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Species traits and landscape structure can
drive scale-dependent propagation of effects
in ecosystems

David García-Callejas 1,2 , Sandra Lavorel 2,3, Otso Ovaskainen4,5,
Duane A. Peltzer2 & Jason M. Tylianakis 1,6

Species can directly and indirectly affect others across communities and
habitats, yet the spatial scale over which such effects spread remains
unclear. This uncertainty arises partly because the species traits and landscape
structures allowing indirect effects topropagatemaydiffer across scales.Here,
we use a topological network metric, communicability, to explore the factors
controlling spatial propagation of effects in a large-scale plant-frugivore net-
work projected across the territory of Aotearoa New Zealand. We show
that generalism, species prevalence, and morphological traits are important
predictors of species’ capacity to propagate effects, but their importance
differed across scales. Furthermore, native bird species (but not exotics) show
a positive relationship between body size and their potential to propagate
effects. Habitat composition is the most important landscape factor in our
study, generating hotspots of effect propagation around forested areas,
whereas landscapes containing a variety of habitats act as a buffer against
propagation. Overall, our results indicate that species displaying specific sets
of traits, includingubiquity, interaction generalism, and a combinationof large
body size and native status, are the most likely to propagate large-scale eco-
logical impacts in the plant-frugivore communities studied, yet landscape
properties may moderate this spread.

Species can directly influence the population dynamics of their inter-
action partners through consumption or facilitation, or those of non-
partner species through one or more shared partners, in what are
usually termed indirect effects1–5. These direct and indirect effects
provide pathways for disturbances to propagate across space by
altering species’ population dynamics6. However, ecologists cannot
currently predict the rate and extent to which these indirect effects
propagate in space, making it crucial to understand the relative

importance of different species and habitats in connecting commu-
nities and ecosystems7–9.

Measuring the spatial propagation of ecological effects across
communities is challenging because any two species in natural systems
can be connected via multiple direct and indirect interaction
pathways, which are exceedingly difficult to track simultaneously. As a
consequence, our understanding of indirect effects in natural systems
is largely derived from studies where such indirect effects are linear
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and non-spatial, or from small, experimentally manipulable commu-
nities. Initial work on trophic cascades revealed that biomass of a
primary resource is indirectly affectedby a toppredator, via changes in
the biomass of an intermediate consumer (e.g., ref. 10). Theory3,4,
dynamical simulations of interaction networks11,12, and experimental
species removals fromcommunities13 demonstrated the importanceof
indirect interactions for both population2 and evolutionary14,15 pro-
cesses. Additional studies combined network analysis with experi-
mental manipulations to demonstrate indirect effects among hosts via
shared parasitoids16,17. This body of literature demonstrates that the
impacts of indirect effects in communities are comparable to, and
sometimes greater than, those of direct effects.

In contrast to these indirect effects within single, discrete com-
munities of interacting species, populations and communities are
open systems in which spatial fluxes of individuals and nutrients
underpin their dynamics18,19. The spatial signature of indirect effects is
therefore fundamental for understanding community dynamics. Yet,
empirical interaction networks are typically generated by aggregating
data in space (and time), such that nodes represent species that lack
any specific spatial location. Metacommunity and metaecosystem
studies capture spatial processes such as dispersal, but even these
treat individual patches as discrete, albeit connected, interacting
communities19,20. These studies have revealed cross-habitat indirect
effects21–23, whereby fluxes of nutrients across habitats can influence
the dynamics of24, and even destabilise25,26, the recipient habitat.
Likewise, the movement of individuals may induce complex dynamics
and feedbacks between habitats, e.g., via increased predation in one
habitat8 or coupling through apparent competition5,22, and the indirect
effects mediated by species movement potentially differ from spatial
subsidies of nutrients24. Despite these fundamental insights from
spatially-coupled habitat patches, mainland populations of species are
distributed continuously in space, such that their movement and
interactions should indirectly connect the dynamics of populations
across a range of scales. However, the spatial patterns of indirect
effects have not been quantified empirically at larger scales or in more
complex settings, and the role of different species or spatial config-
urations in shaping such spatially-explicit indirect effects remains
unclear6. Thus,we lack the conceptual groundonwhich tobuild theory
andmodels, the quantitativemetricswithwhich to capturehoweffects
propagate across ecosystems, and the large-scale spatial data with
which to test and refine hypotheses.

To advance this research program, understanding the potential of
species and landscapes to spreadbiotic effects is a necessary step. This
potential will depend firstly on biotic interactions among species, their
movement capacities, behavioural traits, and abundance6. Traits can
predict the tendency of species to interact with others27 and to link
spatial locations through dispersal28. Although species’ tendency to
connect with others within a habitat can vary independently of their
role in connecting across habitats9, traits such as trophic generalism
(within a habitat) candetermine a species’propensity to spill over from
one habitat to another29. Secondly, landscape structure will influence
species movement within and across habitats30. For example, areas
holding high species diversity and abundance may act as source areas
for nearby habitats, facilitating the spatial propagation of indirect
effects.

Here we assess the contribution of different species and land-
scape variables to the spatial propagation of biotic effects. We inten-
tionally refer to the propagation of effects, as that term encompasses
any potential processes propagating between any two nodes in a
network. Our network approach assumes that direct interspecific
interactions modify species densities, and species that are not directly
connected can affect each other through “interaction chains”, i.e.,
series of direct interactions between pairs of species that modify their
densities2, also called “density-mediated indirect interactions”31. To
facilitate understanding of such effects from small to large scales, we

first introduce to ecology a metric from network theory to quantify
propagation across all direct and indirect paths between species. This
metric, communicability, estimates the propagationof effects between
any two nodes in a network only from information about its
structure32, potentially overcoming the need to quantify the popula-
tion dynamics of the interacting nodes (i.e., species). We test this
potential by using simulations of population dynamics to demonstrate
a relationship between communicability and a species’ dynamic
influence on others.

