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How climate change and deforestation
interact in the transformation of theAmazon
rainforest
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Paulo Artaxo 1, Tasso Azevedo4, Jos Lelieveld 5, Carlos A. Nobre 6,
Christopher Pöhlker 7, Ulrich Pöschl 7, Julia Shimbo4,8, Xiyan Xu 9 &
Luiz A. T. Machado 1,7

TheAmazon rainforest is one of Earth’smost diverse ecosystems, playing a key
role in maintaining regional and global climate stability. However, recent
changes in land use, vegetation, and the climate have disrupted biosphere-
atmosphere interactions, leading to significant alterations in thewater, energy,
and carbon cycles. These disturbances have far-reaching consequences for the
entire Earth system. Here, we quantify the relative contributions of defor-
estation and global climate change to observed shifts in key Amazonian cli-
mate parameters. We analyzed long-term atmospheric and land cover change
data across 29 areas in the Brazilian Legal Amazon from 1985 to 2020, using
parametric statistical models to disentangle the effects of forest loss and
alterations of temperature, precipitation, and greenhouse gas mixing ratios.
While the rise in atmosphericmethane (CH4) and carbon dioxide (CO2)mixing
ratios is primarily driven by global emissions (>99%), deforestation has sig-
nificantly increased surface air temperatures and reduced precipitation during
the Amazonian dry season. Over the past 35 years, deforestation has accoun-
ted for approximately 74% of the ~ 21mmdry season−1 decline and 16.5% of the
2°C rise in maximum surface air temperature. Understanding the interplay
between global climate change and deforestation is essential for developing
effectivemitigation and adaptation strategies to preserve this vital ecosystem.

The Amazon rainforest plays a key role in the Earth’s hydrological,
energy, and carbon cycles1–3. It is a highlybiodiverseenvironment4, and
influences weather patterns and climate conditions on a continental
scale5–7. As the largest tropical forest on Earth, the biome stores
between 150 and 200 billion tons of carbon above and below the
ground8,9, and it has acted as a major sink for carbon dioxide (CO2)

10,11.
Over the last decades, however, parts of the forest have become

carbon sources rather than carbon sinks, and droughts appear to be a
key driver in this transformation10,12–14. Accordingly, the impact of cli-
mate change anddeforestation on thewater cycling in the Amazon has
been carefully investigated15–18. Recent studies have further high-
lighted how ocean–atmosphere teleconnections modulate carbon
assimilation and evapotranspiration dynamics across South America’s
major biomes, including the Amazon, at seasonal to interannual
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scales19,20. These findings emphasize the need to contextualize Ama-
zonian carbon and water fluxes not only in terms of local land-use
changes but also in large-scale climate drivers. Of the nine processes
identified as critical for Earth system stability21, five with the most
critical status, namely climate change, biosphere integrity, land system
change, freshwater change, andbiogeochemicalflows, are significantly
influenced by the Amazonian Basin, particularly at regional to con-
tinental scales.

The increase in CO2 and other anthropogenic greenhouse gases
(GHG) in the Earth’s atmosphere is warming the planet and generating
feedbacks that alter the global climate. This effect will henceforth be
referred to as Global Climate Change. A temperature increase of about
0.15 °C per decade has been observed in Amazonia since 1950, along
with an increase in dry season length by 6.5 days per decade22. Highly
deforested areas experience a dry season five weeks longer compared
to 197923. Further increases in dry season length might trigger positive
feedback between enhanced flammability of the vegetation, resulting
in an intensified fire regime, a perturbed hydrological cycle, as well as
an increased vulnerability of the forest to droughts and fires24–26.
Recent studies have also evaluated how climate and land use changes
jointly affect other environmental variables such as hydrology. For
instance, Cavalcante et al.27 assessed the Itacaiúnas River Basin and
found that climate variability and deforestation have opposite effects
on streamflow. Similarly, Panday et al.28 demonstrated similar patterns
in the Xingu River Basin using a combination of satellite observations
and modeling approaches. These findings highlight the complexity
and scale dependence of interactions between climate change,
deforestation, and hydrological responses in the Amazon.

Deforestation, forest degradation, and wildfires significantly alter
the Amazon’s climate, which has far-reaching consequences for the
global climate system29,30. The Amazon Basin covers about 59% of the
territory of Brazil, spanning around 5 million km2. From 1985 to 2020,
there was a significant drop in forest cover, from 89.1% to 78.7%, while
pastureland increased from 4.2% to 14.8%31. Deforestation directly
affects precipitation rates and spatial patterns, and the forest’s ability
to remove CO2

32–38. Together, human activities associated with land
use change and global climate change are disrupting the natural bal-
ance of the ecosystem, leading to a range of environmental impacts
that affect both the region and the whole planet15–17,39. The impact of
climate change on the Amazon rainforest and its potential for carbon
release raises concerns for the global climate system feedback loop18.
Particularly, deforestation has a substantial impact on the regional
climate of Amazonia5,22,32,40,41. Although previous studies have investi-
gated the combined effects of deforestation and climate change in
specific subregions or watersheds27, the relative roles of deforestation
and global climate change and their interaction in driving the trans-
formation of theAmazon remainpoorly understood andhave yet to be
disentangled25,42.

