
Article https://doi.org/10.1038/s41467-025-63320-6

Designing Hall crystals with variable Chern
numbers

Nisarga Paul 1 , Gal Shavit 2,3 & Liang Fu 1

Topological electronic crystals are electron crystals in which spontaneously
broken translation symmetry coexists with or gives rise to a nontrivial topo-
logical response. Here, we introduce a novel platform and analytical theory for
realizing interaction-induced Hall crystals, a class of topological electronic
crystals, with various Chern numbers C. The platform consists of a two-
dimensional semiconductor subjected to an out-of-plane magnetic field and
one-dimensional modulation, which can be realized by moiré or dielectric
engineering. Interactions drive the system to spontaneously break the residual
translational symmetry, resulting in anisotropic Hall crystals with various C,
including ∣C∣ > 1, tunable by field. Remarkably, these persist across continuous
ranges of filling and field, and the global phase diagram can be understood in a
unified manner.

Two-dimensional electronic systems in a strong magnetic field display
a rich interplay between charge density wave (CDW) and quantumHall
phases. In the lowest Landau level, Wigner crystals compete with
fractional quantum Hall (FQH) states at low fillings1–3. Even more
interesting is the theoretical prediction that crystalline order and the
quantizedHall effectmay coexist, leading to a novel quantumphaseof
matter referred to as the Hall crystal4.

Besides exhibiting a topologically quantized Hall effect, the most
striking fact aboutHall crystals,first notedbyHalperin et al.5, is that the
number of electrons per unit cell can vary continuously, as can the
number of flux quanta per unit cell. However, they satisfy a definite
relation, the Diophantine relation5, which relates them to rational
topological invariants such as the many-body Chern number C. The
Hall conductivity of the Hall crystal (pinned by an infinitesimal
potential) is σH = e2

h
∂�ρ
∂ρΦ

= e2
h C

6,7.
The study of Hall crystals was initially motivated by the Wigner-

crystal-to-FQH transition at low fillings of the lowest Landau level
(LL)4,5,8. Later, Hartree-Fock studies revealed crystalline electron pha-
ses in partially filled higher LLs9–12, which also exhibit a quantized Hall
effect due to the completely filled LLs. Recent observations of quan-
tum anomalous Hall (QAH) states in moiré materials13–15 have sparked
great interest in “anomalous” Hall crystals16–22, requiring no external
magnetic field. Indeed, evidence of a QAH crystal with C = 1 has been
observed at fractional filling of twisted bilayer-trilayer graphene23.

Existing studies of (anomalous) Hall crystals have largely focused
on states with unit many-body Chern number ∣C∣ = 1 arising from a
partially filled Landau level or Chern band. An intriguing research
direction is the study of Hall crystals with ∣C∣ > 1, which we dub higher
Hall crystals. Such states have not been observed in the ordinary
quantum Hall effect and may exhibit interesting new physics when
interactions are present. The remarkable tunability and customiz-
ability of two-dimensional materials further motivate the search for
such phases.

In this work, we introduce a realistic and tunable platform for Hall
crystals with various, unexpected many-body Chern numbers. By
controlled analysis, we show that these reliably emerge from generic
electron interactions in an engineered setting. For instance, we find a
C = 1 Hall crystal over a range of Landau level fillings ν < 1/2.

Our platform consists of a 2D semiconductor or graphene subject
to an out-of-plane B field and a one-dimensional superlattice potential
V(x), as shown in Fig. 1. Our proposal is straightforward to implement
with patterned dielectrics or bottomgates, as demonstratedby several
experiments (e.g.24,25). For example, the observation of Weiss oscilla-
tions suggests that these systems are well-captured by LLs modulated
by a periodic potential, our analytical starting point24–28.

Here, we show that Coulomb interactions in such periodically
modulated LLs induce various CDW instabilities that spontaneously
break the continuous translation symmetry along y and lead to an
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intricate phase diagram, featuring Hall crystals with diverse Chern
numbers.