Given the definition of communicability (see Methods) and pre-
vious work on the importance of highly-connected species in driving
different ecological patterns (e.g. neutral interactions33, metacommu-
nity complexity and diversity34, and habitat coupling29,35), we hypo-
thesise that the propensity to propagate effects in space will be higher
in 1) species with a high generalism (e.g. high network degree), and 2)
at larger spatial scales, in species with a wide distribution, which are
able to reach larger parts of a given territory. Although we expect
generalist species to have the most paths for influencing others, this
hypothesis is not self-evident because degree does not necessarily
predict communicability32, particularly in nested networks36 - an
architecture that is typical of mutualistic interactions37.

Based on these first-principles, we further hypothesise that traits
(morphological, behavioural, or otherwise) correlated with interaction
generalism and prevalence will impact the propensity of species to
indirectly affect many others across space6. For example, exotic spe-
cies areoftenmoregeneralist than natives38, which can also allow them
to live in a greater range of habitats39. We therefore expect species’
provenance tobe a key trait determining their propensity to propagate
effects in space. In contrast, focusing on plant-frugivore interactions,
larger fruits can only be swallowed by large birds (potentially leading
to lower partner generalism in large-fruited species), yet large birds
may disperse seeds further40, influencing a plant’s distribution.
Therefore, landscape and habitat characteristics are also expected to
influenceeffect propagation.Wehypothesise that habitats that tend to
harbour a high diversity of bird and fruiting plant species, such as
continuous forest and shrubland, will be the most important for pro-
pagating effects. In contrast, landscapes withmany habitat boundaries
(i.e., high habitat diversity) may slow the propagation of effects, as
species turnover across habitats will lengthen the indirect pathways
needed to traverse space.

To address these knowledge gaps, we analyze the species and
landscape characteristics that determine how strongly effects are
propagated in a large-scale ecological system: the network of plants
and bird frugivores across the territory of Aotearoa New Zealand.
Although datasets of empirical networks across a range of sites exist,
empirical studies typically aim for spatial independence among repli-
cate networks, and their spacing is typically arbitrary. In contrast,
understanding the spatial propagation of indirect effects requires a
continuous ’layer’ of connections at different scales. We therefore
overcome data limitations by generating a data-informed country-
scale spatial network of species interactions, considering both native
and exotic species. Through this approach, we evaluate which traits
(provenance, morphological or interaction traits) explain species’
capacity to propagate effects across scales, and which landscape
properties promote or hinder the propagation of effects across the
territory.

Results
Overview: large-scale frugivory network and spatial indirect
effects
To explore systematically the factors determining propagation of
effects across space, we projected the occurrences and interactions of
102 plant species and 22 frugivore birds across the twomain islands of
AotearoaNewZealand. For building the spatial country-scale frugivory
network (Fig. 1), we combined a) species occurrences, modelled with a
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spatially-explicit Joint Species Distribution Model41, b) a metaweb, i.e.,
the set of all known frugivory interactions between plants and birds
compiled from the literature33, and c) bird dispersal kernels, estimated
from their Hand-Wing Index42, to determine the limits of spatial con-
nections among populations. We then used this network to obtain the
communicability measure of every population in each cell. For any
given species a, we refer to a local node of that species in a cell i, as a
population of that species (e.g., ai in Fig. 1D). Finally, we test using
generalised linear models whether a series of species-level traits and
landscape factors relate to our metrics quantifying the propagation of
effects: population-level communicability values (Gk

a, see Methods),
aggregated species-level communicability across all the territory (SGa

),
and landscape-level communicability (e.g. the sum of all communic-
ability values, across all species, in a given cell, LGk ).

Characteristics of the Aotearoa New Zealand plant-frugivore
network
Themetaweb of plant-frugivore interactions in Aotearoa New Zealand,
after filtering for those species with available trait data, is composed of
102 plant species and 22 bird species, of which 92 plants (90%) and 14
birds (64%) are native. It has a connectance of 0.44, and the most
generalist species are the New Zealand bellbird (Anthornis melanura),
the kereru (Hemiphaga novaeseelandiae), and the silvereye (Zosterops
lateralis) with 57 interaction partners recorded for each species, while
there are 27 plant species with only one recorded bird frugivore in the
metaweb. The most prevalent bird species according to our distribu-
tion analysis were amixtureof exotics (the eurasian chaffinch (Fringilla
coelebs, Fringillidae) and the blackbird (Turdus merula, Turdidae)) and
natives (grey warbler (Gerygone igata, Acanthizidae)) and silvereye
(Zosterops lateralis, Zosteropidae)), all of which were predicted to be
present in more than two thirds of the territory (>2000 cells out
of 3030).

Communicability captures the impacts of community dynamics
We found that the communicability metric presented here shows a
good agreement with dynamic estimates of net effects between spe-
cies inmutualistic systems (measured using establishedmethods, as in
e.g. refs. 3,11,43).We therefore consider it a validfirst approximationof
the potential to propagate direct and indirect effects between popu-
lations, in the absence of detailed empirical information. This is

explored in the Supplementary Note 2 “Structural and dynamical
propagation”, where we show that the structural (i.e., communic-
ability) and dynamical estimates of indirect effects are generally well
correlated in competitive and mutualistic networks, but not in food
webs, which include both positive (for consumers) and negative (for
resources) effects.

