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Quantum anomalous Hall crystals in moiré
bands with higher Chern number

Raul Perea-Causin , Hui Liu & Emil J. Bergholtz

The realization of fractional Chern insulators in moiré materials has sparked
the search for further novel phases of matter in this platform. In particular,
recent works have demonstrated the possibility of realizing quantum anom-
alous Hall crystals (QAHCs), which combine the zero-field quantumHall effect
with spontaneously broken discrete translation symmetry. Here, we employ
exact diagonalization to demonstrate the existence of stable QAHCs arising
from 2

3-filledmoiré bands with Chern number C = 2. Our calculations show that
these topological crystals, which are characterized by a quantized Hall con-
ductivity of 1 (in units of e2/h) and a tripled unit cell, are robust in an ideal
model of twisted bilayer-trilayer graphene—providing a novel explanation for
experimental observations in this heterostructure. Furthermore, we predict
that the QAHC remains robust in a realistic model of twisted double bilayer
graphene and, in addition, we provide a range of optimal tuning parameters,
namely twist angle and electric field, for experimentally realizing this phase.
Overall, our work demonstrates the stability of QAHCs at odd-denominator
filling of C = 2 bands, provides specific guidelines for future experiments, and
establishes chiral multilayer graphene as a theoretical platform for studying
topological phases beyond the Landau-level paradigm.

The rise of moiré materials in the last years has boosted the study of
phases with intertwined many-body correlations and topology1–3.
Concretely, fractional Chern insulators (FCIs)—lattice systems that
exhibit the fractional quantum anomalous Hall effect due to sponta-
neous breaking of time-reversal symmetry4–15—were predicted16–22 and
later realized23–28 in a series of moiré heterostructures based on either
graphene or transition metal dichalcogenides. The demonstration of
FCI phases in moiré superlattices generated widespread excitement
over the possibility of achieving quantized Hall conductance, dis-
sipationless edge currents, and anyonic excitations in an experimen-
tally accessible and highly-tunable platform without the need for a
magnetic field. More recently, most efforts have been directed to
exploring phases that go beyond the conventional Laughlin and hier-
archy fractional quantum Hall (FQH) states. On the one hand, many
theoretical works29–36 have proposed that FCI analogs to non-Abelian
FQH states can be stabilized atmoiré fractional fillings ν = 1

2
29–35, as well

as ν = 3
5 ,

2
5
36, with experimental signatures suggested to correspond to

the former37. On the other hand, a few works have recovered the
concept of Hall crystal38—where the topology associated with the
quantumHall effect is accompanied by translation symmetry breaking
—and predicted the emergence of these physics in different van der
Waals heterostructures at zero magnetic field39–50.

Recent studies have shed light on the emergence of anomalous
Hall crystals, which break the continuous translation symmetry in a
system with weak or absent moiré modulation41–45 and where the Hall
conductivity maintains an integer value throughout an extended
continuous range of filling factors where the crystal remains stable—as
observed experimentally in multilayer rhomboedral graphene51. Here,
we focus on quantum anomalous Hall crystals (QAHCs), where the
discrete translation symmetry in amoiré lattice is broken40—leading to
an integer-quantized Hall conductivity appearing at fractional filling
factorswhere a topological chargedensitywave (CDW) commensurate
with the underlying moiré lattice can form. Such a mismatch between
Hall conductivity and filling factor has been recently observed in
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experiments on multilayer graphene systems52–54. However, despite
the fact that the topological crystals presumably observed in bilayer-
trilayer graphene might arise from a flat band with Chern number
C = 253, previous theoretical works have been restricted to C = 1
bands. The stability of QAHCs arising from higher Chern bands is an
important question that goes beyond the paradigm of traditional
quantum Hall and Landau-level physics55–57. Moreover, numerical stu-
dies have so far only explored QAHCs at even-denominator filling,
while experimental findings alsopoint towards the existenceofQAHCs
at odd-denominator filling where this phase competes with FCIs and
trivial CDWs.

