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Projection of ENSO using observation-
informed deep learning

Yuchao Zhu 1,2, Rong-Hua Zhang 3 , Fan Wang 1,2 , Wenju Cai 4,5,
Delei Li5, Shoude Guan 4 & Yuanlong Li 1,2

The El Niño-Southern Oscillation (ENSO) profoundly impacts global climate,
but its sea surface temperature (SST) variability projected by climate models
remains uncertain, with a substantial inter-model spread in 21st-century pro-
jections. Model-observation discrepancies in ENSO physics contribute to this
uncertainty, necessitating observational constraints to refine projections.
However, methods to achieve this constraint remain unclear. Here, we show
that deep learning informed by the observed response of ENSO SST variability
to tropical Pacific warming patterns reduces projection uncertainty by 54%
under a high-emission scenario. Specifically, artificial neural networks (ANNs),
trained on climate model simulations and observations, successfully capture
the real-world ENSO response. Interpretability analyses reveal that replicating
observed ENSO physics by ANNs is critical, identifying warming in the far-
eastern and central equatorial Pacific as key to ENSO change. Amodel-as-truth
approach further confirms the robustness of ANN-generated projections. By
conditioning future ENSOSST variability projection on the ANN-inferred ENSO
response to tropical Pacific warming, uncertainty is reduced from a range of
0.59 °C to 0.27 °C. Our results highlight the prospect of integrating machine
learning with observations to reduce uncertainty in climate projections.

The ENSO is the most prominent mode of interannual climate varia-
bility stemming from air-sea interactions in the tropical Pacific1,2.
Characterized by a phase transition between the warm El Niño and the
cold La Niña events, ENSO substantially influences climate extremes,
ecosystems, agriculture, and economic development worldwide
through atmospheric teleconnections3–5. Given the profound societal
impacts of ENSO, understanding changes in ENSO characteristics
under anthropogenic climate change is a pivotal aspect of climate risk
management strategies6–8.

The prevailing understanding of ENSO changes under anthro-
pogenic warming relies heavily on future scenario simulations from the
Coupled Model Intercomparison Project (CMIP) models6,9. These
simulations generally agree on an intensification of ENSOSST variability

from the 20th to the 21st century10,11. Nevertheless, considerable
uncertainties remain in both historical simulations and future projec-
tions of ENSO SST variability (Supplementary Fig. 1a). From a historical
perspective, CMIP models have struggled to reproduce the real-world
properties of ENSO SST variability12–14. Specifically, in the latter half of
the 20th century, the tropical Pacific experienced increased ENSO SST
variability with a La Niña-like SST trend, whereas models simulate the
variability increase but with an El Niño-like trend14–16. Tropical Pacific
warming patterns are key in regulating ENSO feedbacks17,18. The dis-
crepancy between observations and simulations questions the relia-
bility of projected ENSO responses to tropical warming.

From a future perspective, there is still a notable lack of inter-
model consensus on the future evolution of ENSO SST variability7,9,19,20.

Received: 22 March 2025

Accepted: 12 August 2025

Check for updates

1Key Laboratory ofOceanObservation and Forecasting& Laboratory ofOceanCirculation andWaves, Institute ofOceanology,ChineseAcademyof Sciences,
Qingdao, China. 2Laboratory for Ocean Dynamics and Climate, Qingdao Marine Science and Technology Center, Qingdao, China. 3State Key Laboratory of
Climate System Prediction and Risk Management/School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China.
4Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Key Laboratory of Physical Oceanography, Ocean University of
China, Qingdao, China. 5Laoshan Laboratory, Qingdao, China. e-mail: rzhang@nuist.edu.cn; fwang@qdio.ac.cn

Nature Communications |         (2025) 16:7736 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-0277-200X
http://orcid.org/0000-0002-0277-200X
http://orcid.org/0000-0002-0277-200X
http://orcid.org/0000-0002-0277-200X
http://orcid.org/0000-0002-0277-200X
http://orcid.org/0000-0002-3332-7849
http://orcid.org/0000-0002-3332-7849
http://orcid.org/0000-0002-3332-7849
http://orcid.org/0000-0002-3332-7849
http://orcid.org/0000-0002-3332-7849
http://orcid.org/0000-0001-5932-7567
http://orcid.org/0000-0001-5932-7567
http://orcid.org/0000-0001-5932-7567
http://orcid.org/0000-0001-5932-7567
http://orcid.org/0000-0001-5932-7567
http://orcid.org/0000-0001-6520-0829
http://orcid.org/0000-0001-6520-0829
http://orcid.org/0000-0001-6520-0829
http://orcid.org/0000-0001-6520-0829
http://orcid.org/0000-0001-6520-0829
http://orcid.org/0009-0001-9910-367X
http://orcid.org/0009-0001-9910-367X
http://orcid.org/0009-0001-9910-367X
http://orcid.org/0009-0001-9910-367X
http://orcid.org/0009-0001-9910-367X
http://orcid.org/0000-0002-7239-5756
http://orcid.org/0000-0002-7239-5756
http://orcid.org/0000-0002-7239-5756
http://orcid.org/0000-0002-7239-5756
http://orcid.org/0000-0002-7239-5756
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63157-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63157-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63157-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63157-z&domain=pdf
mailto:rzhang@nuist.edu.cn
mailto:fwang@qdio.ac.cn
www.nature.com/naturecommunications


Studies suggest that the collapse of oceanic upwelling and intensified
atmospheric convection in the eastern equatorial Pacific after 2100will
lead to an eventual reduction in ENSO SST variability after 2100 under
continued warming21,22. However, the timing and magnitude of this
reduction vary considerably between CMIP models (Supplementary
Fig. 1b, c). Thus, despite extensive efforts, there are still considerable
uncertainties in state-of-the-art climate models that need to be
addressed to improve the robustness of ENSO SST projections.

Many factors contribute to the uncertainties in projections of
ENSO. Among these, the insufficient fidelity of CMIP models in
reproducing observed ENSO physics is a critical factor that under-
mines confidence in the reliability of their future projections19,20. For
instance, in some CMIP models, feedback processes that control the
evolution of ENSO exhibit substantial discrepancies when compared
with reanalysis data (Supplementary Fig. 2), implying that their
dynamics throughwhich tropical Pacificwarming influences ENSO are,
to a large extent, not reflective of the actual processes occurring in
nature. As a result, the reliability of ENSO projections from these
models is called into question.