Species’ importance for effect propagation
In the Aotearoa New Zealand plant-frugivore network, the ranking of
species according to their communicability varied depending on the
spatial scale considered.Within local communities (Fig. 2A), the kereru
(Hemiphaga novaeseelandiae, a native bird from the Columbidae
family) showed the highest average population-level communicability
(Gk

a, eq. (3)), followed by raukawa (Raukaua edgerleyi), a native plant
from theAraliaceae family. However, themost important specieswhen
aggregating all local populations, i.e., at the scale of the whole study
area (SGa

, eq. (4), Fig. 2B), were two bird species with widespread dis-
tributions in Aotearoa New Zealand: the silvereye and the blackbird.
Silvereyes were self-introduced from Australia in the first half of the
19th century, so herewe consider them a native species. Blackbirds, on
the other hand, are a worldwide distributed exotic species.

Shifts in relative communicability rankings across scales emerged
from the interplay between generalism (degree) and prevalence. At the
country level, species prevalence and degree (in the metaweb) sig-
nificantly influenced species-level communicability in plants and birds,
supporting our first hypothesis, but species provenance and mor-
phological traits were also relevant predictors. In particular, native
plants showed a higher species-level communicability than exotics,
also giving support to our hypothesis that provenance is a relevant
phenomenological factor for understanding effect propagation. The
interaction between plant fruit size and provenance was also statisti-
cally significant, whereby the effect of fruit size on communicability
switched from negative in exotic species to neutral in native species
(Table 1, Fig. S20). In birds, trends were qualitatively similar but the
statistical support was lower. Larger-bodied native birds showed
higher species-level communicability values, but the relationship was
opposite and non-significant for exotic birds (Table 2, (Fig. S21)).
Within local communities (Tables S1 and S2, Figs. S18 and S19), mean
local degree was positively related to population-level communic-
ability for plants and birds. Plant species showed the same trends as in

Fig. 1 | Visual summary of the process for building a large-scale spatial network
of plant-frugivore interactions. In A we projected the occurrences of 22 bird
species and 102 plant species over the two main islands of Aotearoa New Zealand,
using empirical data from systematic surveys and a Joint Species Distribution
Model (see Methods). In B we limited each species' potential range of partners
using the set of recorded interactions between these species, i.e., the metaweb,
from33. In C we estimated dispersal kernels for bird species using their Hand-Wing

Index as a proxy42. From these steps, we projected bird and plant species occur-
rences, added their known interactions from the metaweb, and connected popu-
lations within their dispersal kernel via bird dispersal in a grid of 3030 cells of
10 x 10 km. In D, two (simplified) adjacent cells are depicted. Each cell holds
interactions between the locally present species (continous links), and potential
bird dispersal to other cells where that species occurs (dashed links), depending on
the dispersal capacities of the species present.
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the country-level analyses, whereas for birds, effects were also con-
gruent but no predictors except local degree were statistically
significant.

In addition to examining the statistical significance of themodels,
we partitioned model variances between the different predictors. We
did so because our study, while based on empirical data, has a variable
sample size depending on the number of grid cells in which we dis-
cretise the studied area - in such cases, p-values can potentially be
subject to differing rates of type-I errors. To partition the explained
variance from each analysis, current methods do not allow the inclu-
sion of interactions between variables in generalised linearmodels44,45.
Therefore, for this estimation we report the outcomes of models
without interaction terms. This analysis confirmed that, at the local
level, the most important variable was always the local population
degree, both for birds (Table S4) and plants (Table S5). At the country
level, species prevalence and degree in the metaweb explained the
greatest variance for both groups (Tables S6 and S7), thus confirming
the statistical significance trends.

Landscape characteristics and effect propagation
The landscape-level communicability of each grid cell (LGk , eq. (5))
varied widely across the study area (Fig. 3). In particular, most of the
territory showed comparatively low values of communicability, and
only a few spatial clusters displayed clearly larger values. These spatial
clusters of high communicability were nearly all in native forested
areas that were surrounded by crop or pasture landscapes, as in the
Whanganui National Park (the single cluster with highest communic-
ability values, in the center-east of the North Island) or the Tararua
Forest Park (southern border of the North Island).

Supporting this visual inspection, landscape communicability LGk

was significantly and positively related to the percentage of forest and
shrubland cover in the cell, and significantly but negatively related to
the diversity of habitat types within the cell, measured as the Shannon
index of their relative frequencies. These relationships had also a
spatial signal, as there was a signficant spatial auto-correlation term in
the analysis (Table 3). The influence of forest coverwas likelymediated
by changes in species richness, as percentage forest cover was sig-
nificantly and positively correlated with the proportion of native bird
species (Spearman’s ρ =0.65) and with overall bird richness (ρ =0.57),

Table 1 | Coefficients of the generalised linearmodel (Gamma
distribution, log link) relating species-level communicability
(i.e., species’ ability to directly and indirectly impact others
through space via interactions, at the scale of thewhole study
area) with species traits: prevalence, provenance, species
degree in the metaweb, and morphological traits, for plant
species (N = 102, residual degrees of freedom=93)

estimate std.error z p.value

Intercept −7.841 0.551 −14.226 <2*10−16

status (Native) 3.001 0.570 5.264 1.4*10−7

fruit diameter (mm) −8.660 3.250 −2.664 0.008

max mean height (m) 0.204 0.154 1.326 0.185

prevalence 1.353 0.195 6.952 3.6*10−12

degree 0.655 0.149 4.410 1.03*10−5

status (Native):fruit dia-
meter (mm)

