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Digital-analog hybrid matrix multiplication
processor for optical neural networks

XiansongMeng1,6, DemingKong 1,6 , KwangwoongKim2,Qiuchi Li3, PoDong4,
Ingemar J. Cox3,5, Christina Lioma 3 & Hao Hu 1

Optical neural networks (ONNs) promise computing efficiency beyond
microelectronics for modern artificial intelligence (AI). Current ONNs using
analog matrix-vector multiplication (MVM) implementations are fundamen-
tally limited in numerical precision due to accumulated noise in electro-optical
processing. We propose a digital-analog hybrid MVM architecture that
achieves a high numerical precision without sacrificing computing efficiency.
Our fabricated proof-of-concept hybrid optical processor (HOP) achieves 16-
bit precision in high-definition image processing, with a pixel error rate of
1.8 × 10−3 at a signal-to-noise ratio of 18.2 dB, and shows no accuracy loss in
MNIST digit recognition. We further explore applying the HOP processor in
You Look Only Once (YOLO) object detection and demonstrate sufficient
numerical precision is crucial for high confidence detection in real-world
neural networks. The hybrid optical computing concept may be applied to
various photonicMVM implementations to enable accurate optical computing
architectures.

Modern artificial intelligence based on deep learning algorithms has
demonstrated impressive capabilities1. However, these algorithms
require enormous computing power and corresponding energy. The
demand for computing power is now doubling every 3–4 months2, a
rate surpassing the well-known Moore’s law. This has given rise to
domain-specific hardware accelerators using application-specific
integrated circuits (ASICs), for example, Google’s tensor processing
units (TPUs)3 and IBM’s TrueNorth4. The aim is to develop an efficient
hardware platform with advanced parallelism for matrix multi-
plications. However, microelectronics is encountering fundamental
bottlenecks in speed, energy consumption, heating, and interconnect
delay, which become increasingly hard to resolve by scaling5–7.

Photonic integrated circuits (PICs) present a pathway free from
these obstacles, and hence form a promising disruptive computing
architecture beyond von Neumann architecture and Moore’s Law to
potentially accelerate neural network applications efficiently8–10. Con-
sequently, integrated photonic matrix-vector multiplications (MVMs)

for optical neural networks (ONNs) have been proposed to address the
obstacles of microelectronics11,12, showing potential to surpass their
digital microelectronic counterparts in calculating speed, energy
consumption, as well as computing density13. Despite the advantages
of photonic MVMs, the demonstrations are all based on analog com-
puting architectures where the input and weight vectors (i.e., the
multipliers and multiplicands for the matrix multiplication) are
represented by light intensities. The analog computing nature of cur-
rent photonic MVMs presents a major scientific challenge: insufficient
signal-to-noise ratio due to accumulated noise, and crosstalk in the
computing system. This imposes several fundamental limitations. One
primary limitation is the low numerical precision. The intensity reso-
lution of the optical signals is usually limited to a numerical precision
of around 4 bits14,15. Efforts have recently been made to increase the
control precision of the weight values up to 9 bits for some analog
ONN schemes16,17. However, this does not directly translate into a
numerical precision of 9 bits for the matrix multiplication, but rather
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4.2 bits based on a 99.7% confidence interval derived from the noise
distribution of the obtained results17. In practice, 16-bit wide fixed-
point numerical precision is required for reasonable training
convergence18 and 8-bit numerical precision is generally required and
recognized as the “industry standard” for inference tasks19–21. Second,
analog optical computing is incompatible with microelectronics,
requiring high-resolution digital-to-analog conversions (DACs) and
analog-to-digital conversions (ADCs).

Here, we propose a new type of digital-analog hybrid MVM pro-
cessor for optical neural networks. The hybrid optical processor (HOP)
differs fundamentally fromexisting analogMVMprocessors and offers
the following benefits. The introductionof logic levels can significantly
increase the numerical precision. Powerful digital signal processing
(DSP) algorithms can improve calculation performance and ensure
high calculation repeatability. The high-resolution DACs for the inputs
can be removed, and the resolution requirements for ADCs for the
outputs can be greatly released by M bits, considering MVM of N-bit
multipliers and M-bit multiplicands. In return, this can increase the
operating speed and improve the compatibility with microelectronics.
We propose the concept of HOP for the MVM operations in convolu-
tion neural networks. Our simulations show good noise tolerance and
improved performance of the HOP over the analog optical computing
scheme. At an signal-to-noise ratio (SNR)of 25 dB, ourHOP can achieve
an root-mean-square error (RMSE) of 1.2 × 10−3 for an 8-bit image
processing task with a 3 × 3 convolutional operator. We have also built
a proof-of-concept silicon photonic chip and applied the HOP in three
tasks: a 16-bit depth high-definition image processing (HDIP) task, a
toy-model based handwritten digit recognition (HWDR) task, and an
object detection task based on the real-world YOLO neural network
model. The convolution results show that a record high numerical
precisionof 16 bits is successfully achievedwith a pixel error rate (PER)
of 1.8 × 10−3 at a SNR of 18.2 dB and a bit rate of of 7.5 Gb/s for the
inputs. The HWDR shows the same accuracy as the one calculatedwith
a desktop computer. The YOLO object detection task shows a true
demand for numerical precision in real-world neural network models.
The first convolution layer is processed by our HOP, and vehicles can