In this study, we use observational/reanalysis and remote sensing
data to quantify the effects of 35 years of deforestation and global
climate change on the regional climate in Brazil’s Legal Amazon (BLA).
The datasets used, along with their spatial and temporal coverage, are
summarized in Table 1. The BLA was chosen because it corresponds to
the official jurisdiction used in Brazil’s environmental policy and
monitoring frameworks (e.g., MapBiomas43), and because high-

resolution, long-term land use data are reliably available for this ter-
ritory. Moreover, the BLA encompasses the majority of the Amazon
biome within Brazil, where deforestation has been most intense and
extensively monitored. A comprehensive assessment of the long-term
trends of key climatic variables allowed us to quantify changes and
determine the relative contributions from the driving forces.

Results
Quantifying global and regional effects across Brazilian
Amazon areas
To disentangle the regional effects of deforestation from the global
effects of climate change in the Brazilian Amazon, data on 29 areas of
~300 × 300 km2 between 1985 and 2020 were considered. Deforesta-
tion is defined here based on the MapBiomas land cover classification
as any loss of native forest vegetation, regardless of the resulting land
use class. The particular area size was selected for two reasons. First,
they encompass a sufficiently large area to represent the observed
path length of deforestation, as indicated by previous studies38, and
have recently been adopted in similar spatial analyses of Amazonian
land cover dynamics44. This ensures that the effects of deforestation
within a given region are adequately captured and analyzed. Second,
the dimension of ~90,000 km2 is within the mesoscale range,
encompassing atmospheric phenomena like thunderstorms, squall
lines, and deep convection, which are characterized by radii between
75 and 150km45. The 29 areas were chosen to maximize spatial cov-
erage of the BLA while excluding areas dominated by water bodies or
permanent wetlands, ensuring reliable surface climate and land cover
analysis. To assess the robustness of our findings across different
spatial scales, we conducted a sensitivity analysis using smaller grid
sizes (50 × 50, 100 × 100, and 200× 200 km2). The results, shown in
Supplementary Fig. S1, indicate that the long-term trends in tem-
perature andprecipitation remain consistent across scales, reinforcing
the suitability of the 300 × 300 km2 resolution adopted in this study.
However, greater variability during the dry season suggests a slight
scale dependency for the precipitation in the analysis.

Figure 1 presents the 29 areas analyzed within the BLA. The land-
use classification (see Methods for a detailed description) for 1985 (a)
and 2020 (b) is overlaid on the areas, providing a clear representation
of the deforestation that has occurred in each area over time. The
northwest areas of the Amazonian region stand out due to their high
fraction of natural forest cover. In contrast, the southern and eastern
areas face alarming levels of deforestation, commonly referred to as
the arc of deforestation. The deforestation fraction for each area
(Supplementary Fig. S2) varies significantly across the 29 areas. Upon
analyzing the variation in forest cover across areas, it was determined
that the 75th and 25th quantiles of vegetation loss corresponded to
19% and 0.6%, respectively. These findings underscore the substantial
spatial variation in the extent of deforestation across different regions.

Deforestation and global climate change effects
We collected time series data for average methane (CH4) and CO2

mixing ratios, maximum surface air temperature (Tmax), and average
cumulative monthly rainfall for each area. The maximum surface air
temperature was used because it provides the clearest and most sta-
tistically significant indication of the impact of deforestation

Table 1 | Summary of datasets used in the analysis, including spatial and temporal coverage and data sources

Variable Dataset/source Spatial resolution Temporal coverage Access platform

Land use/deforestation MapBiomas Collection 6.043 30m 1985–2020 Google Earth Engine

Rainfall (dry season) GPM (Global Precipitation Measurement) ~11 km 2000–2020 Google Earth Engine

Maximum temperature (2m) ERA5 Reanalysis61 0.25° × 0.25° 1985–2020 Google Earth Engine

CH4 (400hPa) AIRS (Aqua satellite)59 1° × 1° 2002–2020 NASA Giovanni

CO2 Gridded Daily OCO-260 0.5° × 0.625° 2015–2020 NASA Giovanni
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compared with the minimum and mean air temperatures. A summary
of datasets used, including their resolution and coverage, is provided
in Table 1. The deforestation dataset spans the period from 1985 to
2020; however, each variable dataset covers a different time interval,
as described in Table 1. This analysis is based on long-term remote
sensing and reanalysis datasets, including MapBiomas (land cover),
ERA5 (temperature), GPM (precipitation), AIRS (CH4), and OCO-2
(CO2). A detailed description is provided in the Section “Methods”.
Each variable dataset shows a distinct pattern of changeover the years,
as shown in Supplementary Fig. S3.

Deforestation and global climate change influence rainfall, tem-
perature, and GHGmixing ratios in distinct ways across the wet and dry
seasons14,46,47. However, several studies have shown that the regional
climatic impacts of deforestation aremore pronounced andmeaningful
during the dry season, when the forest is more vulnerable to moisture
deficits and surface–atmosphere interactions are intensified. In our
analysis, the dry season consistently exhibited stronger correlations
between deforestation and key climate variables, including maximum
temperature and precipitation (see Supplementary Fig. S4), while the

wet season showed weaker and often statistically insignificant relation-
ships (see Supplementary Fig. S5). Therefore, our study focuses exclu-
sively on the dry season to isolate and quantify the climatic effects of
deforestation with greater precision. A detailed explanation and sup-
porting statistical evidence are provided in the “Methods”, subsection
“Definition of wet and dry season, and data processing”.