In this work, we investigate the emergence of QAHCs in moiré
bands with higher Chern number at odd-denominator filling factor,
concretely ν = 2

3, by employing exact diagonalization (ED) of themany-
body Hamiltonian. First, we consider ideal topological bands in the
chiral model of twisted multilayer graphene58,59. Based on the degen-
eracy and Chern number of the many-body ground state as well as
structure factor, pair-correlation function, and hole-entanglement
spectrum (HES), we identify FCI, QAHC, and compressible liquid pha-
ses at 23 fillingof idealC = 1,C = 2, andC > 2moiré bands, respectively.
In particular, theQAHCarising from theC = 2 band in the chiralmodel
of twisted bilayer-trilayer graphene is characterized by an average
many-body Chern number Cavg = 1, consistent with the experimental
observations in this material53, and a K-point CDW modulation with a
tripled unit cell corresponding to

ffiffiffi
3

p
×

ffiffiffi
3

p
moiré cells. Furthermore,

we demonstrate that the QAHC arising from a C = 2 Chern band
remains robust in a realistic model describing twisted double bilayer
graphene (TDBG)19,60–63. Finally, we scan the parameter space of
experimental tuning knobs and predict the optimal twist angles and
layer potentials to realize this phase in TDBG.

Results
Ideal higher Chern bands
We consider ideal topological flat bands described by the chiral model
of twistedmultilayer graphene, which consists of two sheets of Bernal-
stacked graphene, twisted by the magic angle and with artificially
suppressed intra-sublattice tunneling between adjacent layers58,59. The
top and bottom sheets consist of nt and nb layers, respectively, and the
model hosts a pair of exact flat bands with Chern number C = nt and

C = −nb, offering a perfect platform for investigating the physics of
higher Chern bands. These bands have an ideal quantum geometry58,
i.e., the Fubini-Study metric is proportional to the Berry curvature
distribution in momentum space, implying that FCIs are in principle
the exact ground states of short-range pseudopotential
interactions64–70. Here, however, we are interested in electrons inter-
acting via the long-range Coulomb potential.

The simplest way to describe an ideal Chern band with C = 1 is by
takingnt = nb = 1, corresponding to the chiralmodel of twistedbilayer
graphene. This model has been used to emulate the lowest Landau-
level physics18 and to reveal the striking differences between such ideal
bands and actual Landau levels71. Here, after solving the many-body
problem projected onto the C = 1 band by ED (see “Methods”), we
reveal a gapped phase characterized by three degenerate ground
states appearing at the center-of-massmomenta expected for the ν = 2

3
FCI, cf. Fig. 1a. A more thorough analysis shows that the Berry curva-
ture of the threefold degenerate many-body ground state is rather
uniform [see Fig. 1b] and yields an average Chern number Cavg = 2

3 for
each ground state. The degeneracy and Chern number, as well as the
HES (see details in the “Methods” section as well as Supplementary
Note 1), indicate that the three ground states indeed correspond to the
FCI phase. Aligned with this, the ground state structure factor S(q)
shown in Fig. 1c reveals a liquid-like feature, as no prominent peaks are
observed in the moiré Brillouin zone (mBZ). The peaks outside the
mBZ located at the Γ points of the outer shell (q=Cn

6G1, i.e., six-fold
rotation Cn

6 of the reciprocal lattice vector G1) correspond to the first
harmonics of the moiré potential. In fact, the real-space pair-correla-
tion function G(r) follows the periodicmodulation of the moiré lattice
[Fig. 1d]. For a definition of S(q) and G(r) we refer the reader to the
“Methods” section.

We now explore the nature of the ν = 2
3 state in the ideal higher

Chern band with C = 2. Motivated by the recent experimental reali-
zation of topological crystals in twisted bilayer-trilayer graphene53, we
setnt = 2, nb = 3 tomodel this heterostructure in the chiral limit. After
performing ED on the C = 2 band with Coulomb interactions, we
obtain a low-lying many-body energy spectrum that again exhibits a
threefold degenerate ground state, see Fig. 1e. However, by relating to
the generalized exclusion rule in the thin-torus limit72,73, we rule out the
competing order of a ν = 2

3 FCI phase, as then the three ground states

Fig. 1 | Fractional Chern insulator (FCI) and quantum anomalous Hall crystal
(QAHC) in ideal C = 1 and C = 2 bands. aMany-body energy spectrum, b average
Berry curvature, c structure factor, and d pair-correlation function demonstrating
the FCI phase at ν = 2

3 filling of the idealC = 1 band in a systemwithNs = 27 sites and
generating vectorsR1 = (6, 3),R2 = (1, 5). e–h are the respective results for the ideal