be detected with high confidence. A complementary simulation shows
if all convolution layers are processed with our HOP, we can detect
near, mid-range, and distant vehicles with high confidence, while
analog computing scheme would result in a severe performance
degradation even for near vehicles and completely fail in the detection
for distant ones at the same SNRs. Notably, the HOP is a method that
could potentially be applied to other photonic MVM schemes and
spark new concepts considering ONNs and domain-specific optical
computing.

Results
The principle of the hybrid optical processor
Analog signals are fundamentally vulnerable to noise and crosstalk.
The optical computing system can be seen as an optical signal pro-
cessing system and ONN is a representation of layers of the optical
matrix multiplication system. Shown in Fig. 1a, analog signals traver-
sing the signal processing systemwith noise and crosstalk suffer more
severe degradation thandigital signals under the sameSNR. This is due
to the absence of logic levels and decision-making processes in analog
systems, which prevents the signal from being effectively recovered
and equalized. The hypothesis here is that the performance of the
optical computing system can benefit from the utilization of digital
optical signals.

Analog optical matrix multiplication architectures rely on analog
photonic multiplication cores, abstractly represented in Fig. 1b. The
input d and weight w originate from M-bit and N-bit DACs. After
electro-optical conversion, d and w are multiplied and converted
back into the electrical domain. This generates an optical signal with
ð2M � 1Þ× ð2N � 1Þ possible levels (considering signal levels starting
from 0, thus 2M × 2N − 2M − 2N + 1). To accomplish a full-precision
multiplication without losing information, an ADC with a resolution
(effective number of bits (ENOB))) of log2½ð2M � 1Þ× ð2N � 1Þ� bits is
necessary. This can be very challenging, especially for high-speed
operations, since speed-versus-resolution is a well-known trade-off for
the signal converters22. While reducing the operational speed to attain
the desired resolution is possible, the high-speed operation advantage

Fig. 1 | Concept of thedigital-analog hybridphotonicMVMcore. aDigital signal
is more robust to noise and crosstalk in a signal processing system. ONN can be
seen as a signal processing system where digital signals can potentially be applied
for better calculation repeatability, precision, scalability, and compatibility with

microelectronics compared to analog signals. b The abstracted analog photonic
MVM core utilizing analog signals for both input d and weight w. c The proposed
digital-analog hybrid photonic MVM core utilizing digital signals for input d, with
relaxed constraints for signal format converters.
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of photonic components vanishes. On the contrary, while high-speed
operations are maintained, the trade-off inevitably reduces in
numerical precision (Details are discussed in Supplementary Table 1, 2,
and Supplementary Fig. 2). The number of overall possible signal
levels increases proportionally for calculating an inner product of an
input vector and a weight vector, generating L× ð2M � 1Þ× ð2N � 1Þ
possible levels, which requires an ADC with a resolution of
log2½L× ð2M � 1Þ× ð2N � 1Þ� bits.

The HOP concept employs digital binary words for matrix multi-
plication into the optical computing system. For single MVM opera-
tion, d is carried in digital optical signals using binary words, whilew is
kept in analog format, leaving the computing system’s design
unchanged. Ifw originates from anN-bit DAC, themultiplication result
is a signal with a reduced number of 2N − 1 levels, which requires an
ADC resolution of log2ð2N � 1Þ bits. The HOP concept can be extended
to build a hybrid digital-analog photonic MVM core represented in
Fig. 1c. An input vector ðd11,d21, :::,dL1ÞT and a weight vector
(w11, w12, . . . , w1L) can be input to L multipliers. The results from the
multipliers are kept in the optical domain and summed in a photo-
detector. These are then processed by a post-processing electrical
circuit to get the result of the vector inner product (see Supplementary
Fig. 1). Columns of the input matrix D are loaded sequentially to
accomplish the MVM operation. The vector multiplication yields
L× ð2N � 1Þ signal levels, requiring an ADC with a resolution of
log2½L× ð2N � 1Þ� bits. Note that the resolution of the ADC is indepen-
dent of the bit width of the input vector d. In theory, the hybrid pho-
tonic MVM core can support input values of any precision without
compromising the complexity of the photonic part of the hardware.
However, higher precision input values increases the complexity of the
post-processing circuit (Supplementary Fig. 1).