Results
Setup and model
We start by considering Landau levels (LLs) of a two-dimensional
electron system subject to a one-dimensional periodic potential V(x).
We decompose the potential into harmonics as V ðxÞ= P

i V i cosðqixÞ
and consider strong magnetic fields ∣Vi∣ ≪ ωc = B/m (e = ℏ = 1). To first
order in Vi/ωc, LL mixing can be neglected and the energy spectrum of
the n-th LL becomes dispersive as a function of ky:

EnðkyÞ=
X
i

V ie
�q2i ‘

2=4Lnðq2
i ‘

2=2Þ cosðqiky‘
2Þ, ð1Þ

with ‘= 1=
ffiffiffi
B

p
themagnetic length, while remaining flat as a function of

kx. This quasi-1D energy dispersion is a consequence of the locking
between electron position x and momentum ky in a LL. Indeed, in the
high field limit ℓ → 0, En(ky) = V(x = kyℓ2) exactly traces the potential
landscape.

In the presence of electron interactions, the LL-projected Hamil-
tonian can naturally be written in the Landau gauge basis, taking the
form (dropping the y subscripts from now)

H =H0 +H1 ð2aÞ

H0 =
X
k

EnðkÞcyn, kcn, k ð2bÞ

H1 =
X

k1 , k2, k3, k4

Uk1 , ..., k4
cyn, k1

cyn, k2
cn, k3

cn, k4 ð2cÞ

where cyn, k is the creation operator for the Landau gauge orbital

φn, kð r!Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ly‘

ffiffiffi
π

p
2nn!

p e�ikyHnððx � k‘2Þ=‘Þe�ðx�k‘2Þ2=2‘2 and Uk1 , ..., k4
is a

projected interaction matrix element.
We now analyze our setup microscopically. For the purpose of a

rigorous analytical treatment, we assume that the interaction energy
scale is small compared to the bandwidthW ~ ∣V∣ of the modulated LL
(which is in turn much smaller than the cyclotron energy ωc). In this
weak interaction regime, let us first consider the effect of the energy
dispersionH0. When the n-th LL is partially filled, low-energy electron
states are one-dimensional chiral modes associated with equipoten-
tial lines of En(k) = μ with μ the chemical potential, forming an array
of 1D chiral fermion wires along the y direction (see Fig. 2). These
wires have alternating chiralities and spacings δa0 and (1 − δ)a0,

where a0 is the period of V(x), and δ increases with the LL filling
factor ν from 0 to 1. For example, in the case of a sinusoidal potential
V ðxÞ=V cosð2πx=a0Þ, δ = ν, the positions are xI = a0(⌊(I − 1)/2⌋ + 1/
2 + (−1)Iν/2) (This also holds for any periodic V(x) with a single local
maximum and local minimum per unit cell coincident with those of
cosð2πx=a0Þ.) and the velocities are vI =

∂En
∂ky

∣kI
� ð�1ÞIv (with v > 0).

Even (odd) wire index corresponds to a positive (negative) velocity
along the y direction.

The active degrees of freedom are particle-hole excitations near
the Fermi level, with the bulk electrons far below the Fermi level
frozen due to Pauli blocking. In analogy with the standard treatment
of quantum wires, the low-energy theory can be expressed in terms
of the chiral fermions ψI =

R kI +Λ
kI�Λ

dk
2π e

�ikycn, k , where I = 1, …2N and
N → ∞ in the thermodynamic limit. By retaining only terms involving
low-energy chiral fermions ψI in H, we obtain the effective Hamilto-
nian

Heff =
Z

dy ivIψ
y
I ∂yψI +UII 0J0 Jψ

y
I ψ

y
I 0ψJ0ψJ ð3Þ

(kI ~ I) where indices are implicitly summed. Since our setup has
translation symmetry along the y direction, Heff satisfies momentum
conservation

kI + kI 0 = kJ + kJ0 : ð4Þ

This, along with charge conservation, places important kinematic
constraints on the effective theory: allowed interactions in Heff are
correlated hoppings of a pair of opposite-chirality fermions
(I0, J0) → (I0 − l, J0 + l). They can all be written as

OI0, J0, l
=
Z

dyψy
J0 + lψ

y
I0�lψI0

ψJ0
+ H:c: ð5Þ

where I0 < J0, J0 � I0 mod 2= 1 and l≥0. Such termspreserve the center-
of-mass position along x direction as required by y momentum
conservation.

The l = 0 terms, which we refer to as forward scattering, conserve
the number of electrons in each wire and have coefficient

UIJ =UIJJI � UIJIJ : ð6Þ

Importantly, both direct and exchange interactions involving
momentum transfer q ~ 0 and kJ − kI contribute to the forward scat-
tering process UIJ . The l ≠ 0 terms will be referred to as correlated
hoppings.