To reduce uncertainties in ENSO SST projections, rigorous model
evaluation and observational constraints are essential23,24. However,
current statistical approaches face limitations because ENSO is modu-
lated by numerous feedback processes, whose relative importance
changes under global warming21,22,25. This dynamic shift complicates the
identification of key performance metrics and climate-invariant rela-
tionships required by current traditional23,24,26 or machine learning
methods27,28. Thus, how to condition ENSO projections on real-world
information remains a challenge. To address this, we propose an
approach that integrates deep learning with observational data and
climate model simulations. By conditioning projections on the
observed response of ENSO SST variability to tropical Pacific warming
patterns via ANNs, we achieve a 54% reduction in uncertainty for future
ENSO SST variability under a high-emission scenario.

Results
ANNs capture ENSO response to warming
To realistically project future ENSO SST variability, a statistical map-
ping model is needed that can reproduce observed historical ENSO
manifestations and project its future trajectory when given relevant
input predictors. Extensive research has established that changes in
the tropical Pacific mean state drive low-frequency modulation of
ENSO6,8,17,18. Consequently, ourmappingmodel anchors on the tropical
Pacific mean state as the input predictor, with the output being the
standard deviation of SST anomalies in the Niño3.4 region (see Defi-
nition of ENSO SST amplitude and SST mean state in Methods). Using
this model, we can input projected patterns of mean state changes
under greenhouse warming to extrapolate the future evolution of
ENSO SST variability. The nonlinear nature of ENSO precludes the
determination of an analytical form for the statistical model. Further-
more, given the critical role of the spatial structure of tropical Pacific
warming patterns, we employ a convolutional neural network (CNN).
CNNs, a type of ANN architecture primarily utilized for processing
spatial patterns in images, have proven effective at capturing complex
spatial relationships inherent in climate data29.

ANNs have the potential to approximate the complex interactions
between ENSO SST variability and changes in the tropical Pacificmean
state. To ensure accurate projections, it is critical that ANNs capture
the underlying ENSO physics. Climate models often fail to reproduce
observed ENSO dynamics with sufficient fidelity (Supplementary
Fig. 2). Therefore, a strategic approach is tominimize reliance onCMIP
data and instead develop ANNs that are grounded in observational
data, ensuring that they reflect real-world relationships. Directly
training ANNs with observational data, however, presents challenges
due to limitations in both the quantity and reliability of available
observational datasets (Supplementary Fig. 1d–f). A common solution

is to use transfer learning, a technique where ANNs are pre-trained on
CMIP model outputs and then fine-tuned with observational data29–31.
Following the principles of transfer learning, we first train ANNs on
CMIP model outputs and then evaluate their performance using his-
torical observations.

We pre-train 11 ANNs using piControl, historical and future sce-
nario simulations from 11 CMIP6 models (see Observational and CMIP
data in Methods). Each ANN captures the nonlinear relationship
between the ENSOSST amplitude and the tropical Pacificmean state in
its respective climate model (Supplementary Fig. 3; see Framework
and training of ANNs in Methods). SST alone may be questionable as a
sole representative of the mean state inputs to ANNs, since changes in
the tropical Pacificmean state are not only manifested in SST, but also
in other variables such as the thermocline in the subsurface ocean.
Physically, oceanic and atmospheric variables are closely coupled
during ENSO evolution, with changes in one variable often correlated
with changes in another25,32. This interdependence suggests that
additional inputs may be redundant (Supplementary Table 3). Indeed,
the ANNs perform well on their respective validation datasets (blue
bars in Fig. 1a; see Supplementary Fig. 5 for each ANN), demonstrating
that the CMIP-modeled relationship between ENSO SST amplitude and
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Fig. 1 | Deep learning captures the response of El Niño-Southern Oscillation
(ENSO) sea surface temperature (SST) variability to tropical Pacific warming
patterns. a Performance of artificial neural networks (ANNs) on Coupled Model
Intercomparison Project (CMIP) and observational data. The x-axis indicates the
ANN pre-trained on simulations from the corresponding CMIP model. The ENSO
SST amplitude is defined as the 30-year running standard deviation of the linearly
detrended SST anomalies over theNiño3.4 region (5°S-5°N and 170°W-120°W). Blue
bars show correlations between ANN-estimated (using the CMIP data as input) and
CMIP-modeled ENSO SST amplitudes. Red bars show correlations between ANN-
estimated (using three observational datasets as input) and observed ENSO SST
amplitudes. All ANNs reproduce the modeled response to tropical Pacific warming
patterns (blue bars > 0.75, dashed line), but their performance varies when applied
to observations. b The ANN trained on GISS-E2-1-H simulations (ANNGISS-E2-1-H)
shows the strongest correlation (r =0.71) with observed ENSO SST amplitudes.
ANN-estimated and observed ENSO SST amplitudes are normalized to zero mean
and unit variance. Thus, certain ANNs can capture the observed responses of ENSO
SST amplitude to tropical Pacific warming patterns.
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tropical Pacific mean state can be effectively captured using SST alone
as the input.

Eleven ANNs, trained on CMIP simulations, approximate the
modeled relationship between ENSO SST amplitude and tropical
Pacific SST mean state. The next step is to evaluate which ANNs
accurately reproduce observed ENSO SST amplitudes when provided
with the observed SST mean state (Supplementary Fig. 6). Among
these, the ANNGISS-E2-1-H shows the highest correlation with observa-
tional data (Fig. 1; see Supplementary Table 5 for specific values),
indicating that it effectively captures the observed ENSO response to
mean state changes. However, some ANNs perform poorly, raising
concerns about their use in future projections. For this reason, the
traditional approach29,33,34 of integrating all climatemodel data to train
a single ANN is not employed in this study. ANNs trained in thismanner
tend to reflect the characteristicsof themulti-modelmean. It is evident
that certain climate models exhibit implausible ENSO dynamics (Sup-
plementary Fig. 2), thereby suggesting that the multi-model mean is
susceptible to systematic biases.Consequently, theANNdemonstrates
unsatisfactory performance when applied to historical observational

data (Supplementary Fig. 7), undermining its utility for future ENSO
projections.

A key question is why some ANNs outperform others. Given their
black-box nature, ANNs are often subject to skepticism due to the
difficulty in interpreting their outcomes35. Therefore, interpretability
analyses are performed to open the black-box of ANNs from a physical
perspective.