Our analysis indicates that the relationship between the variable
and time is linear, while the relationship with deforestation follows a
logarithmic pattern. For example, the analysis of the maximum daily
temperature (Fig. 2) shows that during the dry season, these two
distinct processes exhibit a nearly linear temporal trend across all
deforestation extensions, which is attributed to global climate
change, as evidenced by the gradual increase in maximum tempera-
ture over the years. Additionally, a logarithmic effect of deforestation
is observed, irrespective of the year, whereby an extension in the
deforestation area corresponds to a rise in daily maximum tempera-
ture. The other atmospheric variables considered in this study (CO2,
CH4, and precipitation) also exhibited meaningful variability asso-
ciated with both long-term global trends and/or regional

Fig. 1 | Spatial distribution of forest and non-forest land cover in the Brazilian
Legal Amazon (BLA) in 1985 (left) and 2020 (right), based on classifications
from MapBiomas Collection 6.043. The green areas represent forest cover as
defined by MapBiomas, corresponding to regions with intact native vegetation.
Non-forest land covers are represented in yellow, red, and beige tones, encom-
passing pasture and agriculture, urban areas, and natural non-forest formations,
respectively. Water bodies are displayed in blue. The black line delineates the

boundary of the BLA, and the black squares represent the 29 fixed grid cells (each
~300 × 300km2) selected for our analysis. These regionswere selected to assess the
relative impact of deforestation and global climate change on dry season tem-
peratures, precipitation, and GHG mixing ratios. The figure illustrates widespread
forest loss over the past 35 years, particularly in the southeastern portion of the
Amazon.

Fig. 2 | Relationship between dry season daily maximum surface temperature
(Tmax) with (a) year, and with (b) deforestation percentage, for all 29 areas. In
panela, datapoints are coloredbydeforestationpercentage, and a linearfit is applied

(R =0.47, p<0.05). In panel b, data points are colored by year, and a logarithmic fit is
applied (R = 0.63, p <0.05). Both relationships are statistically significant. The yellow
lines represent the fitted linear (a) and logarithmic (b) models.
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deforestation (see Supplementary Fig. S4). Regional deforestation
patterns strongly modulate dry season precipitation, and the mixing
ratios of GHG (CO2 and CH4) exhibit clear long-term trends, primarily
driven by global changes. In general, variables more strongly influ-
enced by global climate change exhibited smoother temporal
increases, while those sensitive to land cover change respondedmore
directly to deforestation. Three distinct patterns emerge: variables
with a clear long-term trend and a weaker influence of deforestation
(CH4 and CO2 mixing ratios), a variable sensitive to deforestation and
long-term trends (maximum surface air temperature), and a variable
with a strong dependence on deforestation and a weak long-term
trend (rainfall).

We assessed the impacts of regional and global contributions of
these parameters during the dry season by fitting linear and logarith-
mic equations to the dataset. More details are presented in the Section
“Methods”. These results contrast with a recent study, which reported
a linear response of temperature to deforestation48. However, their
analysis does not disentangle climate change’s contribution from
deforestation, which our findings indicate is essential for capturing the
nonlinear response. By isolating the effects of deforestation, we
demonstrate that temperature increases with forest loss logarith-
mically, emphasizing the distinct role of land-use changes inmodifying
regional climate. This interplay is explored in detail in the following
sections, where we disentangle the respective contributions of time
and forest loss to the observed patterns.

Modeling the evolution of atmospheric variables
To assess the effects of deforestation and global climate change on
GHG mixing ratios and weather variables, we developed an approach
that integrates linear temporal trends with the exponential trends
associated with deforestation. These effects interact non-linearly due
to the interdependence of deforestation (D) and time (t). As detailed in
section Methods, we obtained a parametric equation (Eq. (4)) that
incorporates the linear time dependence, the logarithmic dependence
on deforestation, and their nonlinear interactions. The parameters of
Eq. (4) were obtained by fitting observational data to separately cap-
ture the contributions of deforestation and global influence to
observed changes in climate variables.

Using the parameterized equation, we effectively isolated the
individual effects of global emissions and deforestation on changes in
GHG mixing ratios and weather parameters. This was achieved by
differentiating Equation (4) with respect to time and deforestation,
holding either deforestation or time constant, allowing us to distin-
guish the unique contributions of global climate forcing and defor-
estation dynamics. Integrating the derived equations for time and
deforestation enabled us to quantify the specific contributions of
deforestation and global climate change to the observed variations
over the 35 years. To account for regional variation, we applied the
parameterized equation individually to all 29 studied areas, each
covering 300 × 300 km2. While our primary results present Amazon-
wide averages, we also present regional distributions in a box plot,
including the statistics for all areas. Further details on the equation
formulation and parameter definitions can be found in the “Methods”,
subsection “Derivation of parametric fits and calculations of defor-
estation and global contributions”.

Supplementary Figure S6 presents the fitted three-dimensional
surfaces that depict how each climate variable responds to both time
(year) and the fraction of deforestation, as modeled by Eq. (4). These
visualizations offer complementary insight into the nonlinear interac-
tions captured by our approach. The parametric formulations used to
construct these surfaces are provided in Table 2 and serve as the foun-
dation for disentangling the respective contributions of global climate
change and regional deforestation. To assess the model’s performance,
we evaluated the quality of the fit for each variable, which is also shown
in Table 2. In addition, Supplementary Figure S7 presents the correlation
coefficients individually for the linear and logarithmic contributions,
showing that the dry season fits were statistically significant, with con-
fidence levels above 95%, unlike those observed for the wet season. All
fits were statistically robust (p<0.05) and showed strong correlation
coefficients (R ≥0.69), confirming the reliability of our approach.

