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Nano-org, a functional resource for single-
molecule localisation microscopy data
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M. H. H. Baragilly 1,5, K. Savoye 1,6, J. D. Worboys 7, K. S. Hazime 8,
E. Bruggeman9, A. Garcia3, D. J. Williamson 10, P. Rubin-Delanchy11, R. Peters12,
D. M. Davis 8, R. Henriques 13,14, S. F. Lee 9 & D. M. Owen 1

The nanoscale organisation of proteins plays a key role in diverse cellular
processes, including signalling, adhesion, and structural integrity. Single-
molecule localisation microscopy (SMLM) is a super-resolution imaging
technique that captures the spatial distributions of proteins in cells with
nanometre precision, enabling detailed studies of protein clustering and
architecture. However, comparing such data across experiments remains
challenging due to a lack of curated, functional resources. Here we present a
publicly accessible, curated, and functional resource, termed “nano-org”,
containing SMLM data representing the nanoscale distributions of proteins in
cells. Nano-org is searchable by comparing the statistical similarity of the
datasets it contains. This unique functionality allows the resource to beused to
understand the relationships of nanoscale architectures between proteins, cell
types or conditions, supporting the development of the field of spatial
nano-omics.

The nanoscale organisation and oligomerisation of proteins are
critical processes in fundamental biology. For instance, nanoscale
protein clustering is a key mechanism in regulating signal trans-
duction by orchestrating protein-protein interaction rates1. More-
over, the organisation of cytoskeletal components, such as the
nanoscale architecture of cortical actin, helps define cell mechanical
properties2,3. Aberrant protein nanoscale organisation has been
implicated in diseases, for example, Alzheimer’s disease and type II
diabetes4. Given this importance, there is a need for a resource to
allow researchers to compare protein nanoscale organisations.

High-quality community-driven accessible databases/atlases have
been transformative across biology in the areas of predictive protein
structure, cell phenotyping and large-scale omics, such as NCBI and
PDB5,6. However, these platforms have yet to be utilised for com-
paring protein distributions and assemblies - a field termed spatial
nano-omics. Single-molecule localisation microscopy (SMLM) is a
fluorescence microscopy technique that provides coordinates of
protein distributions in cells with nanometre precision7. While
SMLM databases exist, they lack two features required to enable
spatial nano-omics, curation and functionality8; features that are
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required to turn a repository into a resource. To address this need,
we present nano-org, a publicly accessible and curated database for
SMLM data.

Nano-org is a publicly accessible, curated resource for SMLMdata
that enables the comparison of protein nanoscale organisation across
different experimental conditions. It includes features such as meta-
data curation, real-time updates, and the ability to search datasets by
statistical similarity, supporting the study of spatial nano-omics and
protein distribution in cells.

Results
Data upload, organisation, and metadata curation
Nano-org is freely accessible at nano-org.bham.ac.uk. Uploading and
downloading data requires registration and email verification. When
processing files containing the coordinates of SMLM localisations, it
uses standardised tiled 3 × 3μmregions-of-interest (ROIs), facilitating
the application of the similarity algorithm implemented in the
resource. These are produced automatically from full field-of-view
data with cell bounding polygons. Datasets are organised into folders
representing experimental conditions. They are accompanied by
metadata such as the SMLM modality, protein identity, cell type,
fluorophore tag and other relevant information (e.g. drug treatments),
including aDOI link forpublisheddata. Themetadata includeswhether
the data has undergone drift and multiple-blink correction, and also
calculates the average localisation precision across datasets, providing
users with a quick assessment of data quality. Additionally, upon
upload, users are encouraged to include links to raw data files when
possible, as well as a correspondence email. This ensures that, where
available, raw data can be directly accessed via a link or, alternatively,
requested from the uploader, facilitating both data quality verification
and collaboration between researchers. To ensure the validity of
downstream data analysis, data stored on nano-org is curated and
subject to restriction. It currently accepts datasets in .csv or .hdf5/.h5
format acquired from PALM, dSTORM, PAINT, or other SMLM mod-
alities, such as MINFLUX, as specified by the user upon upload. For
later analysis, nano-org automatically assesses the localisation density

and coverage. Nano-org then allows users to navigate through the
publicly accessible datasets using metadata tags and download perti-
nent data for their own analysis (Fig. 1).