C = 2banddemonstrating an integerQAHCphase. In the latter case, the generating
vectors are R1 = (6, 3), R2 = (3, 6). The Berry curvature Ω(k) is normalized by the
number of flux points NΦ = 302, i.e., Ω(k)NΦ/2π is shown here so that the Chern
number can be read off directly. The black dots in (d) and (h) denote moiré lattice
sites, and the black lines in (h) mark the unit cells of the Hall crystal.
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should share the same momentum (the Γ point) for this specific tilted
finite-size system; see details in Supplementary Note 2. Instead, the
ground states are separated by themomentumK (orK0). Interestingly,
in this case the Berry curvature yields an average many-body Chern
number Cavg = 1 [Fig. 1f]. Based on previous works, the mismatch
between the integer Chern number and the fractional filling factor ν
suggests that the moiré translation symmetry is broken by the inter-
actions. Indeed, a calculation of S(q) confirms that the symmetry
breaking is characterized by prominent peaks appearing at K and K0

points [Fig. 1g], which implies a tripling of the unit cell. In Supple-
mentary Fig. 2we show that the intensity of S(q = K) increaseswith the
system size, implying that the crystal is stable in the thermodynamic
limit. A more intuitive picture can be obtained in real space, where the
pair-correlation function G(r) clearly follows a periodic crystal struc-
turewith a

ffiffiffi
3

p
am ×

ffiffiffi
3

p
am unit cell (am is themoiré lattice constant) that

is three times larger than the moiré unit cell, cf. Fig. 1h. We emphasize
that these results are in agreement with the observation of an integer-
quantizedHall conductivity in twisted bilayer-trilayer graphene at ν = 2

3
filling53. Note that such an experimental signature has also been
observed at ν = 1

3, although this phase seems to have a flipped Chern
number—suggesting a different nature than the ν = 2

3 state potentially
involving multi-valley physics. While we have considered the bilayer-
trilayer structure in the ideal chiral limit, we will demonstrate later that
the QAHC remains robust in a realisticmodel of twisted double bilayer
graphene.

Interestingly, the absence of QAHC in the case of two degenerate
ideal C = 1 bands (see Supplementary Fig. 3) suggests that the intrinsic
higher-Chern number character of the C = 2 band is important for the
stability of this phase. In fact, in a bandwithC = 2, Laughlin-like FCIs are
expected to be most stable at ν = 1

5 and are absent at ν = 1
3
55,74. Despite

the lack of particle–hole symmetry in Chern bands, such absence of
conventional FCI ordering might partially explain the robustness of
QAHCs at the considered filling ν = 2

3. When considering the realistic
model later on, we will show that the QAHC at ν = 2

3 is stabilized by an
emergent kinetic energy of holes, while the quenched kinetic energy of
flat-band electrons favors (Halperin-like) FCI order at ν = 1

3.
For even higher ideal Chern bands with C > 2, we have not

observed any clearly gapped crystalline phase from the low-lying
energy spectrum across various fillings. Instead, Fermi-liquid states
dictated by an effective dispersion related to the fluctuating quantum
metric dominate the phase diagram75, see details in Supplementary
Note 3. This is in linewith results for another class ofmultilayermodels
with partially filled C = n Chern bands, which cannot exhibit gapped
spectra as n → ∞76. We also note that the corresponding Wannier
functions, bounded by the quantum metric, become extended for
higher Chern number bands—making it more challenging to char-
acterize any charge order77. On the other hand, the analogous situation
in higher Landau levels with ideal quantum geometry gk = (n + 1/2)Ωk,
where the Hartree-Fock description of the fractional quantum Hall
system becomes exact for large n78,79, in principle allows for charge
ordered states (but not FCIs).

We note that additional calculations show that these phases
remain robust under variations in the number of layers in one sheet,
e.g., nb. This can already be seen from the fact that the single-particle
quantum geometry of the target band remains unchanged and, con-
sequently, considering interactions yields an identical behavior.
Although this observation holds for the ideal chiral model, it prompts
the question of to what extent it remains valid in realistic settings and
whether it could aid future experimental investigations of such phases
by simplifying the experimental setup, e.g., by considering bilayer-
monolayer instead of bilayer-trilayer structures.

Twisted double bilayer graphene
After having determined that QAHCs are stable at ν = 2

3 filling of an
ideal flat band with Chern number C = 2, we demonstrate the

robustness of this phase in a realistic and experimentally accessible
setting. In particular, we move away from the chiral limit and consider
TDBG with finite intra-subband tunneling between adjacent layers,
w0 = 0.7w1, where w1 is the inter-sublattice tunneling strength19. This
model is characterized by a C = 2 conduction band that remains iso-
lated for a relatively broad range of twist angles and layer
potentials60,61, and which has been confirmed in experiments80,81. At
filling ν = 1/3 the conduction band has been predicted to harbor an FCI
phase beyond the Landau-level paradigm19.

