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Advances in artificial intelligence and
precision nutrition approaches to improve
maternal and child health in low resource
settings

Saurabh Mehta 1,2,3 , Samantha L. Huey1,2, Shah Mohammad Fahim 2,
Srishti Sinha 1,2, Kripa Rajagopalan1,2, Tahmeed Ahmed4, Rob Knight5,6,7,8,9 &
Julia L. Finkelstein 1,2,3

Malnutrition continues to be amajor threat to health, particularlymaternal and
child health in low resource settings, resulting in impairments in cognitive
function, growth, and development, and metabolic diseases later in life.
Nutritional assessment is a cornerstone of any successful nutrition intervention
or program whether in the community or at the clinic. Improved computa-
tional power and advances in technologymay enable precision nutrition-based
approaches for maternal and child health, which can complement current
methods for nutritional assessment to identify clinical, biochemical, micro-
biome-related, social, and environmental characteristics to predict responses
to nutritional interventions or programs. Precision nutrition has the potential
to complement program monitoring, efficacy evaluation, and ultimately to
inform design of interventions to improve maternal and child health.

Malnutrition is an urgent threat to human health and dis-
proportionately affects women of reproductive age, pregnant and
lactating women, and children1–3, due to increased physiological
demands to support maternal metabolism, transfer to the fetus, and
growth and development. Malnutrition—defined to include under-
nutrition, such as micronutrient deficiencies (“hidden hunger”) and
underweight, and overnutrition, including excess adiposity and
metabolic diseases—is complex in its etiology and assessment. The
double-burden of malnutrition, or the coexistence of both under-
nutrition and overnutrition—at an individual, household, or popula-
tion level—adds further complexity to the development of
interventions and programs to meet the nutritional needs in these
populations4.

In the context of maternal and child health, particularly low-
resource settings such as low- and middle-income countries (LMICs),
nutritional interventions includemicronutrient supplementation, food
fortification, and biofortification approaches, with emphasis on pre-
vention or treatment of acute undernutrition or micronutrient defi-
ciencies at the population level5–7. For example, micronutrient
supplementation and fortification interventions are among the most
cost-effective approaches to improve humanhealth and development,
particularly in the context ofmaternal and child health5,8. This is critical
as nutrition prior to conception and early in life is a key determinant of
health during the first 1000 days of life and beyond9.

Despite major investments, a recent pooled analysis found 1 in 2
women and children still have at least one micronutrient deficiency3,
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and 1 in 3 pregnant women (500 million) have anemia, a number that
has remained unchanged since 200010. At the same time, a type 2
diabetes mellitus (T2DM) crisis has escalated rapidly particularly in
LMICs including in South Asia11. Progress on the Sustainable Develop-
ment Goals, particularly Goal 2: Zero Hunger, has stagnated or
regressed12, and progress on reduction in anemia is not on track to
meet the World Health Assembly target (i.e., 50% reduction of anemia
in women of reproductive age by 2025)13. Comprehensive strategies to
address all forms of malnutrition—that involves both preventive and
therapeutic strategies requiring population and/or setting-specific
considerations—are urgently needed that are tailored (where appro-
priate and feasible) to the individual context including biology,
genomics, and environment for maximal impact on improving
maternal and child health.

Value additionof precisionnutrition: assessment andprediction
Nutritional assessment—to identify or prioritize those at risk or with
greatest need for interventions and monitoring response—is a critical
component of any successful intervention/program, at the community
or the clinical levels. Accurate assessment of nutritional status, such as
anthropometric, biochemical, clinical, and dietary data, in women,
infants, and children is necessary to monitor existing programs,
identify gaps, and measure efficacy of interventions. Precision
nutrition–using individual-level data to predict how a given person
may respond to a nutritional intervention, and tailor the intervention
(e.g., optimal diet) for that individual as opposed to a one-size-fits-all,
population-level approach, is a next step after assessment14. In addition
to anthropometric, biochemical, clinical, and dietary data, and socio-
economic, psychosocial and environmental data14, other factors that
are now possible to measure on a larger scale include genetic, meta-
bolic, proteomic, or microbiome signatures, which may predict the
response to specific nutritional interventions15–17. Given how maternal
factors (e.g., diet, inflammation, microbiome) appear to dynamically
shape child health outcomes via shared biomarkers, vertical micro-
biota transmission, particularly in the first 1000 days of life, AI mod-
eling approaches that can jointly predict outcomes across themother-
child dyad are critical to successful precision nutrition approaches.