8.622 3.251 2.652 0.008

Table 2 | Coefficients of the generalised linear model (Twee-
die distribution, log link) relating species-level communic-
ability (i.e. species’ ability to directly and indirectly impact
others through space via interactions, at the scale of the
whole study area) with prevalence, provenance, species
degree in themetaweb, andbody size, forbird species (N = 22,
residual degrees of freedom = 14)

estimate std.error z p.value

Intercept −3.853 0.837 −4.601 4.21*10−6

status (Native) 1.232 0.848 1.454 0.146

body mass (g) −4.077 2.184 −1.867 0.062

prevalence 0.738 0.224 3.295 0.00098

degree 0.881 0.192 4.581 4.62*10−6

status (Native):body mass (g) 4.404 2.166 2.034 0.042

Fig. 2 | Species relative potential to propagate biotic effects. A Relative com-
municability values at the scale of local populations. B Relative communicability
values at the scale of the whole study area. Communicability values indicate the
potential of a species to directly and indirectly affect others through space, via

species interactions, and are scaled in the range 0-1 in both cases. Inset pictures
show, on panel A the kereru (Hemiphaga novaeseelandiae), and on panel B the
silvereye (Zosterops lateralis). Sourcedata areprovided as a SourceDatafile. Photos
by Lucas P. Martins.
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as well as with the proportion of native plant species (ρ =0.44) and
overall plant richness (ρ =0.66). Shrubland cover percentage and the
diversity of habitat types showedweaker correlations among themand
with other variables, always being <0.5 (see Fig. S16 for all pairwise
correlations). We further considered the effect of forest/shrubland
cover in the neighbouring area of the focal cell, as well as the diversity
of habitat types in that neighbouring area, but discarded these vari-
ables due to their high correlation with their cell-level counterparts.
Nevertheless, the results of a model with neighbor-only landscape
variables (Table S3) showed similar patterns as our main model.
Overall, these results accord with our hypothesis that areas with larger
species diversity and comparatively lowhabitat turnoverwill be spatial
hubs for the propagation of biotic effects.

Discussion
Quantifying the biotic effects of species and their spatial signature is
essential for understanding and predicting spatial ecological dynamics
within46 and across habitats22,23. A better understanding of the spatial
propagation of direct and indirect effects could also provide new
insights into the effects of invasive species47, changing species dis-
tributions, the scale of land-use impacts, and disease spread in
ecosystems48,49. Here, we used tools from network theory and statis-
tical physics to demonstrate the scale-dependent role of different

species, traits and landscape characteristics in this tapestry of direct
and indirect interactions.

We expected that a species’ potential to spread biotic effects
across space should increase via multiple characteristics, including
high dispersal ability, interaction generalism (i.e., high node degree),
and higher abundance or spatial prevalence across the landscape.
Consistent with these predictions, our analyses of a national plant-
frugivore network reveals that bird and plant species that interactwith
many partners, within local networks and regionally, have the greatest
potential to directly and indirectly affect others (i.e., highest commu-
nicability, Tables 1 and 2). Moreover, and as expected, species with a
widespread distribution are most important for propagating effects at
large scales. These insights also alignwith additional theoretical results
from simulated metacommunities (Supplementary Note 1 “Commu-
nicability in simulated metacommunities”). There may exist ecologi-
cally relevant situations in which species with high communicability
are not necessarily those with higher degree, e.g. in strongly dis-
assortative networks, which may correspond to strongly nested
topologies32,36. In our system, the fact that the effect of network degree
on communicability was consistent across spatial scales showed that
general structural patterns of the plant-frugivore community in New
Zealandwere also consistent across scales, displaying a pattern of high
generalism and low nestedness both locally and at larger scales when
considering dispersal links. More generally, spatial scalemay influence
network structure in different ways50, and therefore the degree-
communicability relationships across scales in other systems and
interaction types remains to be explored.

Species’ traits (body size for birds, and fruit diameter for plants)
were also consistent predictors of their capacity to propagate indirect
effects, but this effect differed qualitatively for native and exotic spe-
cies. In native birds, communicability was positively related to body
size, independently of species degree (Table 2). This was not the case
for exotic species, so we suggest that this can be a result of the feeding
preferences of native birds, which are known to select interaction
partners more strongly on the basis of their traits33. The ecological
mechanisms behind this relationship will need further investigation,

Fig. 3 | The study area (North and South Islands of Aotearoa New Zealand)
showing thedivision intogrid cells of 10 x 10 km.AAggregated communicability
per cell, calculatedas the sumof the communicability of each speciespresent in the
cell. Aggregated communicability measures the ability of a local community to

propagate effects to neighbouring communities, such that this map highlights
locations with the greatest potential for propagating effects.BMost prevalent land
use category in each cell. Source data are provided as a Source Data file.