Statistical similarity search and ranking of datasets
A key feature of nano-org is the ability to search its contents by the
statistical similarity of datasets (Fig. 2). This means users can upload a
condition and search for other conditions where proteins exhibit the
most similar nanoscale organisation. This is analogous to searching a
gene sequence database based on sequence homology. Briefly, on
upload, ROIs are subdivided into 30 nm2 bins (a fixed bin size chosen
based on the typical localisation precision observed in SMLM experi-
ments, ensuring consistency across datasets). We then form a fre-
quency histogram for the number of localisations in each bin and
construct the empirical cumulative distribution function (CDF) of the
set of frequencies (histogram heights). Every 5minutes, a check is run
that first identifies all new or modified data in the database. Then, for
every pair of ROIs, we compute the largest discrepancy between their
CDFs, as in the Kolmogorov-Smirnov (K-S) test9,10. The K-S test yields a
dissimilarity value (λ), where an increasing λ denotes greater dissim-
ilarity between the ROIs. For condition-wide comparisons the mean
dissimilarity, �λ, is computed. This procedure results in a list of all other
database contents ranked by their nanoscale organisational similarity
to the condition in question. This list can then be downloaded and
further filtered or searched using metadata. Two different versions of
this ranked list are produced – one as described above and one which
aims to be invariant to differences in the total number of localisations
in the ROI (e.g. if the user has not controlled for expression level,
acquisition time, etc). This is achieved by thinning uploaded datasets
to a standard value (100 localisations/μm2); the minimum density at
which the algorithm could identify meaningful differences between
datasets while also minimising the exclusion of sparse datasets (see
Methods section for detail on how thinning is done). The system scales
efficiently with the number of ROIs in the database, as it compares pre-
computed histograms rather than raw data, enabling many compar-
isons within a reasonable timeframe. The infrastructure supports real-

Fig. 1 | Key functionalities of nano-org. a Users can upload their data, b selecting
from various privacy settings. c Users can upload localisation files (.csv, or .hdf5/.h5)
along with cell-bounding polygons. Metadata requirements ensure comprehen-
sive dataset documentation and enhance search functionality. d Uploaded data is

split into regions of interest (ROIs) for downstream analysis. e The database
enables users to explore public datasets, extract relevant information, and utilise
statistical similarity tools for comparative analysis.
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time updates and comparisons, ensuring timely results even as the
databasegrows. A complete description of the algorithm isprovided in
the Methods section.

Validation of similarity scoring using simulated data
Our similarity scoring method underwent rigorous testing on simu-
lated data. For example, ROIs with 10 clusters were compared to ROIs
with different numbers of clusters while keeping the total number of
localisations the same. Dissimilarity increased with the difference in
the number of clusters (Fig. 2), and statistical testing demonstrated
that the differenceswere statistically significant (See theMethods for a
detailed explanation of the significance testing procedure). Testing
with different cluster sizes and varying numbers of points per cluster is
shown in Supplementary Fig. S1. Additionally, Supplementary Fig. S2
presents dissimilarity scores for alternative structures, including mix-
tures of Gaussian-clustered and fibrous localisations, variations in fibre
density, and different cluster shapes. Finally, simulated fibrous data
with different spatial arrangements is shown in Supplementary Fig. S3.

Impact of dataset heterogeneity on similarity scores
Supplementary Fig. S4 further explores the effect of data hetero-
geneity on similarity scores. When datasets contain a fixed number of
clusters, self-similarity scores (i.e. the similarity between ROIs within
the same dataset) remain tightly distributed. However, as variability

increases (either due to differences in the number of clusters per ROI
or the presence of distinct subpopulations) self-similarity scores
become broader and can exhibit multiple peaks. This highlights the
importance of considering dataset heterogeneity when interpreting
similarity scores, as multiple subpopulations within a condition can
influence overall comparisons.

TIGIT organisation in immune cells
To illustrate the utility of our approach, we investigated the orga-
nisation of one of the datasets stored on the database – T-cell
immunoreceptor with immunoglobulin and ITIM domains (TIGIT);
imaged using dSTORM. TIGIT is an inhibitory receptor on various
immune cells, including T and NK cells. Recent findings show that
upon ligation, TIGIT forms nanoclusters co-localised with the acti-
vating T cell receptor, and this clustering is important for its signal
transduction11. From the ranked similarity list, we found that TIGIT
organisation in NK cells wasmore similar to TIGIT in other cell types,
specifically CD4+ T cells than it is to other proteins, such as KIR2DL1
and NKp30, on the surface of NK cells (Fig. 3). This suggests that the
protein identity, rather than cell type, is most important in defining
the nanoscale organisation in this case. Rankings are preserved after
thinning the data showing the trends are due to genuine differences
in the protein nanoscale distribution and not solely due to differ-
ences in expression levels. It is recommended to use thinned