Precision nutrition has shown promise in adults, particularly in
research from higher income settings, and this is reflected by recent
investments to investigate precision nutrition in even larger cohorts to
account for more individual-level heterogeneity. Zeevi (2015) and
Korem (2017) and colleagues found that integrating most or all of
these variables improved prediction of an adult individual’s glucose
response to a particular food18,19. This has set the stage for larger stu-
dies such as Nutrition for Precision Health (NPH), part of the by the All
of Us study and funded by the National Institutes of Health (NIH)20.
NPH will help establish which components of precision nutrition need
to be measured in adults across the United States and inform nutri-
tional assessment and interventions to improve human health and
address key challenges in precision nutrition. The generalizability of
these findings to populations in other settings with different meta-
bolomes, microbiomes, and host genetics is still an open question.
Someof the challenges pertain to how to better understand andmodel
themultiple andmulti-level risk factors for adversehealth outcomes to
inform care, prevention, and treatment guidelines. Further challenges
include limitations associated with implementing AI methods in pre-
cision nutrition in low- and middle-income settings, including incom-
plete or poor-quality data, technological infrastructure gaps, lack of
digital literacy, and ethical and regulatory considerations.

Herein, we discuss the implications of using a precision nutrition
lens to improve nutritional assessment with a focus on maternal and
child health, particularly in low resource settings. We then outline
examples of where a precision nutrition approach is being applied in
maternal and child health. Finally, we review the technological land-
scape supporting precision nutrition to identify potential areas to

complement conventional practices, with an emphasis on nutritional
assessment, screening, and interventions to improve maternal and
child health. These are summarized in Fig. 1.

Assessment of nutritional status
Nutritional assessment includes anthropometric measures and body
composition, biochemical markers, clinical signs and symptoms, and
dietary intake. These are measured and analyzed through direct
measures of the body, blood collection and analysis, clinical exams,
and interviews with trained personnel. Such methods have been used
for decades in nutrition research and have resulted in major gains in
the evidence base for nutrition and maternal and child health. How-
ever, these methods for assessment are time-, personnel- and
resource-intensive, and depend on the availability of trained staff and
equipment to collect and process the data, which can range from
relatively simple (e.g., body weight data in a small study) to large and
complex (e.g., 24-h recall data and food composition databases from
repeated samples in a large cohort of mother-infant dyads)21. These
methods may be complemented by integrating novel approaches to
leverage increased computational power and efficiency to analyze
complex multi-modal data, via artificial intelligence (AI) and machine
learning (ML) models16,22. AI involves using a computer to model
intelligent behavior with little human guidance23. ML is amathematical
tool that facilitates the development of algorithms to make accurate
predictions from large datasets with greater accuracy than traditional
statisticalmethods, and is of increasing interest to nutrition and health
research22,24,25. Incorporating novel AI and ML methods to nutrition
assessment could enable faster, more efficient, and more accurate
data, translating tomore accurate models and findings and inform the
development and monitoring of nutritional interventions, including
for maternal and child health.

Anthropometry and body composition
Established methods for nutritional assessment, including anthro-
pometry and body composition, using measurement tapes, length/
height boards, and skinfold calipers, are time-intensive and challen-
ging to perform; require trained personnel (andmay have high level of
inter- and intra-rater variability in measurements); and do not auto-
matically store data digitally, necessitating an additional data entry
step26–28. For body composition assessment, gold standard methods
include dual-energy X-ray absorptiometry (DXA), densitometry, or air
displacement plethysmography (bioelectric impedance analysis
(BIA),reviewed in refs. 29,30 may not be suitable for pregnant women
or children), and require equipment that is costly to purchase and
maintain controlled conditions, and may be less feasible in field or
resource-limited settings31.