Fig. 1 | Platform for Hall crystals. The proposed platform is an active semiconductor or graphene layer with free charge carriers subject to a uniform field Bẑ and a 1D
modulation V(x) from a patterned substrate. Electron interactions drive CDW formation along the y direction resulting in Hall crystals with various Chern numbers.
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CDW orders and Hall crystals
An array of coupled quantum wires is generically unstable to
interactions29–32. Before analyzing the exact order realized for a given
set of microscopic parameters, we discuss general features of the
ordered phases associated with interactions such as OI0, J0, l

. In the

thermodynamic limit,OI0, J0, l
and its unit-cell-translated copies induce

long-range order for the CDW order parameter ψy
I*
ψJ*

, where

I*∈ {J0 + l, I0 − l} and J*∈ {I0, J0} are such that I* � J* mod 2= 1. From the

density operatorρðyÞ � P
I, J ψ

y
I ψJe

iðkI�kJ Þy, wededuce that theCDWhas

wavevector Q= jkI*
� kJ*

j along the y direction. In particular,

Q=
jkJ0 + l � kI0

j l even

jkI0�l � kI0
j l odd

(
: ð7Þ

In general, the resulting CDW is topological. One indication is the
presence of Nedge gapless edge modes on a system with a boundary
along x. Equivalently, Nedge is the number of wires left “untouched” by
the operator Eq. (5) and its translated copies. Some careful counting
shows that Nedge takes the values shown in Table 1.

This implies that the CDW can carry a nontrivial Chern number.
Indeed, the state is aHall crystal, aswenow show.We employ a relation
between density, field, and unit cell area in crystalline Hall systems,
with A0 = (2π/Q)a0. All these quantities can vary continuously but
satisfy the Diophantine relation

�ρ =CρΦ +ηA�1
0 , ð8Þ

where �ρ is the electron density, ρΦ = 1/2πℓ2 is the LL degeneracy per
unit area, and in the presence of an infinitesimal gap opening, the
insulating state has Hall conductance σxy =C

e2
h by the Streda formula.

This implies, for our case,

ν

2π‘2
=

C

2π‘2
+ η

Q
2πa0

: ð9Þ

Q can be deduced across various cases using Eq. (7), andwe record the
results in Table 1. Putting this together, we may observe that Eq. (9) is
satisfied precisely with η= ð�1ÞI0�l�1 and

C =Nedge, ð10Þ

a nontrivial agreement necessitated by the bulk-boundary correspon-
dence. Moreover, we can compactly express the wavevector as

Q=
a0

‘2
ηðν � CÞ: ð11Þ

We further detail the nature of these phases in (See Supplemental
Material, which includes details on the bosonization procedure, strong
coupling phases, and phase diagrams.). The simplest cases are the
C = 0 and C = 1 insulators (shown in Fig. 2a) which correspond to
(I0, J0, l) = (even/odd, I0 + 1, 1), respectively. In other words, these
correspond to strong backscattering between adjacent wires. Naïvely,
wemay expect that a C = 0 or C = 1 state is always preferred. While this
is indeed the case in the limit of tightly localized wires ℓ/a0→ 0, we will
show that, surprisingly, various other Hall crystals are stabilized under
general assumptions.

Let us comment on the nature of the CDW phases at special
rational conditions. From Eq. (11), it follows that a scenario with both a
rational flux per unit cell Φ0 = a0/Qℓ2 and rational filling ν can be
achieved. For instance, this could arise for Φ0 = s/t and ν = r/s given
integers r, s, t. These integersmust then satisfy t/s = η(r/s − C), which is
equivalent to the noninteracting Diophantine equation

r =Cs + ηt ð12Þ

which was shown in ref. 6 to hold for a Landau level subject to a
periodic potential U1 cosð2πx=a0Þ+U2 cosðQyÞ with U2 ≪ U1, and

C = 2

C = 1C = 0a) b)

c) d)C = -1

x

y

: filled

Fig. 2 | Four-fermion interactions. Coupled chiral wires with four-fermion interactions are illustrated as correlated hoppings between wires, whose strong coupling
phases have the following Chern numbers: a C=0, b C=1, c C=-1, d C=2.