Disentangling the influence of deforestation and climate change
Although each variable dataset covers a different period, as shown in
Table 1, the fitted equations enable us to extrapolate all analyzed
variables to the same period, from 1985 to 2020, which is the period
covered by the land use dataset. This extrapolation serves as a refer-
ence for understanding the variation of GHG mixing ratio, tempera-
ture, and precipitation over the same range of years. Figure 3 presents
the overall changes calculated over the 35-year period, as well as the
specific contributions from global climate change and deforestation.
All calculations were conducted exclusively for the dry season. The
boxplots, based on data from all 29 regions, offer a robust statistical
summary across the Amazon biome.Median percentage contributions
are shown next to the bars, while the deltas indicate the average
changeobserved for each variable.Notably, the relatively short lengths
of the boxplots for GHGmixing ratios reflect much lower variability in
their contributions compared to thoseof themeteorological variables.

For the gasmixing ratios, CO2 and CH4 exhibited notable increases
of approximately 87 ppm and 173 ppb, respectively. Additionally, the
maximumsurface air temperature experienced a rise of ~2 °C, while the
total precipitation during the dry season decreased by about 21mmdry
season−1, on average. By using our parametric equations, we estimated
the individual contributions of deforestation and climate change to the
observed variabilities. The modulation of the maximum surface air
temperature is intricately shaped by the dual influence of global climate
change, which exhibits a discernible linear rise over successive years,
and the impact of land use transformations resulting from the conver-
sion of forests into pasture and agricultural areas. Separating the dis-
tinct influences of regional and global factors reveals that deforestation
in the Amazon region resulted in a rise of 0.39 °C in the average daily
maximum temperature over 35 years, corresponding to ~16.5% of the
total contribution.While this value represents themean across all study
areas, the variation inmaximum temperature in the study area with the
highest percentage of deforestation (28.5%) reaches values as high as
1.25 °C. In contrast, themore comprehensive effects of global influences
contributed to a temperature increase of 1.63 °C, corresponding to
83.5% of the 2.0 °C observed temperature increase. These results
highlight that the observed increase in maximum temperature during
the dry season cannot be attributed solely to global climate change or
deforestation. Instead, it reflects a synergistic interaction in which long-

Table 2 | Parametric equations for the dry season obtained for CH4, CO2, Tmax, and total rainfall during the dry seasonwith the
fit statistics, namely the correlation coefficient (R) and the p-value

Variable Parametric equation R p-Value

CH4 [ppb] yðD, tÞ= lnðD Þ½0:26946t� 539:03626�+4:241t� 6728:3 0.97 <0.05

CO2 [ppm] yðD, tÞ= lnðD Þ½�0:0242t+48:804�+ 2:528t� 4694:697 0.99 <0.05

Tmax [°C] yðD, tÞ= lnðD Þ½�0:00973t+ 20:131�+0:072t� 112:56 0.74 <0.05

Rainfall [mm dry season−1] yðD, tÞ= lnðD Þ½�0:131t+ 236:267�+0:188t� 241:307 0.69 <0.05
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termglobalwarmingamplifies the sensitivity of local climate to land-use
change, while deforestation intensifies regional heating and reduces
evapotranspiration, further exacerbating the warming trend.

These results align with previous observational studies. For
instance, Gatti et al.14 reported that regions in the eastern and south-
eastern Amazon, where deforestation is most intense, exhibited
stronger warming trends and carbon release compared to more pre-
servedwestern regions. This spatial differentiation, which is supported
by Supplementary Fig. S8, reinforces our findings that deforestation
contributes disproportionately to regional temperature increases.
While prior work did not explicitly separate regional and global con-
tributions, our study builds on these patterns by providing a first-order
quantification of their respective roles in shaping temperature and
rainfall trends across the Amazon basin.

Related to precipitation, our findings reveal that the reduction in
forest cover results in a 15.8mm decrease in precipitation per dry sea-
son in the Amazon region, constituting 74.5% of the overall effect. On
the other hand, global climate change contributes to a reduction of
5.2mm in precipitation per dry season, representing 25.6% of the total
effect. These results highlight the substantial impactof deforestationon
the rainfall regime in the Amazon, with the primary effect occurring
during the dry season. Recent studies estimated a 3mmyr−1 reduction
in rainfall for every percentage point decrease in forest cover38. Based
on this rate, thedecrease in forest cover from89.1% to 78.7% reported in
our study, during the 35 years, would correspond to a rainfall reduction
of approximately 30 mm, during the whole year, not far from our cal-
culation only for the dry season. As previously stated, these numbers
represent the average for the entire Amazon region. However, when
considering the study areawith the highest percentage of deforestation
(28.5%), there is a discernible rainfall reduction that could reach values
of around 50.5mm during the dry season. Numerous studies have
examined the complex changes in rainfall patterns resulting from
deforestation, global climate change, or the combined effects of both
factors49. In addition, previous research showed the different seasonal
impacts ofdeforestationoncloud cover50 while highlighting thedistinct
influences of deforestation and climate change on the rainfall regime51.
Shallowcloudspredominate in deforested areas, while deep convection
is favored in forested surfaces52.