Table 3 | Coefficients of the generalised additive model
relating landscape-level communicability (i.e., howstrongly a
local cell can propagate impacts to other cells via direct and
indirect species interactions) with landscape characteristics

estimate std.error t p.value

Intercept 12.657 0.02 623.008 <2*10−16

forest cover (%) 1.009 0.025 39.651 <2*10−16

shrubland cover (%) 0.407 0.026 15.733 <2*10−16

habitat diversity −0.198 0.026 −7.773 1.06*10−14

The expressive degrees of freedom of the spatial smoothing term is 28.17, with an F-value of
43.21 and a p value <0.001.
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but these insights show that it is possible to approximate the capacity
of species to propagate ecological effects across space from a com-
bination of morphological, functional, and possibly other traits. Fur-
ther investigation of these “propagation syndromes”6 in a variety of
ecosystems and taxa will be important both conceptually and in an
applied context, e.g., in conservation or predictions of disease spread
across taxa. For example, large-bodied native species tend to have a
high risk of extinction51. We have shown that such native, large-bodied
species are also key in propagating ecological effects, e.g., in our study
system, theKea (Nestor notabilis) is a locally important species (Fig. 2A)
that is also highly threatened. Because indirect effects in mutualistic
networks are positive in sign (in the long term), extinction of large
native birds would likely have a comparatively important negative
impact on the network of ecological direct and indirect effects across
the territory. Importantly, exotic bird species in Aotearoa NewZealand
do not display this relationship between body size and potential pro-
pagation of indirect effects, resulting from the different local ecolo-
gical roles of native and exotic species and their trait-function
relationships33,52. However, exotic species are often interaction
generalists38,52, a key attribute driving communicability at local and
species levels. These insights thus suggest that introductions of spe-
cies combining high generalism, high prevalence, and high mobility
have the potential to cause far-reaching direct and indirect impacts.
Further refinements of our approach may incorporate population
densities when this information is available: among the insights that
this could provide, we hypothesise that the higher population den-
sities expected of large-bodied species in undisturbed relative to dis-
turbed habitats may better disentangle the relationships between
body mass, species distributions, and propagation of effects across
habitats.

The analysis of communicability patterns across space (Fig. 3,
Table 3) provides complementary insights to our species-level analyses
by highlighting the role of landscape structure and community types.
Areas with high forest and shrubland cover were comparatively more
important for the propagation of ecological effects in space, indicating
potentially widespread impacts following disturbance of forested
areas. InAotearoaNewZealand, higher forest cover is associatedwith a
higher diversity of both plants and birds, and with a higher frequency
of native bird species (Fig. S16). This suggests that communicability is
partly mediated by spatial patterns of diversity, and by the differential
spatial distribution of native and exotic species in our system. In other
ecosystem types, communicabilitymay thus not be necessarily related
to forest cover, but to other spatial land-use configurations. The
influence of the surrounding areas in our study system is qualitatively
similar to that of the local community, showing that high forest/
shrubland cover surrounding the focal habitat is beneficial to its
diversity53 and to its communicability. This relationship is nevertheless
likely to vary across ecosystem types. For example, we would expect a
more positive effect of habitat diversity on spatial communicability in
landscapes with a low beta diversity across different habitat types and
many generalist species connecting them.

Our insights rely on the country-level spatial network of plant-
frugivore interactions that we projected from systematic surveys, a
joint species distribution model (jSDM) extrapolating such surveys to
the whole study area, and assignment of empirically observed inter-
actions to co-occurring species (Fig. 1). This combined approach
introduces several unavoidable sources of uncertainty in our results.
First, uncertainty is measured in the goodness-of-fit of the jSDM used
to infer species distributions. This model showed a very good agree-
ment with empirical data (Supplementary Note 3 “Spatial network
validation”) and has previously shown good extrapolation ability when
considering spatial structure54. Despite this potential appropriateness
of the model, discrepancies in inferred distributions may impact local
presences in our networks and overall prevalence. This potential
uncertainty will be most relevant for rare species54, so we expect that

the ordering of species according to their communicability will be
robust in its first positions and may vary more strongly on its tail,
where differences in communicability are quite small across species
(Fig. 2). Regarding the spatial projection of interactions, our metaweb
approach assumes that two species that are known to interact will do
so in every location in which they are expected to co-occur. This
assumption is clearly incomplete, as the occurrence of interactions
given species presences can depend on additional biotic or abiotic
factors55,56. Likewise, we included in our metaweb every interaction
from the original compilation by Peralta et al.33, which documented
interactions regardless of their rarity or abundance (i.e., no minimum
sampling effort was considered for including interactions). It is pos-
sible that naturally rare interactions have a low probability of occur-
rence, even when the interacting species are present in a location57,
which may be the case for interactions with low prevalence in the
original compilation. However, we lack further knowledge of what
determines the realisation of plant-frugivore interactions at the spatial
scales of our study, and thus our approach is a parsimonious one given
the best available knowledge and data. Further, while not all potential
interactions will be realized in every location, the probability of a
known interaction occurring will likely increase over longer time
frames. Most importantly, in practical terms, community data with the
grain and extent necessary to advance questions like those presented
here is currently unavailable, and a validation we performed with
independent data has shown that the projected network predicts
observed interactions reasonably well (Supplementary Note 3 “Spatial
network validation”), given the high degree of uncertainty associated
with such data.

Notwithstanding the appropriateness of our projected network,
the insights derived here must be understood as first approximations
to the principal factors that determine propagation of biotic effects
across space, mediated by species interactions. The plant-frugivore
network of Aotearoa New Zealand relates to demographic effects on
the species considered: we assumed that effective interactions have a
positive effect on the populations of the species involved (i.e., that the
interactions aremutualistic) and that this effect is propagated through
the subsequent plant-frugivore and bird dispersal interactions in the
network. Nevertheless, the approach presented here can be used to
model other effects mediated by interactions, e.g. on phenotypic
selection or on behavior. The key assumption of the communicability
metric we introduced is that the only driver behind the propagation of
effects is the presence (or strength) of a link between a pair of species
or populations, which in our case may be a plant-frugivore interaction
or a dispersal link between two local populations of a given bird spe-
cies. We have shown that this is a reasonable assumption for relatively
simplified ecological communities, where dynamic effects are not
expected to vary widely in sign or strength across species (Supple-
mentary Note 2 “Structural and dynamical propagation”). Another
dimension that should be explored in further studies is the temporal
one: variation in network topology across time or temporal delays in
the propagation of effects can be potentially important modifiers of
the standard communicability metric that we obtained. In addition, to
explore in more detail the ecological mechanisms behind the insights
obtained here, dedicated experiments will likely be necessary. For
example, by tracking spatiotemporal demographic effects of the spe-
cies deemed to be important in analyses of effect propagation, such as
the silvereye or the kereru.