Table 1 | Interaction properties

I0 l Nedge = C Q‘2=a0 =Φ�1
0

even even (J0 − I0 + l + 1)/2 (J0 − I0 + l + 1)/2 − ν

even odd − (l − 1)/2 (l − 1)/2 + ν

odd even − (J0 − I0 + l − 1)/2 (J0 − I0 + l − 1)/2 + ν

odd odd (l + 1)/2 (l + 1)/2 − ν

Properties of CDW operator OI0, J0, l
(Eq. (5)) where C is the Chern number (equal to number of

gapless edge modes Nedge), Q is the wavevector along y, ℓ is the magnetic length, a0 is the
modulation period, ν is the filling, andΦ0 is the number of flux quanta per unit cell.
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precisely Φ0 = s/t, ν = r/s. Indeed, σH = Ce2/h in this context as well,
which famously follows from the Kubo formula6.

Methods and phase diagram
In order to determine the CDW order for a given set of microscopic
parameters, we proceed to solve the low-energy model of coupled
wires, which describes our modulated LL system at weak interaction
(compared to the bandwidth). We will bosonize each wire and apply a
perturbative renormalization group analysis.

We now treat the system by bosonization: a chiral boson fieldϕI is
introduced for each wire via ψI = ð2παÞ�1=2eikI yeð�ÞI iϕI γI , where α is a
short-distance cutoff and γI is a Klein factor29–32. The quadratic action is

S0 =
1
4π

Z
dtdy ½KIJ∂tϕI∂yϕJ � VIJ∂yϕI∂yϕJ �, ð13Þ

where KIJ = ð�ÞI + 1δIJ and VIJ = vδIJ + ð1=πÞUIJ . (More details on the
bosonization procedure can be found in (See Supplemental Material,
which includes details on the bosonizationprocedure, strong coupling
phases, and phase diagrams.).) The action Eq. (13), describing a sliding
Luttinger liquidwith forward scattering interactions betweenwires31, is
an RG fixed point parametrized by V.

We proceed to study the effect of the remaining interactions (i.e.
correlated hoppings) on these fixed points. A general type of

symmetry-allowed perturbation takes the bosonized form

Z
dt

X
j

OI0 + 2j, J0 + 2j, l , l≠0 ð14Þ

where OI0, J0, l
, defined in Eq. (5), has bosonized form

OI0, J0, l
’ cosðmIϕI Þ ð15Þ

with

ðKm!ÞI = � δI, I0
� δI, J0

+ δI, J0 + l + δI, I0�l : ð16Þ

It is important to note that Eq. (14) is a sum of local operators that are
mutually commuting.

At the fixed point, if only a single type of correlated hopping
Eq. (14) is present, the system develops the corresponding CDW order
with wavevector given by Eq. (11). However, because all types of cor-
related hoppings with different I0, J0, l are present for generic inter-
actions, the situation is more complicated. We proceed by searching
for the most relevant instability among all types of correlated hop-
pings,which indicates the strongest ordering tendency at any given set
of microscopic parameters.

To proceed, we take the bare electron-electron interactions to be
of Coulomb form, which upon projection to the LL yield matrix ele-
ments UII 0J0 J = Ly II 0

�
∣V̂ C ∣J

0J
�
, where ∣Ii denotes a Landau gauge orbital.

For V̂ C , we consider both long-range and gate-screened Coulomb
interactions VC ð r!Þ= ðe2=ϵrÞe�r=λ, where ϵ is the dielectric constant
and λ is a screening length. Writing kI 0 � kI =q, kJ0 � kJ =p, we have
(See Supplemental Material, which includes details on the bosoniza-
tion procedure, strong coupling phases, and phase diagrams.)

UII 0JJ0 =

ffiffiffiffiffiffi
2π

p
e2

ϵ
e�

‘2 ðp+ qÞ2
8

Z
ds K0 μðsÞð Þe�s2=2 ð17Þ

for the lowest LL, where K0 is a modified Bessel function of the 2nd
kind and

μðsÞ= ‘

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp+qÞ2 + 4λ�2

q
js + ‘ðp� qÞ=2j: ð18Þ

The UIJ depend on a0 and ν through the positions of the wires. We
show an example of U in Fig. 3a.