By eliminating the need for high-speed DACs in processing the
input matrixD, the hybrid MVM core reduces costs, saves energy, and
simplifies system complexity. The requirement for the resolution of
ADC of the hybrid multiplier is ~M-bit less than the analog multiplier,
potentially increasing the operating speed (see Supplementary Table 1,
2 and Supplementary Fig. 2). The relaxed constraints on ADC/DAC
converters can improve the processor’s compatibility with micro-
electronics. From an information encoding point of view, the analog
ONN processors employ only the signal amplitude for encoding
information. In contrast the HOP utilizes both amplitude and time for
information encoding. The increased encoding space in HOP results in
a larger Euclidean distance between encoded signal samples when
compared to analog ONN processors. As a result, the HOP performs
better against noise and exhibits a higher numerical precision.

The computational efficiency (operations per Watt) for both
analog and HOP schemes can be expressed by 2k=ðE ×MÞ, where k is
the kernel dimension and E is the energy consumption per sample.M is
the bit-width of the input and M = 1 for the analog optical computing
scheme (detailed derivations are provided in Supplementary Infor-
mation Section 8). The computational efficiency scales linearly with
kernel size. And to achieve a computational efficiency supremacy over
microelectronics, a large matrix size is a must to be implemented. We
can derive the computational efficiency by analysing the power con-
sumptions for both schemes. The optical implementation for both
schemes is the same (i.e., laser sources, modulators, weighting ele-
ments, and photodetectors). For a broadcast-and-weight imple-
mentation usingMach-Zehndermodulator (MZM) (data broadcasting)
and andmicroring resonators (MRRs) (weight), we estimate a total
energy consumption of 2.7 pJ/sample (1.27 pJ/sample for the laser, 0.7
pJ/sample for the MZM, 1.0 pJ/sample for the photodetector)23,24. And
theMRRs are considered to be trimmed to their target weights during
calibration and operate passively, thus do not consume power.

The key difference in power consumptions for the analog and
HOP schemes lies in the electrical interfaces. Note that for a fair
comparison considering real-world implementations, we assume the

use of the same available ADCs for both schemes, and do not target
“full numerical precision”operations shown in the previous analysis on
ADC resolution requirements, but rather a “best effort” way for
numerical precision. Therefore, weassume8-bitmatrixmultiplications
with the use of 8-bit DACs andADCs. The analog scheme requires high-
speed DACs. With a state-of-the-art current-steering DAC imple-
mentation at 1 GS/s operating speed, the power consumption can be 31
pJ/sample for 8-bit resolution25. Note that the power consumption of
DACs scales with 2N. The state-of-the-art ADCs working at 1 GS/s con-
sume 1.18 pJ/sample26. As a result, the overall power consumption per
sample is ~34.88 pJ/sample for the analog scheme and 3.88 pJ/sample
for the HOP scheme. Substituting these values into the computational
efficiency yields a TOPS/W=0.057k for the analog scheme and aTOPS/
W=0.064k for HOP scheme. The HOP scheme closely matches the
analog scheme in computational efficiency. To justify the results, the
HOP scheme requires multiple optical operations and AD conversions
per word due to the use of time encoding, therefore, the power con-
sumption could be higher. On the other hand, the HOP scheme does
not require any involvement of high-speed high-resolution DACs for
the inputs, therefore the reducing the overall power consumption. In
conclusion, the HOP scheme trades the power consumption of the
DACs with the power consumption of additional optical operations
and AD conversions. For a large matrix size k > 47, the HOP scheme
could achieve a computational efficiency well beyond 3 TOPS/W
(NvidiaH100,microelectronics). But thebenefit of theHOP scheme is a
higher numerical precision due to a better noise tolerance.

An implementation of the digital-analog hybrid photonic
MVM core
Here we implement the HOP using cascaded microring modulators
(MRMs) instead of MZM and MRRs due to the available photonic
integrated circuits. Each MRM corresponds to one hybrid photonic
multiplication core, as shown in Fig. 2a. The MRMmodulates a laser
source of a particular wavelength. The input of the multiplier d is
loaded as binary words through the high-speed ports, while the
weight d from an N-bit ADC is loaded using a microheater-based
modulation bias. The result is a weighted optical signal y, which is
photodetected and sent to an ADC for decoding the information.
The examples shown in Fig. 2 with integer inputs and weights are for
illustrative purposes. The multiplier can also handle normalized
decimals, where the binary words represent only the decimals.
Positive and negative weights are realized by biasing the MRM at the
rising and falling slope of the transmission curve (Supplementary
Fig. 3). The relationship between the weight and the heater bias is
measured and shown in Fig. 2b. The measurement is used as a
lookup table for the loading of the normalized weights. This
microheater-based weight loading supports refreshing at tens of
kilohertz with the thermal-optic effect. However, the refresh rate of
the weight vector can be much quicker if the HOP was implemented
using independent input and weight loading devices, for example,
based on a Mach-Zehnder modulator and an MRM array17. The HOP
can therefore enable the possibility for in-situ training.