To summarise, understanding how biotic effects spread in space
across communities of interacting species is a fundamental unresolved
question in ecology. A mechanistic understanding of effect propaga-
tion requires detailed, context-specific information on species
demography, interactions, and spatial patterns, which can be over-
whelmingly costly to obtain, even for moderately diverse ecological
communities.We have shown that an approach based on the topology
of pairwise interactions in a (meta)community allows a first
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approximation of the factors that determine such direct and indirect
effects between species at varying scales. Applying this approach to a
large-scale plant-frugivore network, built from existing literature and
monitoring data, identified ubiquitous and generalist large-bodied
species as key agents for the propagation of effects across space, and
highlighted differences between native and exotic species. Whether
this insight holds across ecosystem types and taxa, the temporal scales
of effect propagation, or indeed, how to independently measure such
indirect effects in complex natural systems, are important questions
that arise fromour results, and will help to advance our understanding
of the spatiotemporal patterns of biodiversity.

Methods
Propagation of effects in ecological communities:
communicability
By conceptualizing ecological communities as networks, whereby
species (or populations) are nodes that are connected through links
representing ecological interactions, we can analyze how community
structure relates to the propagation of ecological effects. The topo-
logical structure of a networkprovides informationonhoweffects on a
given node can spread through the rest of the network58. Any two
nodes in a network can be linked through a multitude of paths,
including the shortestpath(s) between themandall non-shortestpaths
(Fig. 4). In nodes that are not directly connected, the flow of effects is
commonly analysed through their shortest path, i.e., the path that
connects both nodes via the smallest number of steps. This is the case,
for example, in analyses of trophic cascades along linear chains59,60.
The length of shortest paths is captured in network metrics such as
betweenness and closeness centrality. However, recent studies have
emphasized the importance of indirect, non-shortest paths, in con-
necting nodes across different types of networks12,61. The combined
flow across all possible paths between nodes a and b in a network is
quantified by the communicability between them32,62. In ecological
terms, it therefore may be understood as a measure of the effect of a
perturbation in node a that reaches node b, and vice versa. The more
connected two nodes are, via both shortest and non-shortest paths,
the higher their pairwise communicability will be.

In this metric, shorter paths have larger contributions to the flow
between nodes than longer ones. In particular, as defined in ref. 32, if
ps
ab is the number of shortest paths between the nodes a and b having

length s, andWl
ab is the number of walks (i.e., sequences of nodes and

links in a network) connecting a and b of length lab > s, the commu-
nicability between nodes a and b is defined as

Gab =
1
s!
ps
ab +

X

l > s

1
l!
Wl

ab ð1Þ

This definition implies that, as the length l of the paths increases,
these will have an exponentially decreasing effect on the overall
communicability between a and b. The formulation also allows dif-
ferentiation of the effect of shortest paths andpaths of arbitrary length
on the metric. Further, for obtaining its aggregated value, it can be
reformulated in terms of powers of the interaction matrix A, as

Gab =
X1

l =0

ðAlÞab
l!

= ðeAÞab ð2Þ

Importantly, these expressions are valid for binary matrices32 and
for positive weighted matrices62. From these pairwise values one can
obtain different aggregated metrics. First, the communicability of a
given node a in a network kwith R nodes is simply the sum of pairwise
values involving that node. We denote this the population-level

communicability:

Gk
a =

XR

m= 1

Gk
am ð3Þ

It is worth emphasising that this node- or population-level com-
municability is conceptually similar to centrality metrics that measure
the “importance” of nodes in a network63. However, communicability
explicitly measures the effects spreading from node a, instead of the
topological role of node a in the structure of the network. Further-
more, and unlike path-based centrality metrics (betweenness or clo-
seness centrality), it accounts for all direct and indirect paths
connecting two nodes instead of only shortest paths.

A further aggregated metric is available in the context of ecolo-
gical networks. If nodes in a network correspond to different popula-
tions of the same species, as is potentially the case in
metacommunities where different populations of a species a are pre-
sent in different local communities (i.e., local networks) k (e.g., Fig. 1D),
an aggregated, species-level communicability is simply the sum of the
population-level values from the different nodes of that species:

SGa
=
XN

k = 1

Gk
a ð4Þ

Finally, an aggregated metric at the local network level is the sum
of population-level communicability values of the nodes in that local
network, i.e., the total communicability of the network.We denote this
the landscape-level communicability, as we consider each local net-
work in a 10km grid cell an individual landscape:

LGk =
XR

a= 1

Gk
a* ð5Þ

Here we focus on the applicability of thesemetrics to a real-world
system, and in the Supplementary Note 1 “Communicability in simu-
lated metacommunities” we provide worked examples on how com-
municability relates to species degree, prevalence, and dispersal in
simulated metacommunities. In addition, because communicability is
a structural metric, it does not account for the dynamics of the system
—e.g., whether variations in abundance across species modify indirect

Fig. 4 | Shortest path and two examples of non-shortest paths between two
nodes A and B in a network. Communicability GAB approximates the effects that
propagate from A to B, accounting for every path connecting them. The shortest
path has the strongest influence on the metric, and every other indirect path has a
contribution to communicability that decays exponentiallywith its path length, i.e.,
the number of links that are crossed. Here we draw binary links for simplicity, but
the metric can also be obtained for positive-weighted networks.
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effects in the system, or whether negative and positive indirect effects
potentially cancel each other out. Therefore, we tested the corre-
spondence of our communicability metric with a dynamical approach
to quantify net effects between species based on estimating popula-
tion dynamics (Supplementary Note 2 “Structural and dynamical
propagation”).