Fig. 2 | Nano-org’s similarity search approach. aTwoROIs are divided into 30nm2

bins to generate cumulative frequency histograms of localisations. A K-S test
yields a dissimilarity value (λ) between the ROIs, with mean dissimilarity (�λ)
calculated across datasets for comparison. b Example 3 × 3μm simulated data
regions showing increasing dissimilarity as the number of clusters varies from

10 (30 ROIs per condition), while keeping the total localisations per ROI constant.
c Real-time analysis on nano-org enables continuous comparison with public
datasets, filterable by metadata. Ranked similarity lists are updated with new
uploads.
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dissimilarity scores when comparing datasets with significantly dif-
ferent localisation densities. The standard thinning density of 100
localisations/μm² was selected as a balance between sensitivity and
inclusivity. As shown in Fig. S5, the ability of the similarity metric to
distinguish between different clustering patterns diminishes as the
density of localisations decreases. At very low densities (e.g. 10
localisations/μm²), differences between structurally distinct pat-
terns become less pronounced, reflecting a reduced sensitivity of
the algorithm under sparse sampling conditions. Conversely,
applying a very high thinning threshold may exclude datasets with
naturally lower expression levels, limiting the comparability across
experimental conditions. Thus, 100 localisations/μm² was chosen to
retain discriminatory power while ensuring that datasets with
moderate localisation densities remain tractable.

Robustness of similarity scores to technical variability
Additionally, further testing on experimental datasets demonstrated
that while dissimilarity scores can capture subtle differences intro-
duced by image processing methods, most fitting algorithms pro-
duced reconstructions thatwere visually and structurally similar to the
reference (Fig. S6a). While some differences were observed when
comparing datasets acquired on different imaging platforms (e.g. ONI

vs. N-STORM), likely due to technical variations such as laser power or
detector sensitivity, these were relatively minor compared to the dis-
similarity observed when comparing biologically distinct samples
imaged in different labs (Fig. S6b). This highlights that, although
microscope settings can introduce subtle variability, the dissimilarity
scores aremore strongly influencedbyunderlyingbiological structure.

Effect of drug treatment on nanoscale organisation
Furthermore, when comparing cells treated with increasing doses of
nocodazole, a drug that disrupts microtubules, dissimilarity scores
reflected the expected changes in microtubule organisation
(Fig. S6c). Cells treated with 0.5μg/ml nocodazole showedmoderate
differences fromuntreated controls, while those treated with 5 μg/ml
displayed markedly greater dissimilarity, consistent with a loss of
filament structure.

Discussion
In conclusion, nano-org is a publicly accessible and curated database
of SMLM data, designed to facilitate collaborative data sharing,
enhancing accessibility and reproducibility. Its unique framework
allows searches based on statistical similarity, enabling investigations
into the biophysical mechanisms of nanoscale organisation and the

Fig. 3 | Dissimilarity scores between experimental data in nano-org. a Examples
of whole cell coordinates used for analysis, along with example ROIs for each
condition of interest: TIGIT in CD4+ T cells (116 ROIs), and NK cells (158 ROIs);

NKp30 in NK cells (416 ROIs); and KIR2DL1 in NK cells (202 ROIs). 3 × 3μmROIs are
presented either unthinned or thinned to 100 localisations/μm2. b Dissimilarity
between TIGIT in NK cells with itself (red) and with all other conditions.

Article https://doi.org/10.1038/s41467-025-63674-x

Nature Communications |         (2025) 16:8674 4

www.nature.com/naturecommunications


effects of mutations or treatments on protein distributions. This
resource contributes to the development of spatial nano-omics – the
systematic study of cellular nanoscale architecture.

Methods
Nano-org: technical description
Nano-org is a Django-based website, with an SQLite database backend,
which is hosted on a BEARCloud virtual machine at the University of
Birmingham. Celery and RabbitMQ are used to schedule background
tasks, including checking the database for new and modified data and
initiating computationally intense analysis tasks via job submission to
BlueBEAR – the University of Birmingham’s supercomputer for high-
performance computing (HPC). Celery tasks are also used to retrieve
analysis results from HPC jobs and incorporate them into the website
and database. Uploaded data and analysis results are stored on the
University of Birmingham’s central Research Data Store and made
available to download through thewebsite. Core analysis functionality,
including cumulative histogram generation and Kolmogorov-Smirnov
(K-S) score calculation, is incorporated into our stand-alone Python
package smlm-analysis. This package is utilised by nano-org but can
also be usedby researcherswhowant todevelop their own customised
analysis pipelines.