We here consider the filling ν = 2/3 and start with the twist angle
θ = 1.35° and the layer potentialU = 60meV, atwhich theC = 2Chern
band is nearlyflat andwell isolated fromneighboring bands80. Here, ED
calculations with the same system size as above yield all the char-
acteristic fingerprints of the QAHC phase: (i) a threefold degenerate
many-body ground state with an average Chern number Cavg = 1
[Fig. 2a]; (ii) a large gap in the HES, where the number of states below
the gap is equal to the number of quasiparticle excitations in a CDW
[Fig. 2b], see “Methods” and Supplementary Note 1 for more details;
and (iii) a structure factor with pronounced K-point peaks [Fig. 2c]
resulting in a

ffiffiffi
3

p
am ×

ffiffiffi
3

p
am CDWmodulation [Fig. 2d]. In this realistic

setting, though, the modulation arising from the moiré potential,
which is visible in the strong S(q) peaks at outer Γ points in Fig. 2c, is
quite significant. Nevertheless, we emphasize that even if the CDW
modulation is weak, the QAHC phase can still remain robust as long as
the moiré translation symmetry is broken.

Next, we aim to explore the robustness of the QAHC in TDBG
across the (U, θ) parameter space and find the optimal values at which
this phase is most stable. To this end, we perform ED on the C = 2
conduction band across the range U ∈ [20meV, 100meV] and
θ∈ [1. 1°, 1. 6°] and extract the energy gap in the many-body spectrum
between the QAHC ground and excited states. As shown in Fig. 3a, the
QAHC remains stable with a gap ~1meV for a relatively broad range of
parameters, U ∈ [50meV, 70meV] and θ ∈ [1.2°, 1.45°]. A simple esti-
mate relates these layer potentials to a displacement field
D = ϵU/d ∈ [0.18 V/nm, 0.26 V/nm], where we have taken ϵ = 5 and
d = 4 × 0.34 nm82,83. Importantly, the QAHC is stable in a parameter

Fig. 2 | Quantum anomalous Hall crystal at ν = 2
3 in realistic twisted double

bilayer graphene with twist angle θ = 1.35∘ and a vertical potential bias of
U = 60meV. a Many-body energy spectrum for Ns = 27 sites showing a threefold
degenerate ground state with average many-body Chern number C = 1. The parent
single-particle band has a Chern number C = 2. b Hole-entanglement spectrum,
where the number of states below the red line is 378 and matches exactly the
number of allowed quasiparticle excitations in a charge density wave. c Structure
factor in the moiré Brillouin zone. d Pair-correlation function in the considered
finite system.
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region where the single-particle band is well isolated and flat, i.e.,
where the ratio between the single-particle band gap Esp,g and the
bandwidth Δsp is maximized, cf. Fig. 3b. In addition, although there is
an apparent closing and re-opening of the many-body gap at larger
layer potentials, which is reminiscent of a phase transition, our calcu-
lations of HES, Chern number, and structure factor indicate that the
fringewith afinite gap emerging at U ≈80meV still corresponds to the
QAHC with Cavg = 1 and K-point CDWmodulation. Outside the optimal
parameter region, the many-body energy gap closes and the system
becomes a metal. We note that the QAHC phase persists when con-
sidering screening caused by metallic gates located at least ≈7 nm
away from the sample, and the phasediagram inFig. 3a remains similar
when considering layer-dependent interactions, see Supplemen-
tary Fig. 5.

The fact that the QAHC is most stable when the band is flat seems
to oppose the recent observation that the stabilization of QAHCs
requires a dispersive band40. However, this apparent contradiction can
be resolvedwith the help of a particle–hole transformation. On the one
hand, at filling ν = 1

3 theminority carriers are electrons which live in the
nearlyflatband that favors strongly-correlated FCI order19, cf. Fig. 4a, c.
On the other hand, the system at filling ν = 2

3 can be understood in
terms of holes, where the band becomes renormalized due to the
background electron–electron interactions16 and, crucially, becomes
dispersive, see Fig. 4b and “Methods” for details. Thus, the stabilization
of the QAHC at ν = 2

3 can still be attributed to the (hole) band disper-
sion,which in the systems consideredhere arises exclusively due to the
fluctuations of thequantummetric across the Brillouin zone75.Wenote
that the lack of QAHC order in ideal Chern bands with C ≠ 2 suggests
that the quantummetric and the consequent hole dispersionmust not
just fluctuate but also have an appropriate distribution to be able to
host charge order.