Obeying ENSO physics ensures ANN fidelity
To understand why certain ANNs perform well on observational data,
we adopt a dual-perspective framework. From an interpretable
machine learning perspective, we apply occlusion sensitivity analysis
to identify tropical Pacific subregions where mean SST greatly influ-
ences ENSO SST amplitude estimation (see Occlusion sensitivity in
Methods). We find that well-performing ANNs are highly sensitive to
the SSTmean state in the central and eastern equatorial Pacific (Fig. 2a,
b; see Supplementary Fig. 8 for the occlusion sensitivity in each ANN).
This is consistent with well-established physical mechanisms govern-
ing ENSO SST amplitude. Central SST warming enhances wind-ocean
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Fig. 2 | Explaining the fidelity of artificial neural networks (ANNs) from the
perspective of interpretable machine learning. a, b Critical regions for estimat-
ing El Niño-Southern Oscillation (ENSO) sea surface temperature (SST) amplitude,
identified via occlusion sensitivity (shading). The six best-performing ANNs
(BEST6) consistently highlight the central and eastern equatorial Pacific (boxes,
5°S-5°N, 160°E-140°W and 120°W-95°W), while the remaining five ANNs (REM5) fail
to identify coherent critical regions. c Under a high-emission scenario, critical
regions shift eastward as the tropical Pacific warms. Averaged occlusion sensitivity
in the eastern box increases with greenhouse warming, indicating a growing
influence of eastern Pacific warming on future ENSO SST variability. d, e Observed

and simulated SST trends in the two critical regions. Observed SST trends are from
three observational datasets, and simulated SST trends are from 11 Coupled Model
Intercomparison Project (CMIP) models. Although the observed (La Niña-like) and
modeled (El Niño-like) warming patterns appear to be opposite, the differential
warming rate between the two critical regions is similar, shown by the faster
warming in the east and a weakening zonal SST gradient. These two critical regions
are physically recognized as the regions where multiple feedbacks controlling
ENSO SST variability occur. The ANN sensitivity to these areas aligns with estab-
lished ENSO physics.
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coupling through increased upper-ocean stratification and elevated
equatorial thermocline, thereby amplifying ENSO SST variability10,36,37.
Eastern SST warming influences ENSO by facilitating more frequent
atmospheric convection, strengthening zonal winds, decreasing the
zonal temperature gradient, and deepening the thermocline38–41.

Based on these previous studies, eastern Pacific SST warming is
suggested to modulate changes in ENSO SST variability both indepen-
dently and via the formation of a zonal SST gradient with central Pacific
SSTwarming. Consequently, a linear combination of eastern and central
Pacific SST warming may exhibit a statistical correlation with ENSO
feedbacks. Critically, the thermocline-wind coupling coefficient, a key
parameter governing thermocline feedback strength, shows statisti-
cally significant correlation with this linear combination of eastern and
central Pacific SST warming (Supplementary Fig. 9). This strong linear
correlation shows that the key regions identified through occlusion
sensitivity analysis are physically linked to established ENSO feedback
mechanisms. Besides, under the high-emission scenario, persistent
eastern warming reduces the non-convective area, further dampening
post-2100ENSOSSTvariability throughweakened thermocline feedback
and enhanced thermodynamic damping21,22. Consistent with the occlu-
sion sensitivity results (Fig. 2c and see Supplementary Fig. 10 for spatial
patterns in each period), maximum sensitivity shifts eastward as the
tropical Pacific warms. While central SST changes influence ENSO
throughout the21st century, easternwarmingbecomesdominantduring
the rapid decline of ENSO SST variability post-2100.

The results of the occlusion sensitivity are evident in the obser-
vational data. Previous studies typically divide the tropical Pacific at
the date line, with the central equatorial Pacific, where cooling is
observed (Fig. 2d), being part of the eastern region16,20,22,42. The
observed La Niña-like warming pattern and increased zonal SST

gradient are mainly due to faster SST warming west of the date line
(e.g., 120°E-180°) than in the rest of the eastern region (e.g., 180°-
80°W). However, occlusion sensitivity analyses show that the central
equatorial Pacific should be part of the western region in terms of its
influence on ENSO SST amplitude. Despite substantial warming, SST
changeswest of 160°E have a negligible effect on ENSO SST amplitude.
Both models and observations show more rapid warming in the far-
eastern region (Fig. 2e), reducing the zonal SST gradient in the second
half of the last century. Thus, there is an agreement between the
simulated and observedwarming patterns in terms of the effect on the
ENSO SST amplitude, which further explains why ANNs trained on
model data can capture the observed ENSO SST amplitude responses
to tropical Pacific warming patterns.

Occlusion sensitivity, while offering intuitive visual insights, faces
key limitations43: sensitivity to occlusion parameters (size, shape, pla-
cement), high computational cost, potential for artifact generation,
and a focus on local explanations that fails to capture distributed
feature representations in complex models. Critically, its reliance on
the independence assumption between occluded regions and its uni-
variatemethodology hinders its ability to elucidate complex nonlinear
feature interactions, limiting comprehensive model insight. Given
these limitations, we continue our interpretability analysis from an
ENSO dynamics perspective.

From an ENSO dynamics perspective, we expect that well-
performing ANNs are likely to be trained on datasets from climate
models with more realistic ENSO dynamics. This is supported by the
fact that models with lower biases in the BJ index tend to produce
ANNswith better performance on observational data, as indicated by a
correlation coefficient of −0.83 (Fig. 3a, b). In addition, ENSO diversity
and nonlinearity affect low-frequency changes in ENSO SST
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Fig. 3 | Explaining the fidelity of artificial neural networks (ANNs) from the
perspective of El Niño-Southern Oscillation (ENSO) dynamics. a, b Relationship
between ANN performance and bias in the Bjerknes stability (BJ) index. DD
(dynamic damping), TD (thermodynamic damping), ZA (zonal advective feedback),
MA (meridional advective feedback), VA (vertical advective feedback), and TH
(thermocline feedback) represent the six components of the BJ index. Compared to
ACCESS-ESM1-5, the GISS-E2-1-H model, whose ANN achieves the highest perfor-
mance on observational data, exhibits BJ index components closer to those of the
SODA reanalysis. BJ bias is quantified as the root mean square error of the six BJ
index components between each climate model and SODA reanalysis. ANN per-
formance is measured by the correlation coefficient between ANN outputs and
observations. High ANN performance is associated with a low BJ bias.