As optical imaging devices have become relatively inexpensive
over the past fewdecades, interest in digital or automatedmeasures of
anthropometry and body composition has increased27. Three-
dimensional scanning devices can objectively and relatively quickly
measure the body, process the acquired data, and calculate cir-
cumferences, volumes, lengths, and surface areas27, although estima-
tion of body composition measures (e.g., fat mass, fat free mass) from
this data is more challenging32. A 3-dimensional (3D) scanner can
complete hundreds of anthropometry measures in seconds32, though
3D imaging scanners vary in portability33. Smartphone and mobile
phone-based technologies have advanced such that automated optical
scanning systems33 and BIA34–36 may be captured via mobile phone, in
addition to 2D images taken by the phone’s camera. These portable
methods could be developed and validated for data collection in field
settings at the point of need30.

Machine learning approaches arewell-suited to process data from
images from 3D scanners or camera-enabled mobile devices to esti-
mate anthropometry and body composition given that (a) image data
analysis can be automated reducing personnel time required; and (b)
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the algorithm “learns” or becomes trained and accuracy is increased as
additional curated data are ingested37. In addition, taking photos of
participants is faster and less labor-intensive than anthropometry or
body compositionmeasurements,with contactless data collection. For
example, ML methods have been used to predict body height from
single-depth images in adults by researchers such as Lokshin and
colleagues38 and in multiple studies39,40. In children, height measure-
ments and predictions can be used to detect stunting; a 2021 study in
India found that a convolutional neural network-based method accu-
rately predicted the height of standing children under 5 years of age
within an acceptable 1.4 cm range among 70% of depth images, which
were generated from videos from captured on a commercial
2016 smartphone; however, details on the degree of inaccuracy of the
remaining 30% of depth images was not reported41. However, image
and video quality are key for accurate modeling; indeed, videos with
noisy data (e.g., blurry, dark, lack of the subject, or too many partici-
pants) were identified and removed from the test datasets41. In adults
(n = 12 females and n = 15 males) with obesity, a 2022 study found that
an automated machine learning method analyzing data from smart-
phone camera-enabled capture and analysis of 2D images was able to
reproducibly and accurately estimate whole body fat mass compared
to DXA (correlation R2 = 0.99)24, with no differences by sex. However,
estimating body composition in children using image-based machine
learning techniques and validating such tools in the field in pregnant
women and young children remain research gaps.

Deep learning algorithms can help process images and videos but
require secure server availability for app-based intake estimation for
sustainability. In the future, use of convolutional neural networks or
other architectures such as generative adversarial networks and deep
learning algorithms will be key to process the large image-based
datasets. The increased computing power helps to identify more
minute details in the pictures and in the process improves accuracy42.
Current methods for anthropometry and body composition

assessment are constrained by high throughput. Advancing the tech-
nology to enhance reliability and reproducibility, and to optimize for
individuals across the life cycle in the form of a mobile phone are
important for monitoring changes in individual anthropometry or
body composition over time in resource-limited settings, to develop
and evaluate nutritional interventions and programs.

Biochemical
Nutritional biomarkers such as those measured in blood or urine to
quantify dietary intake or nutrition status are objective and less prone
to bias due to recall or reporting43. For example, minerals and vitamins
can bemeasured in blood, stable isotopes of doubly labeled water and
urine samples can enable measurement of daily total energy expen-
diture, and 24-h urinary nitrogen can estimate protein intake44,45. One
of the main challenges in assessing nutritional status is the limited
range of biomarkers that reflect intake and predict functional or clin-
ical outcomes, such as the response to a given dietary intervention in a
population. Biomarkers of nutrients and associated metabolites often
reflect recent intake rather than sustaineddietary habits; adding to this
complexity, the metabolic rate for energy and different nutrients has
been shown to have inter-individual variation46,47, possibly due to the
gut microbiome18,48. In addition, some biomarkers may not accurately
reflect status for nutrients that are tightly regulated, such as serum
calcium or zinc49,50, in addition to changes in status prompted by
inflammation (described below); finally, a limited range of nutritional
biomarkers predict functional outcomes or health outcomes.