Considering the GHG mixing ratios, CO2 has global effects that
drive the overall variability and contribute to anapproximately 87 ppm

increase in mixing ratio over the 35 years modeled. For methane, the
mean contributions of the effects of deforestation and global change
were of the same order, 0.1% and 99.9%, respectively. Considering the
total background mixing ratio, on average, the regional influence
resulted in a small increase in the totalmethanemixing ratio, while the
global influence contributed to a change of ~173 ppb. When we apply
the model to describe the regional effect over the highest deforesta-
tion fraction (28.5%), the mixing ratio changed by around 0.83 ppm,
giving a maximum regional change of around 6.9%, which is greater
than the average effect. The same reasoning can be applied to ana-
lyzing themaximum regional fluctuation in the CH4mixing ratio. After
subtracting the background mixing ratio, methane levels changed by
approximately 75 ppb over the 35-year data period, and by around
0.80 ppb between the two hotspots of forest and deforestation. On
average, methane varies by around 0.12%, but locally it can reach
values of up to 1.06%.

Since GHGs have a long residence time in the atmosphere, their
mixing ratios vary slowly and smoothly in space and time in all areas.
The fact that the GHG observational data refer to the troposphere also
contributes to the smooth variation in mixing ratio. As highlighted in
the Introduction section, certain regions within the Amazonian basin
may no longer act as carbon sinks but have likely become carbon
sources due to deforestation, affecting the net ecosystem exchange
(NEE) andeddy covariancefluxes.However, it isworthnoting thatGHG
mixing ratios are disconnected fromNEE53. The changes in CO2mixing
ratios are relatively modest, ranging from 2 to 4 ppm14,53, which
translates to less than 1% of the total CO2 mixing ratio. Removing the
background mixing ratio, the change in mixing ratio over the 6 years
analyzed with satellite data changed by about 12%.

Discussions
Preserving Amazonia’s forest cover: anticipating future impacts
As illustrated in Fig. 4, our results demonstrate the distinct influence of
global climate change and regional land-use change on Amazonian
climate dynamics. Deforestation plays a dominant role in modulating
meteorological variables during the dry season. On average, it
accounts for 16.5% of the observed increase in maximum daily tem-
perature (~0.40 °C) and 74.5% of the reduction in dry season pre-
cipitation (a net loss of 15.8mmdry season −1). In contrast, GHGmixing
ratios were predominantly influenced by global factors, with

Fig. 3 | Contributions of deforestation and climate change to Amazonian
greenhousegases, temperature, andprecipitation (1985–2020).Boxplots of the
deforestation and global climate change contributions to methane (CH4), carbon
dioxide (CO2), maximum surface temperature, and total precipitation during the

dry season between 1985 and 2020, considering individually each of the 29 areas.
Values near the bars indicate the median contributions, while deltas at the top of
the chart denote the variable’s mean value.
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deforestation exerting only a minor effect. These findings provide a
foundation for exploring how continued forest loss may intensify
regional climate disruption in the coming decades. Thus, we examine
potential future scenarios based on recent trends in deforestation and
discuss their implications for Amazonian resilience and climate
feedbacks.

Our findings show that the most pronounced climate impacts
occur early in the deforestation process, within the first 10–40% of
forest cover loss. This nonlinear response suggests a steep initial
degradation of local climate regulation functions. While further
deforestation continues to alter the climate, the marginal impact
becomes less dramatic after this threshold. It underscores the dis-
proportionate importance of preserving existing forest areas before
they cross these critical initial loss intervals. Comparisons between the
least and most deforested areas further reinforce this aspect: regions
that have retained more forest cover show greater climate stability,
while those with extensive land cover conversion exhibit intensified
warming and drying trends (see Supplementary Fig. S8). These results
emphasize that avoiding even early-stage deforestation is essential for
safeguarding the biome’s meteorological resilience and minimizing
future disruptions to rainfall and temperature patterns.

The observed changes in the rainfall and maximum temperature
can potentially change the Amazonian climate. Using the developed
parametric equations (Table 2) we extrapolated the effect of the next
15 years considering the maintenance of deforestation rates in the last
five years (2016–2020) so that the deforested areas, obtained with
linear regression with the deforestation data from the referred period,
would reach a fraction of 32.4% in 2035 (here, considering the rate
obtained from the 29 areas). In this scenario, CO2 and CH4 mixing
ratios would increase by 36.7 ppm and 78 ppb, respectively; the
maximum surface temperature would also rise by about 0.62 °C, and
total rainfall would decrease by 7.3mm per dry season. Therefore,
compared to 1985 values, in 2035, theAmazonian region is expected to
experience a total temperature increase of 2.64 °C, with rainfall
reduced by 28.3 mm per dry season, and GHGmixing ratios increased
by 123.3 ppb for CO2 and 250.8 ppb for CH4.

While our findings suggest trends consistent with early signs of
biome destabilization, we acknowledge that our analytical approach
based on statistical extrapolation has limitations in its ability to cap-
ture dynamic feedbacks, threshold responses, or ecological resilience

mechanisms. However, by disentangling historical contributions of
deforestation and global climate change, our method offers a valuable
first-order assessment of likely trajectories if current trends persist.
While limited, this approach provides a preliminary indication of the
risks associated with ongoing deforestation and climate stressors in
the Amazon.