c, d Relationship between ANN performance and modeled ENSO nonlinearity.
Nonlinearity is quantified using the leading coefficient α, obtained by fitting a
quadratic curve to the first and second principal components
(PC2(t) = α[PC1(t)]2 + β[PC1(t)] + γ), as determined by empirical orthogonal function
(EOF) analysis of monthly SST anomalies in the tropical Pacific (1950–2014, 15°S-
15°N and 140°E-80°W). Nonlinearity bias (NL bias) is defined as the absolute dif-
ference between the α estimated from each climate model and from three obser-
vational datasets. High ANN performance is associated with a close agreement with
the observed nonlinearity. Together, these results confirm that ANNs achieve
higher fidelity when trained on climatemodels that better replicate observed ENSO
physics, including both linear stability and nonlinear dynamics.
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variability14,44–46. To make reliable projections of ENSO SST variability,
climate models must capture realistic ENSO diversity and
nonlinearity10,47. Thus,well-performingANNs are likely to be trained on
climate model datasets with more realistic ENSO diversity and non-
linearity (see Supplementary Fig. 11 for the nonlinear relationship in
eachclimatemodel). Indeed, the better alignmentwith observed ENSO
nonlinearity is associated with an improved ANN performance on
observational data, as indicated by a correlation coefficient of −0.76
(Fig. 3c, d; see also Supplementary Fig. 12 for an alternative definition
of ENSO nonlinearity).

It is acknowledged that if strong historical performance in certain
climate models is attributable to chance, bias cancellation, or overfitting
rather than physical robustness, such performance provides limited
validity for future projections48,49. Thus, physical plausibility serves as the
foundational principle for our methodological framework. ANNs
demonstrating strong performance are capable of capturing the funda-
mental physics governing ENSO, rendering their projections inherently
more reliable. Thus, a performance-weighted combination of these 11
ANNs is performed to create ANNobs, which takes the tropical Pacific SST
mean state as input and outputs a weighted average of ENSO SST
amplitudes from 11 ANNs. In this study, the weight is defined as the
likelihood that the observational data come from the specified ANN, and
it is positively correlated with the correlation coefficient shown in Fig. 1a
(seeWeighting scheme in Methods). It is important to acknowledge that

performance-based weighting approaches inherently assume a linear
relationship between historical skill and future reliability, potentially
overlooking nonlinear climate transitions or feedback regime shifts.
However, the training dataset employed in our study explicitly incorpo-
rates future simulations across a range of emission scenarios, spanning
from SSP1-2.6 to SSP5-8.5. The design ensures that potential ENSO
feedback regime shifts and climate transitions are explicitly captured
within the methodological framework.

While the physical plausibility of ANNs enhances the credibility of
their future projections, rigorous out-of-sample testing remains fun-
damental for all climate projection constraint methodologies23,24.
Given the absence of future climate observations for direct evaluation
of ANNobs, we implement the model-as-truth framework (the estab-
lished standard for assessing projection constraint techniques23,31,50–52)
to evaluate ANN robustness under future scenarios.

Model-as-truth confirms ANN robustness
Climate model simulations are treated as observations sequentially
(Fig. 4a; see Model-as-truth approach in Methods). The results demon-
strate that by assigning greater weight to ANNs with superior perfor-
mance on historical data, the ANN projections closely align with the
direct simulations from climate models (Fig. 4b; see Supplementary
Table 6 for specific values). Particularly for climate simulations with
ENSO dynamics closely resembling observations, such as the BEST6
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Fig. 4 | Robustness of artificial neural networks (ANNs) in future emission
scenariosconfirmedby themodel-as-truthapproach. aANN-estimated (red line)
and Coupled Model Intercomparison Project (CMIP)-modeled (black line) El Niño-
Southern Oscillation (ENSO) sea surface temperature (SST) amplitudes when cli-
mate model data are treated as observations. Using the GISS-E2-1-H model as an
example, its historical SST mean state is input into the ANNs as synthetic obser-
vationaldata. In the left panel, theANNestimate showsa strong correlationwith the
GISS-E2-1-H historical simulations (HIS denotes the historical period; root-mean-
square error = 0.05 °C, r =0.91, p <0.001). When the future SST mean state from
the samemodel is fed into the ANNs, the estimate remains closely aligned with the
model’s projected ENSO SST amplitudes (SSP126-585 denotes the future period
across the Shared Socioeconomic Pathway (SSP)1-2.6 to SSP5-8.5 scenarios; root-
mean-square error =0.06, r =0.90, p <0.001). The right panel shows the prob-
ability density function (fitted to Gaussian distributions) of the bias in projected

ENSO SST amplitudes. Thus, when treating GISS-E2-1-H climate model data as
pseudo-observations, the uncertainty between ANN-based projections and direct
model simulations measures 0.01 ± 0.05 °C across SSP1-2.6 to SSP5-8.5 scenarios.
b Correlation coefficients between ANN-estimated and CMIP-modeled ENSO SST
amplitudes for historical (blue bars) and future (red bars) periods. The x-axis
indicates the climatemodel simulation treated as synthetic observations. Excluding
the climate model simulations subject to unrealistic ENSO physics (shading; these
three models perform the worst against observational data and have the largest BJ
index errors), ANNs that reproduce the historical responseof ENSOSST amplitudes
to mean state changes retain their skill under future scenarios. The dashed line
represents the historical ANN performance on real observational data. The
dependence of future ANN performance on historical skill in the model-as-truth
approach suggests thatANNs validated against real-world observations are likely to
be robust for real-world future projections.
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model ensemble, the discrepancy between ANN-based projections and
direct model simulations is typically 0.03±0.08 °C when evaluated
within the model-as-truth framework (Supplementary Table 7). The
findings, which are particularly encouraging when the ANN projection
methodology is applied to the data from climate models, suggest that
ANNobs effectively captures the response of ENSO SST amplitude to
tropical Pacific warming patterns, demonstrating robustness in both the
observed historical period and future warming scenarios.

Climate models from different institutions may share similar
components, which could potentially reduce the effectiveness of the
model-as-truth method24. Consequently, the reliability of the ANN
projections is substantiated by multiple validations. We have demon-
strated the feasibility of using ANNs to estimate the ENSO SST ampli-
tude with the tropical Pacific SST mean state as input (Fig. 1). We also
confirm the plausibility of ANNs in terms of ENSO physics
(Figs. 2 and 3). Using the model-as-truth approach, we indirectly con-
firm the robustness of using ANNs to project future ENSO SST ampli-
tude (Fig. 4). Next, we will make projections of future ENSO SST
amplitudes conditional on ANNobs.