Finally, we show that the hole dispersion canbe utilized to explain
the topological nature of the QAHC from an effective single-particle
description. We perturb the hole band with a potential that accom-
modates a

ffiffiffi
3

p
×

ffiffiffi
3

p
crystal, similar to the procedure followed in ref. 40.

Concretely, we introduce the potential V crystalðrÞ=2V0
P

n cosðKn � rÞ,
with V0 = −5meV, acting only on the two bottom layers. The resulting

band structure is characterized by three bands, see Fig. 4d, the lowest
of which has a Chern number Ch = −1. The electron filling factor ν = 2

3
corresponds to filling the lowest band with holes, which yields an
electronChern number C = −Ch = 1, in agreement with themany-body
calculations.

Discussion
We have demonstrated the existence and robustness of QAHCs at ν = 2

3
filling of C = 2 Chern bands. First, we have shown that these phases
emerge in ideal C = 2 bands, in particular in the chiral model of twisted
bilayer-trilayer graphene—a heterostructure where experimental sig-
natures of these topological crystals have been recently observed.
Unlike the previouslyQAHCspredictedbynumerical works, whichwere
pinned at even-denominator filling factors, our results unveil topolo-
gical crystals not only emerging at an odd-denominator filling factor
ν = 2

3 but, moreover, originating from a higher Chern band with C = 2.
This phase exhibits a K-CDW modulation, characterized by affiffiffi
3

p
am ×

ffiffiffi
3

p
am unit cell, and supports a quantized Hall conductance of 1

(in units of e2/h). Following the finding of QAHCs in ideal C = 2 bands,
we have demonstrated that this phase remains robust in a realistic
setting, concretely in TDBG. Importantly, we have predicted that the
QAHC in this heterostructure remains stable in a relativelywide rangeof
experimentally accessible tuning parameters, namely for twist angles
θ ∈ [1. 2°, 1.45°] and layer potentials U ∈ [50meV, 70meV]. Finally, we
have provided a single-particle picture of the QAHC phase that reveals
the important role of the non-flat hole dispersion—originating from
quantum metric fluctuations—in stabilizing the crystal order.

From a theoretical perspective, the emergence of topological
crystals in ideal flat bands establishes chiral twisted multilayer gra-
phene as an excellent platform for further exploring novel properties
of quantum anomalous Hall crystals and their connection to ideal
quantum geometry. It has long been believed that the ideal quantum
geometry favors the stabilization of FCIs against crystalline orders.
However, the presence of QAHCs in this context challenges this gen-
eral belief and therefore warrants further investigation. Additionally,
as opposed to recent numerical studies on QAHCs in tMoTe2 at even-

Fig. 3 | Stability of the quantum anomalous Hall crystal (QAHC) in the (U, θ)
parameter space of twisted double bilayer graphene. a Energy gap in the
many-body spectrum with respect to the QAHC ground states. The regions where
the single-particle band is not isolated appear in white. The many-body spectra
have been generated for a system of Ns = 21 sites with generating vectors
R1 = (4, −1),R2 = (1, 5).bRatiobetween the energy gap Es,g and the bandwidthΔs of
the single-particle band. The band has a Chern number C = 2 in the region where it
is well isolated (see Supplementary Fig. 6).

Fig. 4 | Particle–hole symmetry breaking, fractional Chern insulator (FCI) at
ν = 1

3 and quantum anomalous Hall crystal (QAHC) at ν = 2
3. a Energy across the

Brillouin zone for electrons in the empty band and b holes in the filled band of
twisted double bilayer graphene. c Many-body spectrum at ν = 1

3 filling for
Ns = 24 sites. The threefold degenerate ground states correspond to FCI order.
d Band structure of holes perturbed by the potential Vcrystal(r). At filling ν = 2

3, the
lowest band is fully occupied by holes, yielding an electron Chern number
C= − Ch = 1 where Ch is the Chern number of the hole band. The high-symmetry
points γ, κ, and κ 0 as well as the Brillouin zone of the QAHC are shown in panel (b).
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denominator filling factors, where the kinetic energy plays a dominant
role in driving the crystal phase40, our study suggests a contrasting
scenario: only interaction matters, as the band dispersion in the chiral
model is exactly flat. Importantly, our work also shows that in the
present case, the QAHC stabilization can be connected to an effective
(hole) kinetic energy that arises from interactions. Although twisted
multilayer graphene differs substantially from moiré structures based
on transition metal dichalcogenides, we believe our findings offer an
alternative framework for understanding the fundamental nature of
this new class of phases.