Estimating a country-level plant-frugivore network
We used a national metaweb of plant-frugivore interactions to project
a whole-country spatial interaction and dispersal network, across a
grid covering the two main islands of Aotearoa New Zealand (3030
cells of 10 x 10 km). We then used this spatial multilayer network to
evaluate how species’potential to indirectly affect others (measured as
communicability) is influenced by their traits and spatial context.
Aotearoa New Zealand represents an ideal setting for such a study,
because it encompasses 1) both highly fragmented landscapes and
large natural areas, and 2) a large variety of habitats and climate types.

In a first step, we gathered all published plant-frugivore interac-
tions in Aotearoa New Zealand, from the database originally obtained
by Peralta et al.33. This set of potential interactions across the territory
is what we term the ’metaweb’. Detailed information on how the
metaweb was built can be consulted in the original publication, but
summarising, the set of potential interactions was obtained from an
exhaustive literature search on bird diets, considering all birds with
recorded presences in Aotearoa New Zealand. The original compila-
tion included 238 plant species and 44 bird species. In parallel, we
obtained relevant traits for bird species from33, from the AVONET
database64 and body sizes from65. Morphological traits for plant spe-
cies were also obtained from ref. 33. After filtering for species with
available trait and geographical information on their distribution, we
ended up with data from 102 plant species and 22 birds (we did not
perform any trait imputation to species without valid information).
The filteredmetaweb of these 124 species contained interactions from
68 studies (Fig. S17), covering observations in the North (16 studies)
and South (34 studies) islands as well as from smaller islands with the
same species pool as the main islands (18 studies). These studies fur-
ther covered all major habitat types, and all frugivory interactions
observed at least once were included.

We modelled the spatial distribution of each plant and bird spe-
cies using a spatially explicit Joint Species Distribution Model41 fed by
different sources of observational data. In particular, we gathered
plant observations from datasets contained in the New Zealand
National Vegetation Survey Databank66 (https://nvs.landcareresearch.
co.nz). For bird species, we gathered observations from the New
Zealand Department of Conservation “TIER1” monitoring program67.
The details of these sampling schemes are available in the references,
but summarising, these datasets represent systematic observations of
plant/bird individuals that we filtered to presence/absence data across
the grid of the territory. We used these empirical data to project the
distribution of our species over the territory by applying the joint
species distribution modelling (jSDM) framework of Hierarchical
Modelling of Species Communities (HMSC)68,69 implemented through
the R-packageHmsc v3.0-1341.We included in the jSDM simultaneously
the 124 species of birds and plants, and modelled their occurrences in
the 3030 grid cells with occurring species. As covariates, we included
the linear effects of elevation, annual precipitation, precipitation sea-
sonality, percentage of forest cover, percentage of shrubland cover,
percentage of anthropic habitat, and survey effort. To account for
spatial variation in species occurrences and co-occurrences not cap-
tured by the environmental predictors, we included a spatially explicit
random effect modelled through a nearest-neighbor Gaussian
process70. As our aim was to predict occurrence probabilities at the
grid cell level, we truncated the data to presence-absence, and applied
probit-regression. For grid cells with no TIER1 data, we declared the
response as missing (NA) for all bird species. Similarly, for grid cells

with no NVS data, we declared the response as missing (NA) for all
plant species. We fitted the model with four MCMC chains, running
each for 3750 iterations, out of which the first 1250 were considered as
transient and the remaining thinned by 10 to yield 250 posterior
samples per chain and hence 1000 posterior samples in total. We then
used the fitted model to predict the probabilities for all grid cells. For
these predictions, we normalized survey effort by setting it to itsmean
value over the grid cells, and hence our predictions correspond to the
situationwhere the entireNewZealandwouldhavebeen surveyedwith
constant effort. Our model showed a very good agreement with the
empirical data, with AUC values > 0.8 for all species (see Supplemen-
tary Note 3 “Spatial network validation”).

Finally, we combined the metaweb of empirically-observed
interactions between plants and birds from Peralta et al.33 with the
spatial occurrences derived from our model to generate a spatially
explicit multilayer network, including local interactions between
plants and frugivores and dispersal of birds between local commu-
nities. Local interactions were assigned whenever two species that co-
occurred in our model projection were known to interact in the
metaweb. In other words, co-occurrence was not a sufficient criterion
for inferring interactions71; rather, co-occurring species needed tohave
been observed interacting in the literature. This approach assumes
that all potential interactions are eventually realised locally. Yet, we
acknowledge that, in empirical networks, the proportion of potential
interactions that is realised can be influenced by the local
environment72 and can increase with sampling intensity73. However, to
our knowledge there are no consistent rules for predicting which
potential interactions will be realised in a given location, particularly
across habitat types and for species with different degrees of sampling
prevalence. Alternative methods to impute interactions rely on trait-
matching approaches that often require finer empirical data to resolve
missing interactions. For example, a novelmethod proposed by ref. 74
applies towell-sampled species froma single habitat type. Our dataset,
however, combines species and interactions with different levels of
sampling prevalence. Therefore, we cannot assume that the processes
generating interactions in this diverse dataset are maintained 1) across
species with different degrees of generalism and prevalence; and 2)
across habitat types, which limits the applicability of trait-matching
methods to our dataset. Overall, with our approach to resolve inter-
actions based on species presence and a documented metaweb, we
make the assumption that all possible interactions are a potential
pathway for the propagation of indirect effects, including through an
interaction not being realised even though both partners coexist in a
site (i.e., a structural disturbance sensu6). These local interactions were
coded as binary. We further validated our approach by assessing how
well the projected interactions match independent empirical data on
16 plant-frugivore networks across the study area. Our projected net-
work showed a generally good agreement with empirical interactions
(AUC values > 0.6 in 11 of the 16 empirical networks, see Supplemen-
tary Note 3 “Spatial network validation” for details).