The interplay of inflammation and nutritional status may influ-
ence intra- and inter-individual variation51. The acute phase response
involves the release of inflammatory cytokines such TNF-alpha, IL-1,
and IL-6, which stimulate the liver to produce acute phase proteins
(APP). TheAPPs includeover 200plasmaproteins, anestimated 50%of
which are involved in regulation of nutrient transport or status52. For
example, serum/plasma ferritin (stored iron), retinol (vitamin A

Applications of AI and Precision Nutrition in Maternal and Child Health
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Fig. 1 | Applications of artificial intelligence (AI) and precision nutrition (PN) in
maternal and child health. AI and machine learning (ML) have been used in
maternal and child health, particularly image-based assessment methods for (A)
Anthropometry and body compositionmeasures and (C) Clinical applications such
as predicting intra-uterine growth restriction based on demographic and health
characteristics. Past uses of AI and ML to define potential novel (B) Biomarkers for
nutrient intakes, such as gutmicrobial signatures66 have the potential to be applied
in maternal and child health, and app-based assessment of (D) Dietary intakes has
been successful particularly in estimatingmostmacronutrients among adolescents
in a low-resource setting89. Two examples where PN-based methods in maternal

and child health have been used include “total parenteral nutrition (TPN) 2.0” for
neonates in neonatal intensive care units90 and microbiome-targeting foods in the
context of moderate acute malnutrition (MAM)91. Finally, we show potential
applications for AI/ML-based approaches in maternal and child health, including
digital twins, fecal volatile organic compounds (VOC) for predicting mortality in
children with severe acute malnutrition (SAM)96, and the use of large language
model (LLM)-powered coaching for frontline healthworkers’ (HW) training onearly
childhood development curricula102. Figure created in BioRender (Huey S, Sinha S,
Mehta S (2025) https://BioRender.com/fn7t1bw) and finalized via All Time Design.
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status), and zinc (zinc status) are directly affected by inflammation,
both acute and chronic. In the context of acute inflammation, serum/
plasma ferritin concentrations increase, whereas retinol and zinc
decrease52,53. Iron trafficking may be impacted54, limiting the distribu-
tionof iron fromblood to cells throughout thebody inorder to limit its
availability to pathogens55; the liver halts the release of retinol and its
binding protein49; and the transfer of zinc from blood to liver may
increase50. As a result, assessment of these micronutrients without
accounting for inflammation (e.g., C-reactive protein (CRP), α−1-acid
glycoprotein (AGP) or other inflammatory cytokines56) may result in
altered (higher or lower) micronutrient status57.

Several methods are available for population-level adjustment of
ferritin and retinol, including Biomarkers Reflecting Inflammation and
Nutritional Determinants of Anemia (BRINDA); however, not all
micronutrients or populations are covered; BRINDA adjustment
methods are available for or validated in preschool children, school-
aged children, or women of reproductive age (ferritin only), but not in
pregnant women or infants53,58–61. These methods use CRP and/or AGP
to adjust micronutrient status to a more accurate concentration
without the presence of inflammation. However, these are population-
based methods for inflammation adjustment and do not typically
apply to the individual level and in the context of illness. Considering
that both acute and chronic inflammation (e.g., obesity and metabolic
diseases) appear to impact micronutrient concentrations, accounting
for inflammation as part of the comprehensive set of variables is
important for precision nutrition-based strategies. These biomarkers
related to metabolism (metabolites) are part of nutrient metabolism.
Metabolomics, the study of thesemetabolites or uniquefingerprints as
a result of metabolic processes is an upcoming theme in nutrition
research. Recently, ML methodologies such as neural networks were
used to prepare an evaluation chart using nutritional biomarkers and
tried to link dietary intake with biochemical profile to understand the
effect on body weight62. A further challenge is to capture intra- and
inter-individual variation in the metabolic and phenotypic response to
a dietary intervention and ultimately predict those most likely to
respond to a particular type of intervention.

Assessment of biological specimens requires central laboratories,
specialized equipment, ensuring cold chain, extensive benchmarking
and validation of preservation methods, and trained personnel.
Methods and devices that are field-friendly (i.e., portable and not
impacted by variation in environment such as temperature and
humidity) and that adhere to the ASSURED criteria (i.e., Affordable,
Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free,
Delivered)63 are particularly relevant in the context of maternal and
child health and in lower-resource settings. Additionally, the avail-
ability of noninvasivemethods or tests that require only small volumes
of blood—particularly appropriate for populations like young children
and pregnant women—is paramount to successful assessment and
monitoring. Biomarker assessment at the point of care has consider-
able applications for screening and precision nutrition in the context
of maternal and child health, particularly in resource-limited settings.
For example, point-of-care assessment of vitamin A status in blood has
been demonstrated, using chemical reaction that can be miniaturized
in a device or test kit to facilitate use infield and community healthcare
settings. Methods to screen for vitamin A status using point-of-care
methods have been cataloged previously and include portable fluo-
rometers, photometers, immunoassays, and microfluidics-based
though only some were commercially available64. These devices have
the potential to routinely screen for vitaminAdeficiency—and evaluate
interventions—particularly in settings with limited resources and
infrastructure.