The implementation of the hybrid photonic MVM core is shown
in Fig. 2c. The example illustrated here is a single 3 × 3 convolution
operator. Multiple convolution operators can be simultaneously
integrated into a PIC to scale up for multiple convolution operations
or completematrixmultiplication. Amulti-wavelength light source is
used with L wavelengths for the convolution with an operator of L
elements. The MRM array accomplishes the element-wise multi-
plication of the input vector ðd11,d21, :::,dL1ÞT and a weight vector
(convolution operator) (w11, w12, . . . , w1L). i denotes indices of the
current column of the input matrix D. The example shows the input
with 8-bit precision. Themodulation generates a wavelength-division
multiplexing (WDM) signal with weighted on-off keying (OOK) sig-
naling for each wavelength (denoted as λ). The results from the
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hybrid photonic multipliers are summed up by a photodiode,
accomplishing the convolution (MVM). The photodetection results
in a multilevel signal at the baseband (i.e., a pulse amplitude mod-
ulation (PAM) signal). Shown in Fig. 2d, the multilevel signal is then
further processed digitally word by word by a multilevel-to-binary
converter, including PAM decoding (i.e., ADC), and a shift-add
operation. The multilevel-to-binary conversion process converts the
final result yn into the form of binary words (Details are discussed in
Supplementary Fig. 1).

Noise tolerance and computational robustness
We explore the noise tolerance of the proposed HOP using numerical
simulations with a comparison to the analog computing scheme.
Figure 3a illustrates the simulation setup. An image “Chelsea” from the
scikit-image dataset27 is processed using the 3 × 3 Prewitt convolution
operator for horizontal edge detection. We apply additive white
Gaussian noise (AWGN) to the computing systems, i.e., the weights,
with a given SNR. The image has a size of 300 × 451 pixels. The pixel
values are normalized by feature scaling and reshaped into 3 × 3 data
sequences, with the current vector denoted as d1 − d9. The vector is
multiplied by the Prewitt operator, and the 9 results are summed up to
form the pixel result of the processed image. For the analog scheme,
the vector is encoded only in the amplitude of the signals. For the HOP
scheme, the vector is encoded using binary words with 8-bit precision,

representing a gray image with 8-bit color depth or 256 levels. The
signal processing for the HOP scheme is done following procedures in
Fig. 2c, d. Finally, the resulting pixels are reassembled to present the
processed image, which has a size of 298 × 449, due to the lack of
padding for the boundary of the original image. Note that we used an
image with an 8-bit gray scale in the simulation to allow direct result
comparison with existing literature. In the experiment where we do an
edge detection task (see Section Edge Detection), an image with 16-bit
color depth is used.

Figure 3b gives the simulation results of the RMSE against differ-
ent SNRs for both computing schemes. At an SNR of 25 dB, the RMSE
can be reduced from 2.4 × 10−2 using the analog computing scheme to
1.2 × 10−3 using the HOP scheme. In short, the HOP scheme outper-
forms its analog counterpart in noise resilience, particularly within
lower SNR regimes, suggesting superior scalability potential foroptical
computing applications. This resilience against noise is important,
considering that noise presents a significant barrier to the scalability
and practical deployment of ONNs.

To visually inspect the difference of the simulation results, Fig. 3c,
f give the processed and reconstructed image at an SNR of 25 dB, by
the analog and the HOP computing schemes, respectively. Flake noise
clearly presents on the processed image by the analog computing
scheme, indicating a worse noise tolerance. The quality difference of
the processed images can be quantified by looking into the

Fig. 2 | A MRM based implementation of the hybrid digital-analog photonic
MVM core. a The implementation of a single hybrid digital-analog photonic mul-
tiplication core using an MRM, where the input d in the form of a digital optical
signal is loaded through the high-speed port while the weight w is loaded using
microheater-based modulation bias. b The measured relationship between the
normalized weight and the required heater voltage for the modulation bias can be

used as a lookup table to load the weight. c The implementation and optical signal
temporal evolution of the digital-analog hybrid photonic MVM core, including a
multi-wavelength light source, an array of microring modulators, and a photo-
diode. d Post-processing of the multilevel signal includes an ADC and a shift-add
operation. Here, the multilevel signal is converted to a binary signal, and the final
result can be recovered via shifts and adds.
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distributions of expected pixel values against the processed pixel
values, and the noise distributions.