From a practical standpoint, our concrete prediction of a robust
QAHC in TDBG considering experimentally accessible parameters
offers a realistic and experimentally friendly guideline for discovering
these phases. Given the strong connections of this realistic model to
chiral models, our work could also be a starting point for searching for
more exotic topological phases of matter in moiré materials within
higher Chern bands, thus going beyond the traditional paradigm of
Landau-level physics.

Methods
Exact diagonalization
To distinguish QAHCs and their competing orders, we employ exact
diagonalization to numerically extract both the low-energy spectrum
and ground-state information at fractional fillings ν = Ne/Ns. Here,Ne is
the number of electrons, and Ns is the number of moiré cells. The
electron–electron interaction is projected onto the isolated and flat
conduction band, and the resulting many-body Hamiltonian can be
generally expressed as

H =
X

k

Ekc
y
kck +

1
2

X

fkig
Vk1k2k3k4

cyk1
cyk2

ck3
ck4

,

where Ek is the kinetic energy, c
ðyÞ
k is the electron annihilation (creation)

operator with momentum k, and Vk1k2k3k4
is the Coulomb matrix ele-

ment, which contains information about the single-particle wavefunc-
tion of the target band. We consider the Coulomb interaction
V ðqÞ= e20

2Aϵϵ0jqj with the dielectric constant ϵ ≈ 5 that is typically
considered in graphene systems82.

Structure factor and pair correlation
To further clarify the nature of the phases, we calculate the structure
factor and pair-correlation function averaged over the threefold
degenerate ground states, which provide insights into the crystalline
or liquid character of the system. The structure factor is defined as
SðqÞ= 1

Ne
hρðqÞρð�qÞi � Neδq, 0, where ρ(q) is the density operator

projected onto the considered flat band. On the other hand, the real-
space pair-correlation function reads GðrÞ= nðrÞnð0Þ� �

up to a nor-
malization factor, where n(r) is the real-space density operator. We
plot S(q) with q only up to the closest reciprocal lattice vectors—we do
not observe any significant peaks at larger q, which in any case would
simply correspond to spatial modulations of G(r) at length scales
shorter than the moiré lattice constant and would not affect the long-
range CDW pattern.

Entanglement spectrum
The fundamental nature of the many-body ground states can be
accessed by the particle-cut entanglement spectrum (PES)4,84. The PES,
not to be confusedwith entanglement entropy, is obtained by dividing
the many-body system into A and B subsystems consisting of NA and
NB = Ne − NA particles, and then calculating the eigenvalues of
� logρA, whereρA = trB½ 1

Nd

PNd
i= 1 ∣Ψi

�
Ψi

�
∣� is the reduced densitymatrix

of A. Here, Nd is the ground-state degeneracy. ρA carries crucial infor-
mation about the quasihole excitations in the degenerate ground
states ∣Ψi

�
, which are characteristically distinct for FCIs and CDWs. In

particular, a gap in the PES is expected, and the number of states in the

lowest band of PES eigenvalues exactly matches the number of zero-
energy quasihole excitations allowed by the specific quantumphase of
the system. In this work, we have used the HES, where NA and
NB = Ns − Ne − NA now denote the number of holes36. The HES thus
gives information about the quasiparticle excitations of the system.

Hole energy
A particle–hole transformation of the band-projected many-body
Hamiltonian leads to the hole energy

EðhÞ
k = � Ek + E

ðFÞ
k � EðHÞ

k ,

which is renormalized due to the background electron–electron
interactions of the filled band16 emerging mainly through the term

EðFÞ
k =

X

q

V ðqÞjhk+qj eiq�r jkij2

and with a smaller contribution from

EðHÞ
k =

X

G

V ðGÞhkj eiG�r jki
X

k0
hk0j e�iG�r jk0i,

where ∣k
�
is the single-particle Bloch state with momentum k for the

considered band. The form factor F ðk,qÞ= hk+qj eiq�r jki is related to
the Fubini-Studymetricgab(k) via jF ðk,qÞj2 � 1�P

a,b= x, yqa qb gabðkÞ
for small q, showing that a k-dependent gab(k) results in a dispersive
renormalized energy Eh

k
75. The hole dispersion in the TDBG band is

shown in Fig. 3b.

Data availability
All the data generated in this study are available in the article and
supplementary information or from the corresponding authors upon
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