Reduced uncertainty with ANN projection
Unrealistic representation of ENSO physics is a major source of
uncertainty in projections of ENSO SST amplitudes in the 21st
century7,19. To reduce uncertainties, the projection of ENSO SST

variability using potential tropical Pacific warming patterns must
satisfy the observed ENSO feedbacks. The ANNobs can reproduce his-
torical ENSO SST variability in a manner consistent with observed
ENSOphysics, and remain robust under futurewarming. Thus, tomake
the projections conditional on ANNobs, the future SST mean states
from each climatemodel, after subtracting the climatological SST bias,
are fed into ANNobs to generate projected ENSO SST amplitudes (see
Uncertainty estimates of future projections inMethods), following the
observational constraint framework27,49,53. Compared to the large
spread in CMIP projections (1.20 ±0.59°C, 95% confidence intervals;
blue shading in Fig. 5a), ANN projections yield a narrower distribution
(0.87 ± 0.27 °C; red shading) with a 54% reduction in uncertainty for
the period 2024–2100.

In the context of observation-constrained approaches for climate
projections, the reliability of observational data is paramount. Uncer-
tainties in observations propagate into constrained results, imparting
corresponding uncertainties to the projections. In this study, we
incorporate observational uncertainty at the ANN training stage by
ensuring the network reproduces the observed output ranges across
different observational products. This integration is evidenced by the
spread in the red shading prior to 2023 in Fig. 5a. Moreover, the
increased reliability of satellite-derived SST data since 1980 reduces
the uncertainty in ANN outputs. Thus, uncertainty in observational
data is implicitly considered in our ANN-based projections.
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Fig. 5 | Reduced uncertainty in El Niño-Southern Oscillation (ENSO) sea surface
temperature (SST) amplitude projections using artificial neural networks
(ANNs). a Projected ENSO SST amplitudes under the high-emission scenario. In the
left panel, the blue shading represents the inter-model spread (the one standard
deviation range) across 11 CoupledModel Intercomparison Project (CMIP)models,
with the thick blue line representing the multi-model mean. The red shading
represents the spread across 11 outputs from ANNobs, which is the ultimate model
that incorporates all ANNs and describes the real-world ENSO response to tropical
Pacific warming patterns. The thick red line represents the ensemble mean. The
black shading represents the range of three observational datasets. The right panel
shows the probability density functions (fitted to Gaussian distributions) for pro-
jected ENSO SST amplitudes. b Comparison of ENSO SST amplitudes between
ANNobs and CMIP models. BEST6 and REM5 represent the CMIP models with rea-
listic and unrealistic ENSO physics, respectively. Amplitudes are normalized by

their 1994–2023 values. ANNobs projects a reversal in ENSO SST amplitude trends
around 2050 (dashed line; P1 and P2 denote periods of increasing and decreasing
amplitudes, respectively), aligning with the BEST6 models. In contrast, the REM5
models project a much later reversal. c ANN-based dependence of ENSO SST
amplitudes on the east-minus-west SST gradient and the SST mean state in the
eastern equatorial Pacific (EP). The scatter plots represent the averaged projection
over the 11 ANNobs outputs (corresponding to the black line in panel (b), but
without normalization), and shading represents the fit of ANNobs outputs to a
binary linear function. The gray dashed line marks the year 2050, showing that
reversal occurs when the trajectory is tangent to the contour lines. Deep learning
not only reduces uncertainty in ENSO projections through ANN-based constraints
but also provides a straightforward insight into the non-unidirectional evolution of
ENSO SST amplitudes in the 21st century.
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Uncertainty in ANN-based projections has increased over time, a
trend primarily attributable to uncertainty sources in ENSO projec-
tions. As outlined in the IPCC AR67, key sources encompass systematic
model biases, stemming from inadequate representation of ENSO
feedback processes, and spatial patterns of SST mean-state warming.
While the present study employs ANNs to emulate observed feedback
under real-world conditions (thereby mitigating uncertainty asso-
ciated with the former source), it does not address uncertainties aris-
ing from projected SST warming patterns. Consequently, under low-
emission scenarios, where inter-model differences in SST warming
patterns are relatively small, ANN projections maintain a narrower
uncertainty range over extended periods (Supplementary Fig. 13).

The ANN projections indicate that under the high-emission sce-
nario, as the tropical Pacific continues to warm, the ENSO SST varia-
bilitywill eventually decrease, with the reversal occurring around 2050
(Fig. 5a). This behavior is not only evident in future projections but is
also observed in the historical warming of the tropical Pacific45,54. For
instance, around 1990, a discernible hiatus in the increase of ENSO SST
variability is observed, subsequently followed by a weakening (Sup-
plementary Fig. 1f). It is not surprising that ANNobs could project such a
reversal. Climate models with more realistic ENSO feedbacks tend to
produce the amplitude reversal within the 21st century, while climate
models with less realistic ENSO feedbacks postpone the reversal
(Fig. 5b; ref. 19). Given that ANNobs places greater reliance on climate
models with realistic ENSO feedbacks in its construction, the time-
varying ENSO SST amplitudes projected by ANN and these models
exhibit notable similarity.

Theoretically, the emergence of the reversal is typically attributed
to changes in ENSO feedbacks resulting fromclimatological changes in
the zonal SSTgradient under thegreenhousewarming25.Model studies
have suggested a relationship between changes in ENSO and changes
in the zonal SST gradient, but this relationship is state and model
dependent20,42,55. A decreased zonal SST gradient amplifies ENSO by
increasing upper-ocean stratification and flattening the equatorial
thermocline8,10,19, but attenuates ENSO by enhancing thermodynamic
damping and weakening thermocline feedback21,22,56. While a compre-
hensive understanding of the reversal phenomenon in terms of the
ENSO feedbackbalance is essential, achieving such anunderstanding is
a complicated task. In contrast to the complex approach, the occlusion
sensitivity indicates that the differential warming rate between the
central and far-eastern equatorial Pacific is critical to estimating the
ENSO SST amplitude (Fig. 2), thereby providing a straightforward
insight into the emergence of the reversal. Building upon this, we
analyze the dependence of ENSO SST amplitudes, as described by
ANNobs, on the east-minus-west SSTgradient and the SSTmean state in
the eastern equatorial Pacific to provide a concise explanation of the
temporal evolution of ENSO SST amplitude.