Figure 3d,g give the distributions of the expected pixel values y
against the processed ones ŷ at a SNR of 25 dB, for the analog and the
HOP schemes, respectively. Figure 3e,h show the noise distribution
(i.e., ŷ� y) of the output signals from the analog and the HOP schemes
respectively. Results from the analog computing scheme reveal a
Gaussian noise distribution with a standard deviation of 0.027. The
corresponding numerical precision is 3.6 bits, calculated from the 3σ
value (99.7% confidence interval) of the Gaussian-shaped noise
distribution12. The noise distribution from the results of the HOP
scheme is, however, fundamentally different from the analog com-
puting scheme due to the introduction of logic levels and decisions.
The noise in the results of the HOP scheme does not comply with a
Gaussian distribution. Therefore, we borrowed the performance
metrics from digital communication, i.e., error rate at a certain
achievable SNR to characterize the HOP system. The PER is 2.5 × 10−4 at
an SNR of 25 dB, realizing a numerical precision of 8 bits. We have

focused on a 3 × 3 convolution operator here in the simulation because
our target applications are convolutional neural networks (CNNs)
models. The simple Prewitt operator, using weight values with a bit
width of less than 2 bits, is applied to demonstrate the performance
difference between digital and analog inputs. Supplementary Table 1
and Table 2 show a more generalized comparison where the bit width
of the weights is assumed to be 8 bits. And in the YOLO object
detection section, we have conducted an experimentwith convolution
operators where the weight values are 8 bits.

Experimental setup
We demonstrate the HOP in a proof-of-concept experiment for three
main tasks: HDIP, HWDR, and YOLO object detection. The HDIP task
evaluates the numerical precision of the HOP. The HWDR task utilizes
the HOP in an inference task widely found in literature, although it is
considered a toy neural networkmodel. The object detection taskwith
the YOLO neural network model is designed to explore the HOP’s
potential in real-world applications.

Fig. 3 | Simulation setupand results. a Simulation setup. An image “Chelsea” from
the scikit-image dataset27 is convolved with a Prewitt operator (vertical edge
detection). We explore the noise tolerance of both the analog and the hybrid
optical computing systems by adding additive white Gaussian noise to the weights
and examining the system’s performance by investigating the noise distribution of
the outputs. b performance of the analog and hybrid computing schemes in terms
of RMSEwith different SNRs. The following results are obtained at an SNR of 25 dB.
c, f Processed and reconstructed images by the analog and hybrid computing
systems, respectively. d, g Distribution of expected pixel values against the

processed pixel values (both normalized), for the analog and hybrid computing
systems, respectively. Insets show the corresponding processed images. Noisy
pixels can be clearly observed in the image processed using analog computing.
e, h Noise distribution of the analog and hybrid computing systems, respectively.
Analog computing reveals a Gaussian noise distribution with a standard deviation
of 0.027, corresponding to a numerical precision of 3.6 bits. The HOP shows a
greatly improved noise distribution thanks to the introduction of logic levels and
decisions based on thresholding.
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Figure 4a shows the experimental setup. The multi-wavelength
light source comes from a flattened optical frequency comb (OFC)
containing 9 wavelengths spaced at 80 GHz with an overall optical
power of 7.0 dBm and a center wavelength located around 1543.5
nm. The comb source is coupled into the PIC chip of cascaded
MRMs28,29. The insets of 4a show the pictures of the packaged PIC
chip and the microscopic image of the cascaded MRMs. Each MRM
modulates the corresponding comb line with the inputs and
weights. The inputs of the HOP come from the image pixel values.
The pixel values are normalized and reshaped into 3 × 3 data
sequences, with the current vector denoted as d1 − d9. The inputs
are loaded to the high-speed modulation ports of an MRM array in
the form of binary words and the weights from the convolution
operator are applied to the corresponding MRMs using
microheater-based modulation biases. The WDM signal generated
from the MRM photonic chip is coupled into an avalanche photo-
diode (APD) with a launch power of −12.0 dBm. The photodetected
baseband multilevel signal is sampled by a digital storage oscillo-
scope (DSO) and is further processed by a simple DSP chain30,
including low-pass filtering, resampling, and most importantly,
digital equalization. Performance of the HOP is evaluated after the
postprocessing procedure, including decision, multilevel-to-binary
conversion (Fig. 2d), as well as image reconstruction.

Depicted in Fig. 4b, the HDIP task is performed with each of the
MRMs working at 7.5 Gb/s. The 3 × 3 convolution operator is dis-
assembled into 3 sets and implemented through 3measurements, due
to our limited number of high-speed electrical signal channels. The
results from the 3 measurements are added up together after DSP

(before decision), and post-processing is done afterward for perfor-
mance evaluation. Figure 4c shows the operation condition and signal
flow for the HWDR and YOLO tasks. We use an field programmable
gate arrays (FPGA) for simultaneously loading 9microringmodulators
at a speed of 400 and 300 Mb/s to compute the entire convolution at
once for the two tasks, respectively.