Gut microbiome diversity, composition, and function are also
potential novel biomarkers of dietary intake, dietaryquality65, nutrition
status, and/or response to interventions, including analysis of fecal
microbial biomarkers of food intake using AI methods66. These

methods need to be implemented and validated in the context of
maternal and child health, including during pregnancy, mother-infant
dyads, and in children. Diversity in maternal and child populations
including ethnicity, habitual diets, socioeconomic status, and age is
needed for these types of studies as well as other studies such as those
using gut microbiome to predict glycemic response to interventions.
Validation across large, diverse populations and over time, as well as
repeated analyses among similar cohorts, is needed to ensure repro-
ducibility. In addition, evaluation of novel biomarkers compared to
currently used biomarkers. For these biomarkers to accurately reflect
dietary intake, further detail is needed regarding food and nutrient
composition, since vitamin and mineral content in vegetables varies
considerably67 depending on conditions such as season68 or post-
harvest processing and storage69. Standardized approaches for bio-
marker validation, comprehensive and accessible food composition
databases, a common ontology for dietary biomarkers, and advances
in statistical procedures for novel biomarkers of dietary intake are also
needed45.

Clinical
Clinical outcomes include adverse pregnancy outcomes, and meta-
bolic diseases, including cardiovascular disease (CVD), T2DM, meta-
bolic dysfunction-associated steatotic liver disease (MASLD, formerly
known as non-alcoholic fatty liver disease (NAFLD)), obesity, hyperli-
pidemia, and cancers70,71. The physiological changes that occur during
pregnancy and the postpartum period may unmask metabolic risk
factors such as hypertension and altered glucose metabolism not
observed prior to pregnancy, highlighting a key window to use AI
methods tomonitor risk factors and future cardiovascular outcomes72.
In children and adolescents, the prevalence of obesity continues to
rise, particularly in low- and middle-income settings, and is linked to
persistence of obesity into adulthood and associated comorbidities
and premature mortality73.

The applications of ML and AI methods in clinical examination
mayenable earlier intervention or treatment, particularly for nutrition-
related metabolic and non-communicable diseases. Many metabolic
diseases and sequelae may be assessed via medical imaging techni-
ques, which are particularly suitable to ML and AI methods72,74,75. For
example, AI-based processing and assessment of retinal images
enabled early detection of retinopathy related to T2DM76. Training ML
models on MRI-derived images of liver fat content along with other
‘omics and clinical data have also been used to diagnose NAFLD and
outperformed existing prediction tools77. Other AI methods such as
convolutional neural networks can model raw electrocardiogram sig-
natures to detect heart rhythmdysfunctions72. Theymay also be useful
for detecting pregnancy outcomes such as congenital anomalies and
intrauterine growth retardation (IUGR)78,79.

The most accurate method for measuring low-density lipopro-
tein (LDL) requires beta-quantification, which is time-intensive,
expensive, and infrequently used. The Friedewald equation was
developed to estimate LDL using total cholesterol (TC), high-density
lipoprotein cholesterol (HDL-C), and triglycerides (TG): LDL-C =
TC –HDL –TGs/580. However, this equation relies on the assump-
tions that have not been validated in pregnancy, in children, or in the
context of certain health conditions, such as HIV80. Five ML methods
—linear regression, random forest, gradient boosting, support vector
machine (SVM), and neural network—were used to estimate LDL-C in
womenwith HIV (n = 5,219) or without HIV (n = 2127) compared to the
Friedewald equation80. In this study, an SVMalgorithmoutperformed
the other four ML methods and the Friedewald equation. Initial
findings from this study offers support for further investigation of
ML methods in predicting risk factors for metabolic health
outcomes.