We approximate the ANNobs using a binary linear function that
depends on the east-minus-west SST gradient and the eastern equa-
torial Pacific SST (see Linear approximation of ANNobs in Methods).
The findings show that a weaker zonal SST gradient and colder eastern
equatorial Pacific SST tend to increase ENSO SST amplitudes (shading
in Fig. 5c). This finding suggests the presence of two competing
influences of mean SST in the eastern equatorial Pacific on ENSO SST
amplitude. The direct effect of warming is to reduce ENSO SST varia-
bility by weakening the thermocline feedback and enhancing ther-
modynamic damping21,22, as seen post-2050 (P2 in Fig. 5b, c).
Concurrently, warming can also reduce the zonal SST gradient,
thereby increasing ENSO SST variability through mechanisms such as
increased upper-ocean stratification, thermocline shoaling, and more
frequent atmospheric convection8,10,14,39, as observed in the early 21st
century (P1 in Fig. 5b, c). The changes in ENSO SST amplitudes depend
on the trajectory in phase space, with reversals occurring at tangency
to contour lines (dashed line in Fig. 5c). Furthermore, linear fitting
indicates that ENSO SST amplitudes decrease when easternwarming is

less than 1.15 times western warming (see Linear approximation of
ANNobs in Methods). This value reflects a balance of ENSO feedback
changes under the eastern equatorial Pacificwarming, highlighting the
importance of differential warming rates between the central and far-
eastern equatorial Pacific in driving the changes in ENSO SST
variability.

Discussion
Our exploration of future ENSO SST variability projections, condi-
tioned on real-world observations of the ENSO response to tropical
Pacific warming patterns, leverages deep learning. A flowchart illus-
trating the entire workflow is shown in Supplementary Fig. 15. The
observed ENSO response is captured by ANNs pre-trained on CMIP
simulations and validated against observational data. The plausibility
of this approach is confirmed through interpretable machine learning
and ENSOdynamics analysis, while its future robustness is verified via a
model-as-truth framework. By conditioning future projections on the
ANN-derived ENSO response to tropical Pacific warming patterns, we
reduce uncertainty in ENSO SST variability projections by half under a
high-emission scenario. The emerging integration of deep learning
into climate science has garnered significant attention, but its full
potential for climate trend projections remains nascent30,57. Our study,
which synergizes deep learning with climate models, offers a promis-
ing way to reduce uncertainties in climate projections, with potential
applications extending to other critical climate variables.

Methods
Observational and CMIP data
In this research, we utilize monthly mean SST simulations from 11
CMIP6 models, encompassing scenarios such as piControl, historical,
Shared Socioeconomic Pathway (SSP)1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 (Supplementary Table 1; ref. 58–67). While CMIP6 includes
over 60 climatemodels, only 11 satisfy the following two conditions: (1)
A multi-realization requirement of at least two realizations per model
to enable a training/validation split, and (2) Simulations extending
beyond 2100 to capture end-of-century ENSO attenuation. Therefore,
these eleven models are not arbitrarily selected, but rather constitute
all available models meeting these criteria. Although some previous
generations of climate models (CMIP5) provide simulations beyond
2100, CMIP6 models generally outperform CMIP5 models in terms of
physical processes, resolution, and simulation of ENSO feedback
mechanisms7,20. Therefore, this study exclusively uses CMIP6 models
for analysis.

The piControl simulation extends over 300 years, while the his-
torical simulation, encompassing 165 years, spans from 1850 to 2014.
The SSP1-2.6, SSP2-4.5, and SSP3-7.0 simulations cover an 86-year
period from 2015 to 2100, and the SSP5-8.5 simulation extends over a
286-year period from 2015 to 2300 (2015 to 2299 for CESM2-WACCM,
and 2015 to 2298 for NorESM2-MM), considering the reduced ENSO
SST variability in the high-emission scenario beyond the 21st
century21,22. For the training of neural networks, each CMIP6 model is
required to provide at least two realizations: one for training and one
for validation. With realizations numbered 1 to 3 available from each
model, the second realization is designated for validation, and the
others are employed for ANN training.

In order to establish the observed relationship between ENSO SST
amplitude and the tropical Pacific mean state, reliance on observa-
tional products is essential. However, the reliability of these datasets
poses a challenge, particularly for the pre-1950 period. Substantial
discrepancies exist in SST trends across different products68, attribu-
table to factors such as divergent interpolation methods69 and mis-
represented ENSOvariability70. In order to address these uncertainties,
our analysis employs three observational products rather than relying
on any single dataset, thereby providing an estimate of observational
uncertainty: the Centennial In Situ Observation-Based Estimates of the
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Variability of SST and Marine Meteorological Variables version 2
(COBE2)71, the Extended Reconstructed Sea Surface Temperature
version 5 (ERSST)72, and the Hadley Center Sea Ice and Sea Surface
Temperature dataset version 1.1 (HadISST)73. Notably, historical data
for all three products is partially sourced from ICOADS (International
Comprehensive Ocean-Atmosphere Data Set). However, they employ
different interpolation methods, which may lead to substantial dis-
crepancies prior to 1950 (Supplementary Fig. 1d–f). Using reliable
datasets like ICOADS directly, rather than observational products
dependent on different interpolation schemes, is a promising
approach.While the present study is not designed to do so, integrating
an AI-based gap-filling module74,75 for climate data prior to the neural
network projection model would be a promising direction.

These datasets, which offer global coverage with varying hor-
izontal resolutions, are interpolated onto a 1° horizontal grid over the
tropical Pacific Ocean (24.5°S-24.5°N and 120.5°E-75.5°W) using
Delaunay triangulation with linear barycentric interpolation. This
approach interpolates valueswithin the convex hull of input datawhile
assigning NaN to points requiring extrapolation. The procedure is
implemented using either MATLAB’s griddata function or Python’s
scipy.interpolate.griddata, yielding a final grid dimension of 50 by 165.
Toelucidate theunderlyingphysics of thedeep learningprojection,we
employ upper-ocean temperature and currents, zonal wind stress, and
net heat flux into the ocean from CMIP6 simulations and the Simple
Ocean Data Assimilation version 3.3.2 (SODA)76 to calculate the indi-
vidual components of the Bjerknes stability index (BJ index).