High-definition image processing
Figure 5a shows the original image and the processed red (R), Green
(G), and Blue (B) channels. The image is taken with a mobile camera
using an uncompressed raw format. Then it is converted to an image
with a depth of 16 bits. The HOP processes the convolution using
inputs with 16-bit binary words and applies the Prewitt vertical, Sobel
vertical, and Laplacian operators. The processed color channels
remain at 16-bit depth and show a high-quality appearance, indicating
a high degree of noise resilience. This can be further proved by looking
at the sequences of the pixel values with a comparison to the results
calculated by a desktop computer, shown in Fig. 5b. Figure 5c shows
the distribution of the expected pixel values y against the processed
ones ŷ. Figure 5dderives thenoisedistribution (i.e., ŷ� y) of the results
by the HOP. The corresponding measured SNR is 18.2 dB, and the PER
is 1.8 × 10−3. These results demonstrate that the HOP can handle the
convolution task with very high precision, and the digital-analog
hybrid optical computing architecture works with a high tolerance to
noise. More image results processed by different convolutional
operators through HOP are demonstrated in Supplementary Figs. 4, 5,
and 6, including an optical noise tolerance test for an 8-bit image
processing task.

Fig. 4 | Experimental setup. a Measurement setup, including DSP and signal
postprocessing. The HOP consists of a packaged PIC chip containing 20 cascaded
MRMs, and an external photodiode (PD). Insets give the picture of the packaged

chip and the microscopic image of the cascaded MRMs. b Detailed operation
condition and signal flow for the edge detection task. c Detailed operation condi-
tion and signal flow for the HWDR and the YOLO object detection task.
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Handwritten digit recognition
Figure 6a presents the layer structure of the CNN used for the HWDR
task, utilizing the MNIST database31. 10,000 images are processed and
classified based on one convolution layer, rectified linear unit, pooling,
flattening, and two fully connected layers of 100 and 10 neurons. We
replaced the calculation of the convolution layer using our HOP, per-
forming a full edge detection using four Prewitt operators. Figure 6b
illustrates the confusionmatrices for the prediction results, calculated
by a desktop computer and the HOP. We observed the same overall
accuracy for the predictions with the HOP compared to a desktop
computer.We have also calculated the RMSEs of the 10,000processed
images compared with the true results calculated by a desktop com-
puter. The results give a mean RMSE of 5.4 × 10−3 and a standard
deviation of 7.5 × 10−3. And the overall PER for the 10,000 images is
2.7 × 10−3. The results show the HOP handling the toymodel well, again
indicating a high level of numerical precision.

YOLO object detection
To explore the feasibility of the HOP and to demonstrate the demand
for sufficient numerical precision, in real-world neural network mod-
els, we have applied the HOP for a YOLO object detection task.

Specifically, we utilize YOLO v3, a pre-trained 106-layer convolutional
neural networkmodel, where each layer consists of linear convolution
operations followedby nonlinear activation functions. In this study, we
implement only the linear convolution operations, while the nonlinear
activations are processed computationally.

We first validate the approach through simulations, following the
methodology outlined in Fig. 2. In the simulation, AWGN is added to
the weights of each convolution layer, with 10 tests carried out under
each SNR value. The input image shown in Fig. 7a is captured by a
mobile camera with a size of 416 × 416. The visible vehicles in the
image are labeled as Car 1 through Car 6 and categorized into three
groups: a nearby object (Car 1), mid-range objects (Car 2 to Car 4), and
distant objects (Car 5 and Car 6). When processed by the YOLOmodel,
the output provides object locations along with their confidence
scores.

Simulation results for SNR of 15 dB are presented in Fig. 7b, c,
illustrating the performance of the analog and HOP schemes, respec-
tively. In the analog scheme, vehicle positions are not accurately
detected for nearby or distant objects. In contrast, the HOP scheme
successfully identifies all six vehicles with high confidence. To further
investigate the impact of SNR on the detection accuracy, we first

Fig. 5 | High-definition image processing task. a The original 16-bit image and the
processed image channels using the Prewitt vertical, Sobel vertical, and Laplacian
operators.bA sectionof the processed sequences of pixel values. Up: processedby

the HOP; Down: processed by a desktop computer. cDistribution of expected pixel
values against the processed pixel values (both normalized). d Noise distribution
and calculation accuracy.
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analyze the recognition performance for the nearby object, i.e., Car 1,
under various SNRs, as illustrated in Fig. 7d. Accuracy improves with
increasing SNR in both schemes. In the full range of investigated SNRs,
the HOP scheme consistently achieves higher confidence scores than
the analog scheme,with amore pronouncedperformancegapat lower
SNR values. And the analog scheme has greater performance fluctua-
tions. We further evaluate the detection performance of a distant
vehicle, i.e., Car 4. As shown in Fig. 7e, the results align with our pre-
vious observations on the detection of the nearby vehicle, where the
HOP scheme outperforms the analog scheme and achieves a detection
confidence score greater than 70% for SNR larger than 15 dB. We also
notice that the analog scheme fails to detect Car 4with anSNRequal to
or less than 20 dB; the performance fluctuates widely for an SNR range
from 25 to 30 dB.