Dissimilarity algorithm
To compare the dissimilarity between two ROIs, let FðxÞ and GðxÞ be
their empirical CDFs with sample sizesm and n, respectively. Here, the
sample sizes are the number of 30 × 30nm bins within the ROI that
contain at least one localisation. A two-sampleK-S statistic is employed
using the definition,

Dmn > c αð Þ
ffiffi

J
p

, ð1Þ

where,
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�

�

�
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Here, Dmn is the maximum difference between F xð Þ and G xð Þ,
which are theCDFs of the twoROIs. J adjusts for sample sizes as the K-S
test is sensitive to dataset size. Theparameterα is the confidence level,
where we set α=0:05. We define,

λ=
Dmn

c αð Þ ffiffi

J
p ð5Þ

Where λ is then the dissimilarity score between the two datasets,
ensuring that comparisons remain consistent regardless of differences
in the number of localisations. More details are provided in12.

A value of λ = 0 indicates that the two ROIs have identical dis-
tributions, while higher λ values indicate increasing dissimilarity. A
score greater than 1 (λ > 1) indicates that two datasets are sig-
nificantly different. However, a score less than 1 (λ < 1) does not
necessarily imply that the datasets are highly similar—it simplymeans
that their differences are not statistically significant. If comparing
similarity scores across multiple datasets to establish a ranking of
similarity, while some scoresmay fall below 1, the relative ordering of
scores remains informative, helping to rank datasets by their degree
of similarity or dissimilarity.

A caveat of the dissimilarity algorithm is that results are
influenced by localisation density, i.e. datasets with lower den-
sities tend to have lower dissimilarity scores. To obtain dissim-
ilarity scores that are independent of localisation density, we
perform thinning before computing dissimilarity scores. The
thinning process involves:

• ROI processing: For each file in a dataset, 3 × 3μm² ROIs are
extracted.

• Random subsampling: Each ROI within the entire dataset is ran-
domly subsampled 100 times to achieve a density of 100 locali-
sations/μm² per ROI.

• Handling sparse datasets: If a ROI has a density fewer than 100
localisations/μm², it is excluded from the analysis to prevent bias.

• Thinned histogram generation: Frequency histograms are gener-
ated for each subsample. The histograms are then averaged
across all 100 repeats to ensure robustness.

• Dissimilarity computation: For each ROI in the reference condi-
tion, the dissimilarity score is computed against ROIs in the
comparison condition, and the mean dissimilarity score along
with its standard deviation is reported. This normalisation allows
for density-independent comparisonswhile preserving the under-
lying protein distribution patterns.

It is recommended to use thinned dissimilarity scores when
comparing datasets with significantly different localisation densities.

Data simulations
To model protein distributions that exhibit clustering behaviour, we
generate Gaussian-distributed clusters within a 3 × 3 μm² ROI. Each
simulation follows these steps:
1. Cluster Generation: A specified number of clusters (n) are ran-

domly positioned within the ROI.
2. Point Distribution: Each cluster contains p localisations, which are

sampled from a Gaussian distribution centred at the cluster
position.

3. Cluster Variability: The spread of each cluster is controlled by the
standard deviation (σ), determining the tightness of clustering.

This approach ensures that clusters of varying sizes and densities
can be systematically compared using the dissimilarity algorithm.

To simulate the nanoscale organisation of cytoskeletal-like
structures, we generate linear fibre distributions within an ROI. The
fibre generation process involves:
1. Defining Fibre Orientation: Fibres can be randomly oriented or

aligned parallel within the ROI.
2. Fibre Placement: The number of fibres is specifiedby the user, and

their positions are randomly or uniformly distributed.
3. Point Distribution Along Fibres: Localisations are assigned along

each fibre’s length following a linear pattern, mimicking fila-
mentous structures such as cytoskeletal networks.

This method captures the spatial arrangement of fibrous
networks, enabling systematic comparisons between ordered and
disordered fibre architectures.

For more details of how simulations are generated, see
https://gitlab.bham.ac.uk/owendz-protein-databank/nano-org-
similarity-scoring.

Experimental methods
All experimental datasets, with the exception of the microtubule data,
were obtained from collaborating laboratories. Microtubule data were
acquired in-house under the conditions described below. All datasets
used in this study are publicly available via nano-org.
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Cell culture
COS-7 cells were maintained in Dulbecco’s Modified Eagle Medium
(DMEM, high glucose; Sigma-Aldrich), supplemented with 10% fetal
bovine serum (FBS; Gibco, Life Technologies), 1% penicillin/strep-
tomycin (Gibco, Life Technologies), and 1% L-glutamine (Gibco, Life
Technologies), at 37 °C in a humidified incubator with 5% CO₂. For
imaging, cells were seeded at a density of 10⁴ cells per well in an
eight-well µ-slide (Ibidi, high precision glass bottom) one day prior
to fixation.