Definition of ENSO SST amplitude and SST mean state
In alignment with the Intergovernmental Panel on Climate Change
(IPCC) SixthAssessment Report (AR6) andpertinent literature7,20,77, the
ENSO SST amplitude is defined as the 30-year running standard
deviation of the linearly detrended SST anomalies over the Niño3.4
region (5°S-5°N and 170°W-120°W). The contemporary SSTmean state
is defined as the 30-year time-averaged SST over the tropical Pacific
Ocean. The labeled year corresponds to the midpoint of each 30-year
interval. For instance, the SSTmean state for 2009 is derived from the
average of the monthly SST data spanning 1994–2023, and the con-
temporary ENSOSST amplitude corresponds to the standarddeviation
of the linearly detrendedNiño3.4 SST anomalies over the same30-year
period. Consequently, the observed ENSO SST amplitude extends over
a 125-year duration from 1885 to 2009.

Bjerknes stability index
The growth rate of ENSO SST anomalies is controlled by various
feedbackprocesses in the tropical Pacific. On the basis of amixed-layer
heat budget analysis, the equation of control can be written as
follows25,78:
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The terms on the right-hand side represent dynamic damping
(DD), thermocline feedback (TH), zonal advective feedback (ZA),
meridional advective feedback (MA), vertical advective feedback (VA),
and thermodynamic damping (TD), respectively. T and Hm represent
the mixed-layer temperature and depth (50m). u and v represent the
mixed-layer zonal and meridional velocities. w represents the vertical

velocity at the base of themixed layer. Overbars denote climatological
means, and :h i denote the average in the Niño3 region (5°S-5°N, 150°W-
90°W). μa and μ*

a represent the nonlocal (central equatorial Pacific;
5°S-5°N, 150°E-130°W) and local wind stress responses to SST anoma-
lies in the Niño3 region. βh represents the response of zonal slope of
thermocline to central equatorial wind stress anomalies, he –

hw = βh[τx], where he and hw are anomalous thermocline depth aver-
aged over the eastern (5°S-5°N, 155°W-80°W) and western (5°S-5°N,
120°E-155°W) equatorial Pacific, respectively, and [τx] denotes zonal
wind stress anomalies averaged in the central equatorial Pacific. βur
and βul (βvr and βvl, βwr and βwl) represent the response of u (v,w) in the
Niño3 region to the anomalous wind stress in the central equatorial
and Niño3 regions. ah is the subsurface temperature (at 75m depth)
response to the averaged thermocline depth anomalies over the
easternequatorial Pacific.α is the thermaldampingof SSTanomalies in
the Niño3 region by air-sea heat fluxes. All feedback coefficients are
estimated using linear regressions between predictors and the
response variable. γmeasures the effectiveness of vertical entrainment
(assigned to be 0.75). Lx and Ly are the zonal and meridional scales of
the eastern equatorial box, and y is the meridional distance from the
Equator.M(x) is a Heaviside step function that only considers upward
motion.

To determine the individual components of the BJ index, we uti-
lize monthly variables derived from the CMIP6 simulations and the
SODA dataset, spanning the period from 1980 to 2014. The climato-
logical mean is defined as the average over this entire period, with
monthly anomalies representing deviations from the climatological
monthly values. In the case of the GISS-E2-1-H model, which lacks
vertical velocity outputs, we diagnose vertical velocity by integrating
horizontal divergence from the surface79. The calculation of the BJ
index components is depicted in Supplementary Fig. 2. Model per-
formance is evaluated by comparing the root-mean-square error
(RMSE) of the six BJ components between each model and SODA.

Framework and training of ANNs
The ANN employed in this study captures the complex, nonlinear
relationship between the SSTmean state in the tropical Pacific and the
amplitude of ENSOSST variability. ThisANNarchitecture comprises an
input layer, four convolutional layers equipped with Batch Normal-
ization, LeakyReLU activation functions, andmax-pooling, followed by
three dense layers, culminating in an output layer (Supplementary
Fig. 3). It is widely recognized that climate models often exhibit sub-
stantial SST biases in the tropical Pacific Ocean80,81. To ameliorate the
effects of climatological bias, the ANN is trained on the SSTmean state
after removing the climatological mean from 1870 to 2014. Following
the computations through the hidden layers, the ANN outputs the
contemporary ENSO SST amplitude (Supplementary Table 2).

Hyperparameter selection is conducted following standard prac-
tice, which involves evaluating a limited number of combinations. Our
preliminary experiments evaluated various ANN configurations (Sup-
plementary Table 3). No validation performance differences emerged
across configurations. In general, underfitting occurswhen the sample
size significantly exceeds the number of trainable parameters, and
overfitting occurs when the sample size is substantially smaller than
the number of trainable parameters. With 1100–3800 samples and
2617 trainable parameters, our configuration maintains an empirical
balance which mitigates both risks. Consequently, we retained the
baseline architecture without further hyperparameter tuning, prior-
itizing physical plausibility over marginal accuracy gains.

Each ANN is individually trained on data samples derived from a
single CMIP6 model, utilizing the TensorFlow library82. The training
employs a learning rate of 10−3 and leverages the Adam optimizer to
minimize the squared error between the ANN outputs and the CMIP-
modeled ENSO SST amplitudes. To avoid overfitting, the ANNs are
subjected to a maximum of 1000 training epochs with the
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implementation of early stopping before achieving the best perfor-
mance on observational data. To mitigate the uncertainty and gen-
eralization error inherent in ANN predictions, we employ ensemble
learning83, a technique akin to ensemble forecasting in climate
research. In general, a larger number of learners is better. However, in
this study, when the number of learners exceeds 30, the RMSE
between the average prediction and the true value no longer shows
significant changes (Supplementary Fig. 4). Therefore, this involves the
generation of 50 distinct learners, each initialized with random
weights. The mean of these learners is then adopted as the definitive
mapping of ENSO SST amplitudes from the SST mean state.

Occlusion sensitivity
Occlusion sensitivity analysis is a technique used to understand which
parts of an input image are most important for the decisions of
CNNs84,85. In this research, we employ this approach to assess the
influence of the SST mean state on the amplitude of ENSO SST varia-
bility. We begin by individually occluding each grid point within the
SSTmean field and then inputting themodified SST field into the ANN.
TheANNoutputwith theoccluded inputfielddeviates fromtheoutput
with the unoccluded field, with these discrepancies being quantified
using RMSE. This error metric serves as an indicator of the importance
of the SST mean state at each grid point on the ANN output of the
ENSO SST amplitude. We sequentially apply this procedure to the
entire grid, which spans 50 by 165 points, and normalize the RMSE at
each grid point by dividing it by the maximum value across the entire
field. Through this analysis, we can identify specific subregions within
the tropical Pacific where the SST mean state plays a critical role in
estimating the ENSO SST amplitude.