These results show a true demand for numerical precision, even
when theMVM is used for neural network applications. In the sense of
the real-world YOLO model for autonomous driving, the capability of
detecting distant vehicles through higher numerical precision means
that the HOP scheme could potentially translate into a quicker
response time and longer distances for braking or other measures in
cases of emergency events, comparedwith analog schemes. Note that,
for a convolutional neural network (where the YOLO model is based
on), the weight matrices (convolutional kernels) to be multiplied are
only 3 × 3 in size. For largermatrix sizes, the performanceof the analog
scheme could get much worse due to noise accumulation, further
hindering its practical application (see Supplementary Table 1).

To experimentally validate the performance of the HOP scheme,
we have carried out an experiment with a setup similar to that used in

Fig. 6 | Handwritten digit recognition task. a, Layer structure of the CNN to
perform the HWDR task using the modified National Institute of Standards and
Technology (MNIST) database. The convolution layer of the CNN is implemented

using the HOP, and the rest of the network is performed offline by a desktop
computer.b, Confusionmatrices for the prediction results, calculated by a desktop
computer and the HOP, respectively.

Fig. 7 | YOLO object detection task. a Input image with labels arranged from near
to distant. b, c Simulation results with an SNR of 15 dB using the analog scheme and
the HOP scheme, respectively. d, e Comparison of the Analog and HOP schemes
under various tested SNR values for the nearby vehicle (Car 1) and the distant
vehicle (Car 4), respectively. f Detection results using the HOP scheme, where the
first convolution layer is processed experimentally while subsequent layers are
computed offline on a computer. g Reconstructed output images from the first

convolution layer in the experiment.hConfidence score comparison for Cars 1 to 6
between experimental and simulated results, where the first convolution layer is
replaced with the analog scheme or the HOP scheme. i Simulated detection results
exploring various SNRs for a distant vehicle (Car 5). Box-and-whisker plots show
median (center line), quartiles (box edges), and whiskers extending to the full data
range (max/min values) for all 10 results per group.
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the HWDR task. Due to hardware constraints, only the first layer’s 32
convolution operations of the YOLO model are processed using our
PIC chip, while the remaining convolution layers are computed offline
on a computer. In the experiment, we get 14 dB SNR and an average
PER of 2.8 × 10−2 for the 32 synthesized output feature images from the
first layer. The detection results are shown in Fig. 7f. As observed,
the output accurately identifies all the vehicles. Figure 7g presents the
reconstructed feature maps from the first convolution layer, where
distinct filter responses and clear object contours are evident.

Based on this experimental setup, we further conducted a sup-
plementary simulation by replacing the first convolution layer with
either the HOP or analog scheme. The confidence scores obtained in
the experiment, are shown in Fig. 7h. The experiment results agreewell
with the simulation for the HOP scheme. For nearby and mid-range
objects, the confidence scores exhibit no significant difference
between the HOP and analog schemes. However, for distant objects,
such as Car 5 and Car 6, the HOP scheme consistently achieves higher
confidence scores. Specifically, for Car 5, the HOP scheme achieves
confidence scores of 49% (simulation) and 46% (experiment), while the
analog scheme yields only 28%. To further investigate the impact of
SNR on the recognition of a distant object, i.e., Car 5, we analyzed the
confidence score variations under different SNRs, as illustrated in
Fig. 7i. Again, the HOP scheme demonstrates a clear advantage over
the analog scheme, with significantly higher confidence scores for an
SNR range of 10 to 20 dB. In conclusion, even if only the first layer is
replaced by hardware with a realistic SNR, numerical precision is still
essential, and the HOP scheme results in much improved final con-
fidence scores for distant objects.

Discussion
There is often a perception that the numerical precision of the
MVM operations for neural network applications is not so
important, as the noise is beneficial to train the model and
improves generalization and facilitates regularization. But there’s
a difference between noise added to the training of the neural
network and the hardware noise for inference tasks, where it is
not controllable and accumulates. For inference tasks, the neural
network is pre-trained, and sufficient numerical precision is
required for an acceptable overall accuracy18, as we demonstrated
in the YOLO object detection task.

Our HOP scheme provides a way to ease the requirement for SNR
and to achieve a higher numerical precision. This scheme is also known
as “bit slicing” in microelectronics32,33. However, since the clock speed
in microelectronics is usually below several gigahertz, the “bit slicing”
would reduce the operating speed by a factor of N, i.e., the numerical
precision. However, photonics can utilize a much higher clock rate,
thus a higher operating speed at the same numerical precision (Sup-
plementray Table 2).

