tribution of scaling components, measuring the local regularity of the
temporal signal. The corresponding q-order singularity exponent α(q)
and q-order singularity dimension f(α(q)) are computed as

τðqÞ=qHðqÞ � 1 ð3Þ

αðqÞ= dτðqÞ
dq

ð4Þ

f ðαðqÞÞ=qαðqÞ � τðqÞ ð5Þ

Spiking neural networks
Inspired by firing and spiking activity in biological neural systems,
spiking neural networks (SNNs) utilize discrete events (spikes) to
transmit and exchange information among neurons. The connectivity
pattern of the networks is governed by the behavior and functionality
of the SNNs. To generate networks with different topologies that
contribute to diverse functions, we trained the SNNs to perform three
kinds of computational tasks, namely integration, differentiation, and
delay replication.

Each training sample (both input and target) consisted of a signal
sequence lasting 5 s, with 1000 time steps, where each time step
spanned 5ms. The beginning and ending 100 time steps of the input

signals were set as 0, and xt

� �900
t = 100 were generated using fractional

Brownianmotion (fBm)41, with a Hurst exponent of 0.5, equivalent to a
Wiener process.We further applied the Savitzky-Golay filter to smooth
the input signal with a window size of 75 time steps. The integration

target yintt

� �1000
t = 1 was implemented as a moving average of the cumu-

lative sum, yintt = 1
t

Pt
t 0 = 1 x

0
t . The differentiation target ydif ft

n o1000

t = 1
was

computed as ydif ft = ðxt � xt�1Þ*gt , where * is the convolution operation
and gt is a one-side exponential window of size 125 time steps with a
center of 0 time steps and a decay parameter of 75 time steps. The
convolution operation ensures that the frequency of the target signal
can be captured by the spiking neural networks. The delay replication
task aimed at reproducing the signal with a 100-step delay (0.5 s),

where ydelayt = xt�100.
For each task, we employed 1000 training samples described

above to train the SNN. The spiking neural network (SNN) consists of
1000 leaky integrate-and-fire (LIF) neurons arranged as a single
recurrent reservoir. The network does not include distinct feedfor-
ward layers; rather, all neurons are part of a fully connected recurrent
architecture. There are four sets of weights in the network: (1) input
weights that project the external input signal to individual neurons; (2)
recurrent weights that define the internal connectivity among neu-
rons; (3) output weights that map neuronal activity to a network-level
output; and (4) feedback weights that project the output signal back
into the recurrent reservoir. During training, the recurrent and output
weights were updated every 50 time steps using the FORCE learning
algorithm, implemented via the Tension Python package23. Input and
feedback weights remained frozen during training. The LIF model
strikes a balance between biological plausibility and computational
efficiency and is commonly used in the training of recurrent spiking
networks to achieve computational tasks.

Node-based fractal dimension
Node-based fractal dimension measures the scale-dependent topolo-
gical features of complex (weighted) networks24. For each node v
in the network, let Mv(r) denote the number of other nodes whose
distance to node v is smaller than a radius r. Using the box-growing
method, the self-similarity of the graph at node v is characterized as
MvðrÞ / rdv , where dv is the node-based fractal dimension for node v
capturing the expanding rule of the graph generated from a
specific node.

Data availability
The real-world brain data used in this study are from the publicly
available Visual Coding Neuropixels dataset, accessible at https://
allensdk.readthedocs.io/en/latest/data_resources.html. The code for
generating the simulated data is available at https://github.com/
ruocheny/neuronal-networks-spiking.

Code availability
The source code used in this study is available at https://github.com/
ruocheny/neuronal-networks-spiking.
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