Next, we generate a phase diagram by finding the most relevant
instability Eq. (15) at the fixed point defined by Seff ½V�, with V set by
microscopic parameters, and present the results in Fig. 3. To this end,
we need to find scaling dimensions of the operators OI0, J0, l

. In the

absence of interactions, the scaling dimension is simply 1
2 m
!T

m!=2, as
appropriate for a four-fermion operator. When U is nonvanishing, we
may perform a field redefinition ϕ0

I =AI 0 IϕI with A chosen such to
diagonalize the interactions while maintaining the commutation rela-
tions; in particular, we may take any A satisfying AVAT = diag ðuiÞ,
AKAT =K, and detA= 133. It then follows that operator OI0, J0, l

has

scaling dimension Δ= 1
2 m
!T

ATAm!. We note that the OI0 + 2j, J0 + 2j, l

mutually commute for all j, indicating that theymay gapout the bulk in
a manner preserving the discrete translation symmetry along x34.

We systematically searched for the most relevant instability on a
system ofN = 300wires to generate the phase diagram Fig. 3b. At each
set of microscopic parameters we tested, the Chern number agreed
among the most relevant instabilities. The phase diagram reveals the
formation of Hall crystals with various Chern numbers as filling and
moiré period are varied. The system has a particle-hole × inversion
symmetry which manifests as a symmetry under ν → 1 − ν, C → 1 − C. In
Fig. 3c we visualize the mean-field charge density profile at
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Fig. 3 | Couplings and phase diagram. a Density-density couplings UIJ=v (dots)
and projected lowest LL interactions (line) as functions of interwire separation. The
origin, indicated by 0, is a wire I0 with I0 odd. Symbols indicate (a0, ν) values in (b).
bPhasediagramof lowest LLmodulated by a periodic potentialV(x) in afieldBwith
short range Coulomb interactions (B0 = 1=a

2
0, λ= ‘). Phases labelled by Chern

numbers C; each phase has wavevector Q (Eq. (11)) and η = − sgn(C). c Heuristic
depiction of charge density of in the smectic metal (left) and Hall crystal (right)
phases at ν = 1/3.
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Φ0 = 3/2, ν= 1/3 by solving thenoninteractingproblemwithbothU2 = 0
andU2/U1 = 0.2, a heuristic depiction of “before and after" interactions
are switched on.

When B=B0 � ða0=‘Þ2≫1, modes are well-localized to the wires
and C = 0 or C = 1 phases dominate. These both arise from back-
scattering between nearest neighbor pairs as in Fig. 2. The C = 1 state
has an unpaired chiralmode on a systemwith left or right termination.

As B decreases, the magnetic length becomes larger and the
wavefunctions in several adjacent unit cells strongly overlap, allowing
longer-range hoppings. Interestingly, the Chern number of the Hall
crystal concurrently grows inmagnitude. For instance, when ν < 1/2, we
observe a sequenceC =0, 1, − 1, 2, − 2 for decreasing a0/ℓ. We have thus
demonstrated by a controlled analysis the possibility of higher Hall
crystals. This sequence extends, though not exactly, down to smal-
ler fields.

A simple explanation for this is that the system tends to choose its
Chern number according to the rule of thumb Qℓ ≈ c*, where c* is a
nonuniversal O(1) constant depending on the interactions. We can
reproduce the phase diagram quite well by minimizing ∣Qℓ − c*∣ for
c* ≈ 1.0, with analogous phase diagrams for higher-n Landau levels
taking c* � 1=

ffiffiffi
n

p
, as we show in the Supplemental Material (See Sup-

plemental Material, which includes details on the bosonization pro-
cedure, strong coupling phases, and phase diagrams.). The precise
value of c* depends on the form factor UII 0JJ0 , but not on a0/ℓ or ν. Thus
we can efficiently predict the Hall crystal phase diagram for a wide
range of systems simply by specifying c* and applying a rule of thumb:
minimize ∣Qℓ − c*∣ using Q= a0

‘2
jC � νj.

The analytical structure borne out of the physical setup proposed
above bears a resemblance to the phenomenological coupled wire
construction of fractional topological phases (e.g. refs. 34, 35). By
contrast, we analyze a physically accessible scenario, starting with a
spatially modulated Landau level, and treat realistic microscopic
interactions, focusing on the CDW instabilities. The relation to prior
works opens the door to studying more exotic phases in our current
setup, including FQH states, anyon crystals, and superconductors.
These instabilities may require higher-fermion operators (e.g. a six-
fermion operator for the Laughlin state) to become themost relevant,
and hence a strong coupling approach is necessary36. Competition
with so-called FQAH crystals37,38 presents an additional interesting
avenue for further study.