In a study using a Bayesian kernel machine regression (BKMR)ML
approach, sex-specific differences were observed when 12 dietary
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components were examined in association with 10-year risk of ather-
osclerotic CVD81. BKMR was used to incorporate non-linear and inter-
active associations of dietary components with health outcomes, and
account for the high degree of collinearity often observed with dietary
intakes. When all other dietary components were held fixed, unpro-
cessed redmeat was associated with increased risk for atherosclerotic
CVD inwomen. Inmen, fruit wasnon-linearly associatedwith lower risk
atherosclerotic CVD, with an interaction between fruit consumption
and whole grains was reported. BKMR identified complexities with
multiple dietary intakes in association with CVD and indicate its
potential in identifying which nutrient(s) or their interaction(s) are
associated with disease risk by sex. Together, these methods enable
more targeted precision nutrition approaches or interventions to be
developed.

The potential clinical applications for machine learning in the
context of precision nutrition and non-communicable diseases is evi-
dent, particularly to automate and standardize analysis of medical
images. The applications of ML methods to identify risk factors or
health outcomes may vary in the clinical context. For example, while
there is at least one FDA-approved AI-based device available for dia-
betic retinopathy screening in adults, which analyzes retinal images
using a cloud-based software program to output a positive or negative
result82, other clinical outcomes (e.g., CVD and MASLD) are in the
development stage and require validation and refinement, Further
development and validation of AI and MLmethods is needed for early
detection of non-communicable diseases to inform early intervention
and treatment.

Dietary records
Dietary intake has been identified as a modifiable determinant of
individual nutritional status. Current methods for estimating dietary
intake include 24-h dietary recall, food frequency questionnaire,
multiple-day food records or diet records83. Although self-reported
dietary intake has been evaluated using these methods in numerous
epidemiological studies, measurement error, day-to-day variability,
and intensive training, resources, and time burden for personnel and
participants are important limitations. Food composition databases
for estimating themacro- andmicro-nutrient content and intake of, for
example, a 24-h recall, may be limited. For example, in one study, half
of the available ~100 food composition databases globally were last
updated more than 10 years ago with some only available for 1980-
1989, limiting the data on data such as ultra-processed foods84.

It is important to develop and validate methods for accurate
dietary intake in pregnancy and during critical periods such as pre-
conception, pregnancy, and early in life. Methods such as wearable
devices85–87, image-based assessment88, and novel biomarkers66may be
used to accurately capture dietary intakes. For example, ML methods
has been used to determine a gutmicrobial signature of specific whole
foods (e.g., broccoli, nuts, barley) in men and women44,66. However,
these methods may require additional expertise and time in proces-
sing and analyzing the resulting data88. In order to address the gap of
dietary intake of adolescent females in low- and middle-income set-
tings, a mobile AI-technology–assisted dietary assessment technique,
the “Food Recognition Assistance and Nudging Insights” (FRANI) app
was developed and validated against weighed food records as a
ground truth in Vietnam89. Dietary intake was assessed on three non-
consecutive days (i.e., 2 weekdays, 1 weekend). A smartphone with the
FRANI appwasprovided andparticipants (12–18 y)were trained to take
photos of each instance of food consumption. Equivalence between
FRANI and weighed records was determined at the 10% bound for
calories, protein, fat, and four micronutrients, and at the 15% and 20%
bound for carbohydrate and several other vitamins and minerals,
suggesting anaccurate estimationofmost intakes. Somewider bounds
were observed for vitamins A and B12, possibly due to lower frequency
of consumption, estimation errors, and large variance, small sample

size, and limitations of FRANI in assessing vitamin A-rich fruit and
vegetables and vitamin-B12–rich foods in mixed dishes. Other limita-
tions included the need for training, recall bias, changes in eating
patterns due to taking photos while eating, and limitations of recog-
nizing less common foods. However, findings demonstrate the
potential for AI-assisted dietary intake estimation in the context of
maternal and child health, particularly in low-resource settings.

Precision nutrition applied in maternal and
child health
In this section, we describe someexamples of using precision nutrition
approaches to optimize an intervention in a study in infants and chil-
dren. AdvancedAI-based precision nutrition approaches arebeginning
tobeapplied inmaternal and child health contexts. Engagement of key
stakeholders, including scientists, local and public authorities, and
healthcare professionals, and incorporation of cultural practices, reli-
gion, language, caregiving norms, and family structure into precision
nutrition-based recommendations is critical to the success and scale-
up of precision nutrition in maternal and child health.