The Northeast region of Brazil, a semi-arid region, lies east of the
Amazon rainforest and features a “zona da mata" near the coast,
characterized by considerable rainfall. At the same time, the Caatinga
biome extends further inland and is characterized by semi-arid con-
ditions, with large seasonality and a short wet season. The Cerrado,
located directly south of the Amazon rainforest, has a climate char-
acterized by high seasonality, with distinctwet and dry seasons, during
which there are typically few rainy days. The typical climate of the
Caatinga and Cerrado biomes differs in terms of vegetation cover, the
duration of the dry season, and total rainfall. Although it is uncertain
whether deforestation in the Amazon will result in the replacement of
the forest by Cerrado or Caatinga because changes in the biome are
complex and do not depend exclusively on the climate, our results
strongly indicate that deforestation processes are escalating expo-
nentially, leading the Amazonian climate towards a potential climate
transformation into a Cerrado-climate type or even worse, a Caatinga
semi-arid climate type.

Summary
In this study, we examined 35 years of environmental data to disen-
tangle the effects of deforestation and global climate change on key
atmospheric variables in the Brazilian Amazon. The analysis reveals
that year-to-year variations exhibit a linear trend, while a logarithmic
function accurately describes the effect of deforestation. Surface
parametric equations considering both yearly and logarithmic varia-
tions as a function of deforestation were successfully derived from
atmospheric parameters. These parametric equations enable the
separation of the specific contributions of global climate change and
deforestation extension to the observed changes over the 35-year
period for each variable. The dry season is when the impacts of
deforestation aremostpronounced,mainlyon rainfall. The cumulative
effects ultimately exacerbate the seasonality even further.

Over the entire 35-year period, there was an increase of around 87
ppm in the mixing ratio of CO2. About all of this increase can be

Fig. 4 | Relative contributions of climate change and deforestation to the Amazonian climate. Diagram displaying the percentage contribution of global climate
change and deforestation to changes in methane, carbon dioxide, maximum surface temperature, and precipitation during the dry season.
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attributed to global emission changes, with a small portion due to the
extent of deforestation. A similar tendencywas observed for CH4. This
gas increased by around 167 ppb, of which 99.9% was attributed to
global emission change. If the background mixing ratio is not con-
sidered, vegetation’s contribution to changes in gas mixing ratios is
relatively much more important. The maximum surface air tempera-
ture exhibited a rise of approximately 2.0 °C, with global climate
change and the deforestation effect contributing 83.6% and 16.5%,
respectively. The total precipitation during the dry season showed a
reduction of about 21mm dry season−1, with deforestation contribut-
ing to a decrease of ~15.8mm dry season−1 (74.5%) and global climate
change leading to a decrease of ~5.2mm dry season−1 (25.5%).

Overall, thesefindings highlight the intricate relationship between
deforestation andglobal climate change in influencing rainfall patterns
across the Amazon. This interaction contributes to nonlinear trends in
precipitation, amplifying the impacts of ongoing climate change. The
observed reduction in total precipitation during the dry season,
combinedwith a significant increase inmaximum surface temperature
linked to deforestation, underscores the crucial role of forest cover in
maintaining a stable regional water cycle andmitigating climate stress.
If deforestation continues unabated, the extrapolation of our results
suggests a further decline in total precipitation during the dry season
and an increase in maximum surface temperature, factors that could
push the Amazon ecosystem toward increasingly unstable states.
Emerging evidence suggests that deforestation in the Amazon is
already altering South American monsoon patterns, resulting in drier
conditions that may compromise the long-term resilience of the
rainforest47,54.

In addition, the results of this study suggest that Amazon is
moving through a critical transition, potentially exacerbated by
extreme events such as the unprecedented 2023 drought55,56. How-
ever, we remain cautious about defining a precise deforestation
threshold that could trigger biome-scale dieback, particularly because
our extrapolation does not fully account for the substantial uncer-
tainties inherent in climate-vegetation interactions, which themselves
remain subject to significant uncertainty57. Together, deforestation
and climate change are driving substantial transformations across the
region during the dry season, resulting in reduced rainfall, elevated
temperatures, and increased atmospheric GHG levels. These findings
underscore the importance of maintaining and restoring forest cover
in the Amazon as a crucial strategy for mitigating climate change and
ensuring the stability of ecosystems.

Methods
Land use and land cover data
The land use and land cover (LULC) data were obtained from the
MapBiomas Project43, an initiative dedicated to monitoring and map-
ping changes in LULC throughout Brazil. The MapBiomas platform
effectively collects and processes extensive geospatial data from var-
ious sources, including satellite imagery captured by different sensors.
By implementing advanced classification and analysis algorithms, it
identifies andmaps alterations in land cover over time.MapBiomas has
generated Brazil’smost detailed, up-to-date, and longest time series of
LULC mapping. We used Collection 6.0 from MapBiomas for this
study. This collection comprises maps with an annual temporal reso-
lution covering the period from 1985 to 2020. The spatial resolution of
the data is 30mbased onLandsat satellite images. The global accuracy
of theMapBiomasCollection 6 land-use and land-covermaps stands at
87.4%. These datasets are available on Google Earth Engine as a data
asset and can be freely accessed through the platform’s website at
https://brasil.mapbiomas.org (accessed June 19, 2022).

In our analysis, deforestation is defined as the conversion of areas
classified as “forest" in MapBiomas to any other land cover class,
including agriculture, pasture, urban areas, water bodies, or natural
non-forest formations. This inclusive definition encompasses all

transitions that lead to forest loss, regardless of the subsequent land
use. Our estimates of deforestation donot consider specific transitions
(e.g., forest-to-agriculture or forest-to-mining). Deforestation fractions
were calculated as annual averages within each of the 29 study areas,
basedon thepercentageof forest cover loss relative to the initial forest
area in 1985. We emphasize that the analysis focuses on the Brazilian
Legal Amazon (BLA), rather than the full Amazon biome, due to the
availability and consistency of spatially explicit deforestation and land
cover data provided by MapBiomas, which is optimized and validated
within Brazilian territory. While the Amazon biome extends beyond
Brazil’s borders, the BLA encompasses the vast majority of its forest
area under national jurisdiction and includes the regions experiencing
the highest rates of deforestation. As such, it provides a policy-relevant
and analytically consistent domain for our regional climate
assessment.