Discussion
In summary, we have proposed an experimentally accessible platform
to realize anisotropic Hall electronic crystals with various Chern
numbers, namely a two-dimensional semiconductor (e.g. a transition
metal dichalcogenide or GaAs layer) or graphene in a strong field and
1Dmodulation. This provides the first analytically controlled route to a
novel kind of Hall crystals, whereas previous studies on intrinsic 2D
Hall crystals rely on uncontrolled Hartree-Fock calculations or invoke
unrealistic interactions5,39. Interestingly, our work shows that by sub-
jecting Landau levels to a 1D periodic modulation, the resulting
interaction-induced Hall crystals can have higher, or even sign-flipped,
Chern numbers.

In particular, a patterned dielectric substrate or back gate with an
etched 1D superlattice24–27 may help to unlock these phases. Signatures
of these phases occur when Ba2

0 ≲ 10. Dielectric etching or e-beam
lithography can produce periods down to a0 ~ 35 nm27 or ~ 10 nm,
respectively, and thus the required B fields are entirely realistic. Weak
interactions (which may not necessarily be a requirement) can also be
achieved; in graphene, for instance, interwire interactions can be
e2/ϵrϵ0a0 ~ 5meV for ϵr= 10 anda0 = 35nm,whileℏωc can reach50meV.
Interaction strength is further tunable by dielectric environment. In
contrast to previously studied examples of Hall crystals, the crystals in
our setup would have a strong anisotropy which we expect to be
present in any observable.

The relevant experimental platforms may deviate in a few ways
from the pristine model considered here. First, the superlattice may
only have an approximate periodicity a0 due to strain variations or
patterning imprecision. In this case, many instabilities considered
herein would fail to conserve the dipole symmetry, increasing the
likelihood of a stable smecticmetal. Second, defects, disorder, or an
underlying y modulation may spoil the translation symmetry, in
which case fermion bilinears ψy

I ψJ may trigger an instability to a 2D
Fermi liquid. The temperature scale for this, however, is exponen-
tially small in the perturbation strength. Finally, higher harmonics
cosðmq0xÞ may be present in V(x), but their contributions are
strongly suppressed in a B field by e�m2q20‘

2=4, and hence they typi-
cally do not alter the physics; thus adherence to V ðxÞ=V0 cosðq0xÞ is
unnecessary.

Moreover, a physical magnetic field may not be a strict require-
ment. Strain engineering in graphene can produce pseudomagnetic
fields of order 100 T40, whose alternating pattern naturally gives rise to
an array of 1D snake states41,42. Generic Chern bands subject to a 1D
periodic potential should also exhibit an array of 1D edge states. In our
context, these states could serve as chiral modes whose interactions
maydrive (anomalous) Hall crystal formation, though a careful study is
required of competing 2D Fermi liquid instabilities. An interesting
future direction is the extension of the current work to zero field
settings.

Correlated crystals with variable Chern numbers, tunable by
field and moiré period, are the central features predicted in this
work. Their predominance in the phase diagram, which was recov-
ered as a weak coupling instability, is nevertheless expected to be
even more robust. Moreover, we note the intriguing existence of
scenarios where a 1d modulation forms spontaneously, such as in
stripe phases of higher Landau levels. We reveal here that this
spontaneous modulation may be a precursor to the formation
and promotion of more conventional Hall crystals. Their phenom-
enology presents a fascinating direction for future studies, parti-
cularly at strong interaction, where competition with FQH
phases34–37 becomes important. These Hall crystals may be topolo-
gical cousins of the bubble phases in higher Landau levels, which
also form with lattice constant of approximately the cyclotron
radius9.

The higher Chern numbers also raise the prospect for interesting
new physics. For instance, novel FQH states in Chern C bands are
expected at fillings ν = r/(2r∣C∣ + 1)43 which could give rise to unex-
pected Hall conductivities. Another possibility is that defects in higher
Chern states, known as genons44,45, are endowed with nontrivial (even
non-abelian) statistics, which could possibly be probed by STM46.
Finally, the phases engineered in this work could have secondary
instabilities towards generalized charge density waves47,48 with C × C
expanded unit cells.

Data availability
The data supporting the findings in this work are publicly available
online at https://doi.org/10.5281/zenodo.16755488.

Code availability
The code used to generate the data and figures appearing in this work
is available online at https://github.com/nisargapaul/hall-crystals.
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