Weighting scheme
Given the varying performance of different ANNs on observational
data (red bars in Fig. 1a), it is necessary to assignweights to the outputs
of each ANN when computing the multi-ANN ensemble average.
Logically, ANNGISS-E2-1-H warrants the highest weight due to its largest
correlation coefficient, whereas ANNACCESS-ESM1-5 should be assigned
the lowest weight. In this study, theweight attributed to the i-th ANN is
defined as the likelihood that the observational data are stem from that
ANNi:

wi =PðAijOBSÞ, i= 1, 2, :::, 11 ð2Þ

Using the law of Bayes’ rule

PðAijOBSÞ=
PðOBSjAiÞPðAiÞ

PðOBSÞ =
PðOBSjAiÞPðAiÞP11
j = 1PðOBSjAjÞPðAjÞ

ð3Þ

ACCESS-CM2 and ACCESS-ESM1-5 are from the same institution;
however, given the substantial differences in their performance on
observational data, it is reasonable to assume that they are indepen-
dent. Furthermore, although GISS-E2-1-G and GISS-E2-1-H also come
from the same institution, their oceanic components are entirely dif-
ferent, leading to the assumption of their independence in this study.
Therefore, assuming that the 11 climate models are independent,

PðOBSjAiÞPðAiÞP11
j = 1PðOBSjAjÞPðAjÞ

=
PðOBSjAiÞP11
j = 1PðOBSjAjÞ

ð4Þ

The normalized outputs of the ANNs are generally assumed to
follow a multivariate normal distribution86,87. Thus,
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where di and ri represent the averaged Euclidean distance and the
correlation coefficient (red bars in Fig. 1a), respectively, between the
historical observation and the ANNi estimate. n is the number of
observational samples. Ultimately, the weight assigned to the i-th ANN
is denoted as

wi =
eri�1P11
j = 1e

rj�1 ð6Þ

Model-as-truth approach
Model-as-truth (also called pseudo-observation) uses model data as a
proxy for actual observations to assess the robustness of model eva-
luation approaches. In this framework, we select historical and future
simulations from a random climate model as the truth. Similar to
processing real observations (as in Supplementary Fig. 6), the histor-
ical SSTmeanstate from the selected climatemodel is input intoANNs.
The correlation between each ANN output and the simulated ENSO
SST amplitude is calculated. This correlation coefficient measures the
historical performance of each ANN and determines its weight. When
simulated tropical Pacific warming patterns are input to the ANNs, the
performance of the ANN projections is evaluated by comparing the
performance-weighted average with the projections from the selected
climate model (Fig. 4a).

Uncertainty estimates of future projections
We generate ANN-based projections using future SSTmean states that
are adjusted by subtracting the climatological bias. This approach
isolates model-specific warming patterns and directly addresses the
following question: Howwould ENSOSSTvariability change if amodel-
simulatedwarming pattern occurred in the real world? Specifically, for
a future period (e.g., 2071–2100), the contemporary warming pattern
is derived by subtracting themodel-simulated climatological SST from
the projected SST of that period. If this model-projected warming
patternwere to emerge in the real world by the end of this century, the
resulting tropical Pacific SST would be: SST2071-2100 - Modeled Clima-
tology +Observed Climatology, which is equivalent to SST2071-2100 -
Climatological Bias. Thus, this method does not constitute traditional
bias correction. Instead, it evaluates the potential changes arising from
superimposing the model’s projected warming pattern onto the
present-day observed climatology.

An observational constraint is applied to future ENSO SST
amplitude projections using the ANNobs, which describes the observed
relationship between the tropical Pacific SSTmean state and ENSO SST
amplitude. Eleven sets of future SST mean states are input into the
ANNobs, with each set comprising 77 samples, including those from
1995–2024, 1996–2025,…, and 2071–2100under the SSP5-8.5 emission
scenario. This process yields 11 time series of constrained ENSO
amplitude projections, as illustrated in Fig. 5a by the red shading. The
future projections (11 CMIP models × 77 time points) of the CMIP-
original and ANN-constrained are compared using probability density
distributions (bars in Fig. 5a), and Gaussian fits provide the mean and
standard deviation (confidence interval) for each ensemble.

Linear approximation of ANNobs

The future SST mean states under the SSP5-8.5 emission scenario
(77 samples, including 1995–2024, 1996–2025,…, and 2071–2100)
from 11 climatemodels, after subtracting the respective climatological
SST bias, are then input into ANNobs to project future ENSO SST
amplitudes (ESA; 11 time series, each including 77 years). ANNobs is a
nonlinear statistical model that depends on SST in all regions of the
tropical Pacific. Nevertheless, the occlusion sensitivity (Fig. 2a) indi-
cates that ANNobs depends primarily on the mean states of SST in the
central and far-eastern equatorial Pacific (SSTCP and SSTEP, the average
SST within the respective boxes). Thus, the 77 × 11 ENSO SST
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amplitudes can be described as a function of the east-minus-west SST
gradient (GD= SSTEP - SSTCP) and the SST mean state in the eastern
equatorial Pacific (Supplementary Fig. 14). Both dependencies are
largely linear (red dashed lines), allowing the approximation of ANNobs

with a binary linear function: ESA = α + β·GD + γ·SSTEP. Linear fitting to
the 77 × 11 samples yields ESA = 4.78 +0.61·GD - 0.08·SSTEP (shading in
Fig. 5c). Based on this function, reversals occur when the trajectory is
tangent to the contour lines. Quantitatively, ΔESA =0.61·ΔGD -
0.08·ΔSSTEP. Since ΔGD=ΔSSTEP - ΔSSTCP, ΔESA <0 when
ΔSSTEP < 1.15·ΔSSTCP.

Data availability
All datasets used in this study are publicly available. The CMIP6 data
are available from https://esgf-ui.ceda.ac.uk/cog/search/cmip6-ceda/;
the COBE2 data are available from https://ds.data.jma.go.jp/tcc/tcc/
products/elnino/cobesst2_doc.html; the ERSST data are available from
https://www.ncei.noaa.gov/products/extended-reconstructed-sst; the
HadISST data are available from https://www.metoffice.gov.uk/
hadobs/hadisst/; the SODA data are available from https://dsrs.
atmos.umd.edu/DATA/soda3.3.2/REGRIDED/ocean/.

Code availability
Codes required to reproduce the study are available via Zenodo at
https://doi.org/10.5281/zenodo.14942083.
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