AI-guided precision total parenteral nutrition
Recently, AImethods were used to guide and optimize total parenteral
nutrition (TPN) formulas for infants in the neonatal intensive care unit
(NICU)90. Using information collected routinely in electronic medical
records, the AI model “TPN 2.0” identified 15 specific formulas that
improved safety, reduced cost, was rated higher by physicians com-
pared to the current practice in a blinded study, and had fewer mor-
bidities such as necrotizing enterocolitis. This model, employed using
transformer architecture, may be scaled to LMICs given that the data
for the model are already collected as part of the standard of care.

Microbiota-directed complementary food
Microbiota-directed complementary food (MDCF) has demonstrated
success over traditional ready-to-use therapeutic food (RUTF), high-
lighting the utility of a precision nutrition approach using host gut
microbiomeas an input variable91,92. RUTFsweredesigned to treat SAM
in children; tailoring for gut microbial composition may be an
important additional therapeutic target. InterventionwithMDCF twice
daily for 3 months increased the abundances of plasma proteins
associated with improved growth, bone health, immune function and
neurodevelopment in malnourished children in Bangladesh, com-
pared to standard RUTF. Clinically, the mean rate of growth per week
was greater in the MDCF group (WLZ; MDCF: 0.021 (0.014, 0.029) vs.
RUTF: 0.010 (0.003, 0.017), and specific gut bacteria correlated with
WLZ were increased. This intervention was given for only 3 months;
longer follow-up studies will determine if this improved growth is
sustained over time. Findings are consistent with recent studies in
adults that have demonstrated that outcomes of dietary interventions
depend on the baseline gut microbiome of the host, which varies by
individual18,19. Tailoring diets with microbiome-targeting or directed
foods for addressing nutritional and health challenges in children and
adults is warranted.

Potential for precision nutrition in maternal and
child health
Digital twins
Digital twins are virtual systems (or replicas of machines) used to
simulate how aproductmaybe optimized by adjusting oneormultiple
factors—in a software environment93,94. Originating in engineering, and
similar to the counterfactual in epidemiology, the concept of digital
twins is increasingly being applied to medicine (e.g., “patient-specific
digital twins”). Patient data, collected from the whole body to the
subcellular level, can be collected and ingested into devices or algo-
rithms, which calculate for example, the amount of insulin to deliver
from an implanted glucose sensor, or risk assessment for thrombosis
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from clinical measurements93. The concept of “digital twins” is a pro-
mising approach that involves integrating biological data from the
whole-body to the subcellular level with clinical data from patients.
Findings can be used for precision nutrition andmedicine to tailor and
individualize treatment. The integration of AI for precision nutrition,
to predict individual response to a given intervention holds promise,
particularly in extending the reach of traditional health care systems in
maternal and child health and in low-resource settings. Integration of
digital twins into existing healthcare systems needs to address com-
putational complexity, and to tailor nutrition interventions to preg-
nant women and their children.

Use of fecal volatile organic compounds as a biomarker of gut
microbiota composition
Microbiome signatures could be a novel bioindicator to predict
response to nutritional interventions. Fecal volatile organic com-
pounds may predict intestinal microbiota composition and meta-
bolic function, given that these compounds are produced in the gut
primarily by intestinal microbes as part of the fermentation of non-
starch polysaccharides95. Volatile organic compounds (VOCs) can be
measured using a commercial portable, self-contained unit96. For
example, a recent study in Malawi and Kenya demonstrated that
these compounds predicted mortality among hospitalized children
with severe acute malnutrition96. In this study, a pipeline of machine
learning classifiers were used to compare fecal volatile organic
compounds of the children, finding that these profiles were distinct
between children who survived and those who died (area under the
curve = 0.71), likely reflecting differences in the gut microbiota,
although sequencing was not conducted to confirm. The SVM algo-
rithm best predicted child mortality in this study. However,
prediction via VOCs is challenged by variability in VOC composition
across individuals, standardization issues, and practical application
constraints. Further research is needed to inform assessment of
VOCs as a biomarker in nutrition studies, to determine or describe
normal profiles of VOCs and validate the biomarker in different
populations.