To connect local communities, dispersal links were assigned
between two local populations of a bird species if they fell within the
species’ dispersal distance. These links are of a different type to
interactions, and are called ’inter-layer’ links in multilayer network
terminology (whereas interactions are ’intra-layer’ links).We estimated
bird dispersal kernels with a negative exponential function:

f sij = e
� 1

HWIs
*dij ð6Þ

where f sij is the dispersal rate between cells i and j for species s,
HWIs is the hand-wing index42 of species s and dij is the distance
between cells i and j. Twopopulations of a bird species (in nearby cells)
were connected with a strength between [0,1] determined by their
dispersal kernel and thedistancebetween the two cells. By linking local
communities in this way, we assume, for simplicity, that dispersal by

Article https://doi.org/10.1038/s41467-025-63208-5

Nature Communications |         (2025) 16:7998 8

https://nvs.landcareresearch.co.nz
https://nvs.landcareresearch.co.nz
www.nature.com/naturecommunications


birds ismost important for fruiting species, and its dynamics aremuch
faster than dispersal of plant propagules by other means, so we ignore
dispersal by plants.

Communicability calculation
From our spatial plant-frugivore network, we obtained the population-
level communicability of each local population of each species in each
cell (see details in Supplementary note 4 “Communicability of the
AotearoaNewZealandplant-frugivore network”) rescaled to values [0, 1].
We subsequently obtained the distribution of population-level commu-
nicability values for each species, their species-level communicability
(e.g., the aggregated population-level communicability of a species
across all the territory), and the landscape-level communicability (e.g.,
the sum (across species) of population-level communicabilities of all
populations present in a given grid cell) for our spatial analyses.

Statistical analyses
We analysed whether the communicability of a given species was
related to its provenance (native vs. exotic), its network degree, and
morphological traits (body mass for birds; fruit diameter and max-
imummean vegetative height for plants). We selected these variables
because they are ecologicallymeaningful, data were relatively easy to
obtain compared with other traits, and they were not strongly cor-
related with each other in either birds or plants (Figs. S14 and S15).
We further explicitly tested the interaction between species prove-
nance and body mass (birds) or fruit diameter (plants), because
previous research33,52 has shown that trait matching is less important
for exotic than for native species.We did not include bird gape size in
our analyses, despite including fruit diameter, because it is highly
correlatedwith bodymass (Fig. S14), andour focus was not to predict
interactions through trait matching (see section “Estimating a
country-level plant-frugivore network” above), but rather analysing
the importance of overarching traits associated with many life-
history characteristics, which body size is known to represent75. In
addition, we did not include dispersal ability, quantified via theHand-
Wing Index, to avoid circularity, because that trait was used to link
populations in our spatial network. We repeated these analyses for
average population communicability and species-level communic-
ability, to understand potential differences between local and
regional drivers. For quantifying network degree, we considered the
average local degree of the species, across all cells in which the
species appears (including local and dispersal links). For the country-
level scale, the degreemetric is that of the species in themetaweb. At
the regional level, we also considered species’ prevalence (the
number of cells with recorded presences) as a predictor. For these
analyses, we used generalised linear models with a gamma distribu-
tion and log link function, implemented in the glmmTMB package
v1.1.776. The only exception was the GLM for bird communicability at
the species level, which showed better diagnostics by fitting it with a
more flexible tweedie distribution, so we kept the tweedie GLM
(coefficients were very similar between gamma and tweedie GLMs,
nevertheless).

We also tested whether landscape-level communicability was
related to landscape characteristics: percentage of forest cover, per-
centage of shrubland cover, and habitat diversity (measured as the
Shannon index of the relative frequency of habitat types present in the
cell). We obtained spatial habitat data for New Zealand from the IUCN
habitat characterisation map by ref. 77. We modelled these relation-
shipswith a generalised additivemodelwith a tweedie distribution and
log link function, explicitly considering spatial autocorrelation via a
smoothing termon the coordinates of cell centroids.We implemented
this model in the mgcv package v1.9-0.78. For this and the previous
models, we scaled all numerical variables before fitting and checked
model consistency with the DHARMa package v0.4.679. All analyses
were implemented in R v4.3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in Zenodo under
accession code https://doi.org/10.5281/zenodo.10812903. Raw data
from theNational Vegetation SurveyDatabank (NVS), from theNatural
Forest LUCAS programme of the Ministry for the Environment, and
from the Department of Conservation are under restricted access due
to ownership rights, and can be obtained by signed license agreements
with these institutions. Source data are provided with this paper.

Code availability
The R code used to generate the results of this study is stored in
https://doi.org/10.5281/zenodo.10812903 Development versions are
stored in https://github.com/garciacallejas/propagation.
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