Definition of wet and dry seasons, and data processing
Our analysis evaluated the dry andwet seasons separately to assess the
seasonal impact of deforestation on each variable. Given the spatial
heterogeneity of seasonal cycles across the Amazonian region, we
categorized the dry andwet seasonmonths basedon the 25th and 75th
percentiles of the total integrated rainfall (see Supplementary Fig. S9).
The wet and dry seasons were determined by analyzing the pre-
cipitation patterns specific to each area within the Amazon region. A
comprehensive analysis of the entire time series for each area was
conducted to derive an average precipitation annual cycle. To study
the whole period, we used data from ERA5 from 1985 to 2020. The
objective was not to quantify rainfall amounts, but to describe the
distinct seasonal variations in precipitation patterns, which are accu-
rately depicted by the ERA5 dataset. The 75th quartile, representing
months with the highest annual rainfall, was identified as the wet
season. In contrast, the 25th quartile, representing months with the
lowest total rainfall, was designated as the dry season. It is worth
noting that the composition of each quartile may vary across the
Amazon. Based on quartiles, this methodology ensures an objective
approach to defining the seasons. Thus, the dry and wet season data
were computed for each time series and obtained based on the 25th
and 75th quartiles, respectively, and their annual averages for each
area. Thiswas necessary to ensure accurate comparisons regarding the
change in forest cover.

We evaluate the sensitivity of deforestation to rainfall, tempera-
ture, and trace gas mixing ratios by applying wet and dry season
classifications across the 29 study regions. Statistically significant
trends emergepredominantly during thedry season. In this period, the
relationship between deforestation and climatic variables is particu-
larly strong, with median correlation coefficients of R ~0.75 for max-
imum temperature and R ~0.70 for rainfall. In contrast, during the wet
season, these correlations decline substantially toR ~0.50andR ~0.30,
respectively, and most trends are not statistically significant. Supple-
mentary Figures S4 and S5, along with Fig. 2 (which illustrates the
evolution of dry-season temperature), present scatter plots for both
seasons, highlighting the seasonal contrasts.

Deforestation disrupts the natural modulation of the water and
energy cycles, leading to reduced rainfall and elevated surface tem-
peratures, particularly during the dry season, in line with previous
findings47. The linear component of our model, representing the
influence of large-scale climatic drivers, shows consistently high cor-
relation coefficients for CO2 and CH4 (R >0.90) in both seasons, sug-
gesting that variations in GHGmixing ratios are primarily governed by
global-scale processes and are relatively insensitive to local defor-
estation. In contrast, the logarithmic component, capturing the
regional-scale effects of deforestation, exhibits marked seasonal
variability.

These findings confirm that the climatic impacts of deforestation
are most pronounced during the dry season, offering a more distinct
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and statistically robust signal of its regional influence. Conversely, the
wet season appears less responsive to local land cover changes, likely
due to the overriding influence of large-scale atmospheric dynamics.
Accordingly, our analysis emphasizes the dry season, where the signal
of deforestation can be more accurately isolated and quantified.

Weather and greenhouse gases data
This study utilized time series data for methane (CH4), carbon dioxide
(CO2), daily surface maximum air temperature, and total precipitation
during the dry season for each of the 29 study areas. The datasets are
summarized in Table 1. These datasets were retrieved from Google
Earth Engine (GEE)58 and NASA’s Giovanni platform.

Meteorological data were obtained using custom JavaScript code
within GEE. Specifically, we extracted the following products:

• Daily surface maximum air temperature (2m above ground level)
was obtained from the ERA5Daily Aggregatesdataset, provided by
the European Center for Medium-Range Weather Forecasts
(ECMWF) through the Copernicus Climate Change Service
(C3S). The dataset is available on GEE under the asset ECMWF/
ERA5/DAILY and provides global coverage at a spatial resolution
of 0.25° × 0.25°, spanning the period from 1979 to September
2020. Daily maximum air temperature values are derived from
hourly ERA5data and represent the highest temperature recorded
at 2m above ground for each day.

• Total monthly rainfall data derived from the integrated multi-
satellite retrievals for GPM (IMERG), Final Run version 6 product,
available as the NASA/GPM_L3/IMERG_MONTHLY_V06 asset on
GEE. The data provide monthly estimates of precipitation rate (in
mm/h) at a spatial resolution of approximately 0. 1° (about 11 km
at the equator), covering the period from 2000 to 2020. We
converted the precipitation rate to total monthly rainfall (in mm/
month) bymultiplying the average rate by the number of hours in
each month.

Greenhouse gas mixing ratios were obtained from NASA’s Gio-
vanni platform:

• CH4mixing ratios were obtained from the Atmospheric Infrared
Sounder (AIRS) instrument aboardNASA’s Aqua satellite.We used
daily Level 3 data (AIRS3STD) corresponding to the 400 hPa
pressure level (upper troposphere), processed using the Standard
Physical Retrieval algorithm (version 7). The data provide global
coverage at a spatial resolution of 1° × 1° and include both
ascending and descending orbits. Daily average CH4 values were
extracted for each study region for the period 2002–202059.