Use of plasma proteomics for assessment of anemia and
micronutrient deficiencies
The etiology of anemia and micronutrient deficiencies are complex
and multifactorial. Hence, a holistic approach is needed to for
screening and interventions for prevention and treatment. Validated
biomarker panels for micronutrient status assessment is needed to
inform screening and interventions in the context of maternal and
child health and in low-income settings. In this context, identification
and quantification of plasma proteomics97 could help support
screening quantification of protein biomarkers ofmicronutrient status
in undernourished children in low- and middle-income settings98.
These approaches require minimal sample size and are well-poised to
screen for multiple micronutrient deficiencies and inflammatory bio-
markers at a time in a single platform99. Determination of the precise
cluster of plasma proteins is needed to precisely assess micronutrient
and inflammation status, which may be possible via machine learning,
and to develop a field-friendly affordable biomarker panel for the
assessment at the population level.

Use of deep learning and artificial intelligence for disease
diagnosis
Small bowel enteropathies (e.g., Environmental Enteric Dysfunction
(EED), celiac disease, tropical sprue, and HIV enteropathy) account for
a significant proportion of undernutrition in children in low-income
settings. Deep learning and AI-based approaches can be used for
screening and diagnosis of small intestinal enteropathies. Histo-
pathology is the gold standard for the diagnosis of all these conditions,
but with significant overlaps such as villous blunting and crypt

elongation. The application of convolutional neural networks for
image analysis demonstrated accuracy in the diagnosis of EED and
celiac disease100. The use of deep learning methods on the images
obtained by video capsule endoscopy is another example of AI-based
application for disease detection101. However, more precise tools or
approaches are needed to diagnose enteropathies to mitigate the
nutrition-related burden and consequences.

LLM-powered coach training frontline health workers on early
childhood development curricula
In South Africa, LLMs, a form of artificial neural network based on
generative AI, are being developed to support frontline health care
workers102. These LLMs will distill information and content on early
childhood development and the Kangaroo Mother Care method,
promoting skin-to-skin contact and self-care for exclusive breast-
feeding, particularly for infants born preterm or low birth weight103.
The curriculums developed by the LLMs will be tested for safety,
accuracy, usability, and added value. This is one of 50 innovations
recognized by the Bill & Melinda Gates Foundation Grand Challenges
Initiative to harness LLMs to reduce global inequality.

Limitations and challenges of using AI in maternal and
child health
There are several limitations and challenges to use of AI in the context
of maternal and child health and in resource-limited settings. Metho-
dological limitations include model generalizability, data privacy, and
potential biases in the training data. National and regional guidelines
are needed for regulatory frameworks for data privacy. Population-
specific training datasets are needed for development and validation
of algorithms for maternal and child health and in LMICs. Application
and feasibility limitations include fitting in AI-based assessments or
predictions into already overworked, under-resourced healthcare
staff. Identification of key variables that explain inter- and intra-
individual variation is needed to inform precision nutrition
interventions.

Conclusions
Malnutrition continues to represent a major threat to maternal and
child health, particularly in low- and middle-income settings. Preci-
sion nutrition methods need to be integrated into screening and
interventions for maternal and child health and in LMICs. Further
research is needed to establish the benefits of precision nutrition in
maternal and child health, particularly in LMICs, which may lack the
infrastructure and resources to implement precision nutrition into
routine practice, as well as have very different microbiome compo-
sitions and diets. In resource-constrained settings, limited clinical,
laboratory, and financial resources may constrain routine nutritional
assessment and microbiome and phenotyping assessments. While
technological advances are driving the cost of these innovations
down, recent advances in laboratory and quantitative methods and
technologies can enhance accessibility at the point of care. Further,
precision nutrition approaches need to socio-cultural contexst,
preferences, and the food environment. Privacy concerns will need
to be addressed, particularly considering the novel methods with
optical imaging and body composition. With computational power
widely accessible and increasinglymore affordable around the world,
an AI and ML approaches may democratize the practice of public
health and medicine far more rapidly than other methods. Precision
nutrition—and integration of AI and ML methods and improved
computational power and technological advancements—needs to be
integrated to nutritional screening, diagnosis, and treatment, and
inform the development of nutritional interventions to improve
maternal and child health. Precision nutrition approaches can help
enhance the design, monitory, and evaluation of interventions to
improve maternal and child health.
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