Optical computing has evolved from digital optical logic gates for
general-purpose computing34 to domain-specific analog computing (for
the physical implementation of neural networks11,35). Our domain-
specific digital-analog hybrid optical computing architecture con-
ceptually differs from logic-gate-based optical computing. Instead of
pursuing general-purpose digital optical computing, we focus on
domain-specified computing exclusively for matrix multiplications in
neural networks. Implementingmatrixmultiplication is based on binary
modulations and linear signal processing, avoiding the nonlinear pro-
cesses that are usually less efficient. Lastly, instead of pursuing an all-
optical solution, the HOP merges the best of photonics for matrix
multiplication and electronics for logic-level restoration. The HOP is
distinctive fromanalogoptical computing schemes for neural networks.

Our results demonstrate the feasibility of overcoming the inher-
ent challenges of analog optical computing through the digitization of
optical signals. Given the benefits of better noise tolerance, the HOP
has the potential to solve the obstacles of numerical precision,

compatibility with microelectronics, and scaling of the ONNs (see
Supplementary Table 3). Our findings here using digital optical inputs
could potentially be applied to a wide range of photonic MVM archi-
tectures, including the Mach-Zehnder interferometer (MZI)–based
coherent scheme11 and diffraction-based schemes36,37.

Methods
The multi-wavelength light source
Themulti-wavelength light source used in the experiment is an electro-
optical frequency comb38,39 implemented using a continuous-wave
laser and optical phase modulation. An external cavity laser centered
around 1543.5 nmwith an output power of 10.5 dBm is launched into a
phase modulator. The phase modulator is driven by a 40 GHz signal
coming from a radio frequency (RF) synthesizer followed by a power
amplifier. A 40-GHz spaced optical frequency comb is generated and
fed into a wavelength-selective switch (WSS) after amplification. It is
line-by-line filtered and equalized by the WSS, generating a flattened
optical frequency comb with 9 comb lines and an amplitude variation
of 1 dB. The amplitude variation is not calibrated nor compensated for
the computing system due to the noise tolerance of the HOP. In
principle, compensating for residual system impairments, like the
amplitude variation within the optical frequency comb, could further
enhance the HOP’s performance.

The microring modulator array chip
The PIC chip contains 20 cascaded MRMs, with a spacing of 250 μm
between adjacent MRMs. EachMRM has a ring radius of 7.5 μm, thus a
free spectral range around 13.1 nm. A microheater is sitting on top of
each MRM for the alignment of the wavelength channels and the
control of the modulation biases. The MRMs are based on a reverse-
biased P-N junction in the middle of the microring waveguide29,40. The
PIC chip is fabricated on a standard silicon-on-insulator wafer with a
top silicon thickness of 220 nm. It is packaged with two edge coupling
fibers, a high-speed printed circuit board (PCB) supporting 20 high-
speed transmission lines, and a second PCB for the control of the
microheaters. The electro-optical modulation bandwidth of the pack-
aged modulators is measured to be around 15 GHz.

The signal source and digital signal processing
In the HDIP task, an arbitrary waveform generator (AWG) (Keysight
M8195A) is used. Limited by the available channels, 3 measurements
are consecutively carried out. Eachmeasurement uses 3 channels from
the AWG at a speed of 7.5 Gb/s and a sampling rate of 15 GSa/s. The
speed and the sampling rate are limited due to the use of external
memory to load the entire image data, thus amandatory clockdivision
of four. In the HWDR and the YOLO tasks, an FPGA board (Xilinx
ZCU104) is used to generate the 9 inputs to the HOP. The data rate for
each data channel is set to 400Mb/s for the HWDR task, and 300Mb/s
for the YOLO task, due to the limitation of the direct memory access
module.

The weighted WDM signal is detected by an APD with a 3-dB
bandwidth of 10GHz. The photodetected basebandmultilevel signal is
sampled by a DSO (Agilent DSA-X 93304Q) with a sampling rate of 80
GSa/s and an analog bandwidth of 33 GHz. The samples are processed
offline using DSP algorithms. We use a T/2-spaced linear feedforward
equalizer with a filter length of 51 to compensate for the linear
impairments from thedevices used in the experiment, including theRF
components, the high-speed PCB board, the PIC chip, as well as the
APD. The coefficients of the equalizer are obtained through training
based on the least-mean-square algorithm.

Data availability
Source data are provided with this paper. The measurement data
generated in this study and processing scripts have also been depos-
ited in (https://doi.org/10.5281/zenodo.10026198).
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Code availability
The algorithms used for data loading, reconstructions, and digital
signal processing are standard and are outlined in detail in the Meth-
ods. Python scripts can be provided by the corresponding authors
upon request.
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