• CO2mixing ratios were obtained from the Gridded OCO-2
product, which provides daily global maps of column-averaged
CO2 dry air mole fraction (XCO2) derived from the Orbiting
Carbon Observatory-2 (OCO-2) satellite. Individual retrievals
(Level 2) from the high-resolution spectrometer aboard OCO-2
are assimilated into the GEOS modeling system (GMAO/CoDAS)
every 6 h, producing Level 3 gridded fields that smooth orbital
gaps and ensure spatiotemporal consistency. The dataset is
available at a spatial resolution of 0.5° × 0.625°, covering the
period from 2015 to 202060.

All datasets were first re-aggregated into monthly means for each
of the 29 study regions. Based on the long-term climatological pat-
terns, each region’s time series was then classified into wet and dry
seasons, following a percentile-based threshold applied to themonthly
precipitation data. This classification allowed us to capture the distinct
seasonal responses of atmospheric variables to forest loss. For each
season, we subsequently computed annual means, enabling a robust
comparison of dry- and wet-season dynamics and a consistent
assessment of long-term trends across datasets with different tem-
poral coverage. Given the varying temporal coverage of the datasets

(Tmax: 1985–2020; rainfall: 2000–2020; CH4: 2002–2020; CO2:
2015–2020), we applied our obtained parametric modeling approach
(see Eqs. (7) and (8)) to reconstruct and extend the time series across
the full analysis period (1985–2020). This approach allowed us to
capture long-term trends and ensure temporal consistency across
variables. By harmonizing datasets with different native resolutions
and time spans, this framework enabled robust and consistent com-
parisons across variables and study regions, facilitating an integrated
analysis of the impacts of deforestation and climate change.

Derivation of the parametric fits and calculations of the defor-
estation and global contributions
The atmospheric variables investigated in this study show a depen-
dency on both the time and the deforestation fraction. To unravel the
contributions of time and deforestation, two-dimensional functions
were fit to each atmospheric variable. In the following equations, the
variable y represents an atmospheric variable (CO2, CH4, themaximum
surface temperature, or the rainfall), the dependent variable in the
model setup. The two independent variables are time (t, in years) and
the deforestation fraction (D, representing the percentage of the area
that has been deforested). The influence of deforestationwasmodeled
considering a logarithmic dependence between y and D, as exempli-
fied in Fig. 2c. The dependent variable y, which represents any of the
four atmospheric variables investigated in this study, was initially
modeled with a logarithmic dependency on deforestation (D) plus a
linear dependency on time (t).

yðt,DÞ=A lnD+Bt +C, ð1Þ

where A, B, and C are coefficients fitted to the observations repre-
senting the contribution of a regional forcing related to deforestation,
a global forcing related to global changes and long-term trends, and an
intercept. Our analysis revealed that the coefficients A and B were not
independent, as the deforestation fraction depends on time (see
Fig. S4). To accurately incorporate these dependencies and account
for their non-linear effects, we have extended Eq. (1) into a more
comprehensive form, including, for instance, a linear variation of
coefficient A and a non-linear variation of coefficient B as follows.

A=a1t +a2, ð2Þ

B=b1 lnD +b2 ð3Þ

Rearranging the terms, we obtained a model for y(D,t) based on four
parameters.

yðt,DÞ= ðγt +a2Þ lnD +b2t +C, ð4Þ

where γ = a1 + b1. This equation is referred to as Eq. (4) in themain text.
Thus, four parameters are required to define Eq. (4), whichwas used to
fit the data, considering the fraction of deforested areas and the years.
The optimal fits were obtained through the least squaresmethod. This
approach resulted in a parametric surface that accurately captures the
data behaviors and statistical parameters such as the p-value and
correlation coefficient. These statistical measures were used to assess
the quality of the data fitting.

To obtain the rates of global and regional change, we differentiate
Eq. (4) while holding deforestation and year as constants. This
approach allows us to isolate the distinct contributions from global
influences and deforestation dynamics. To achieve this, we differ-
entiate Eq. (4)with respect to the year, whilemaintaining deforestation
as a constant. In addition, we differentiate Eq. (4) with respect to the
logarithm of the deforested area fraction while holding the year
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constant. This procedure leads to the following expressions:

∂yðt,DÞ
∂ t

�
�
�
�
D= cte

= γ lnD +b2, ð5Þ

∂yðt,DÞ
∂ lnD

�
�
�
�
t = cte

= γt +a2: ð6Þ

Then, Eqs. (5) and (6) were integrated in relation to the year and to the
natural logarithmof the fraction of deforested areas,where for thefirst
case, we kept the constant deforestation as the average value of
deforestation in each one of the 29 areas from 1985 to 2020 (�D), and
for the second case, we used the average year (�t) which is 2002. Then,
the contribution exclusively due to the global changes is

yglobal =
Z 2020

1985
ðγ ln �D+b2Þ d t = ðγ ln �D+ b2Þ× ð2020� 1985Þ: ð7Þ

On the other hand, the contribution exclusively due to deforestation is

yregional =
Z D2020

D1985

ðγ�t +a2Þ d lnD= ðγ�t +a2Þ× ðlnD2020 � lnD1985Þ: ð8Þ

Table 2 presents the fitted equations for each variable obtained for the
dry season.

Data availability
The datasets presented here are available on GitHub.

Code availability
The codes used to process and analyze the data are available on
GitHub.
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