For experiments involving nocodazole treatment, cells were
incubated for 30min at 37 °C in DMEM containing either 0.5 µg/mL or
5 µg/mL nocodazole. Following treatment, cells were washed three
times with phosphate-buffered saline (PBS). Untreated control cells
were washed directly with PBS.

Cells were subsequently subjected to a sequential extraction and
fixation protocol. Briefly, cells were extracted with a pre-warmed
solution of 0.25% Triton X-100 and 0.1% glutaraldehyde in PEM buffer
(80mMPIPES, 5mMEGTA, 2mMMgCl₂, pH 6.8) at 37 °C for 90 s. This
was followed by fixation in a solution of 0.25% Triton X-100 and 0.5%
glutaraldehyde in PEM at 37 °C for 10min. Post-fixation, samples were
quenched with 1mg/mL sodium borohydride (Sigma-Aldrich) for
7min13 and washed three times with PBS.

Immunolabelling
Cells were permeabilised with 0.1% Triton X-100 in PBS for 3min at
room temperature (RT), cells were then washed in PBS followed by
blocking in 5% bovine serum albumin (BSA; Sigma-Aldrich) for 30min.
Immunostaining was performed using a mouse monoclonal β-tubulin
IgG₃primary antibody (200 µg/mL; SantaCruz Biotechnology), diluted
1:50 in 5% BSA and incubated for 30min at RT. After three PBS washes,
cells were incubated in Alexa Fluor™ 647-conjugated goat anti-mouse
IgG secondary antibody (2mg/mL; Life Technologies), diluted 1:1000
in 5% BSA, for 30min in the dark at RT. Samples were then washed five
times with PBS. Prior to dSTORM imaging, PBS was replaced with an
imaging buffer consisting of 18% glucose (w/v), 10mM Tris (pH 8),
50mM NaCl (Sigma-Aldrich), 0.8mg/mL glucose oxidase, 50mM
cysteamine (Sigma-Aldrich), and 40 µg/mL catalase (Sigma-Aldrich).

Optical setup
Microtubule data was collected using an ONI Nanoimager S micro-
scope unless otherwise stated. Where indicated, a Nikon N-STORM
microscope was used for comparison.

Data analysis
Data analysis was conducted using the Super resolution Microscopy
Analysis Platform (SMAP)14, with default settings applied unless stated
otherwise. Single-molecule localisations were fitted using the PSF free
algorithm. To assess the impact of different localisation algorithms on
similarity metrics, localisations were also fitted using the ellipt:PSFx
PSFy or PSF fix algorithm in SMAP, as well as several alternative fitting
methods available in ThunderSTORM15, including Gaussian (Gaus),
integrated Gaussian (integrated Gaus), centroid, and radial fitters.

Localisations were filtered to exclude those with an estimated
precision greater than 30nm. Drift correction and grouping were
performed tomitigate the effects of sample drift andmultiple blinking
of fluorophores.

Summary of statistical testing method
To assess whether dissimilarity scores comparing different conditions
to a reference condition were statistically significant, p-values were
calculated using Monte Carlo simulations and permutation testing.
The analysis began by extracting all dissimilarity values comparing the
reference condition with itself and with each specific comparison con-
dition. For the statistical comparison, we conducted 1000 Monte Carlo

simulations. A distance matrix was computed using these dissimilarity
values. The test statistic, calculated from this distancematrix, quantified
the differences between intra-group and inter-group distances. The
p-value was determined by comparing the observed test statistic with
those obtained from permuted data, representing the proportion of
permuted test statistics greater than or equal to the observed statistic.
To validate this approach, we repeated the p-value calculation 500
times andplotted the empirical cumulative distribution function (ECDF)
of the resulting p-values. This method ensures a robust comparison of
group differences and the reliability of the calculated p-values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All experimental data is stored and available for download on https://
nano-org.bham.ac.uk.

Code availability
The implementation of the website and database is available at https://
gitlab.bham.ac.uk/owendz-protein-databank/nano-org-website16. The
core analysis functionality and algorithms used by nano-org are
implemented as a stand-alone python package which is available at
https://gitlab.bham.ac.uk/owendz-protein-databank/smlm-analysis17.
All Python scripts used to produce simulated data and violin plots in
figures and Supplementary Figs. are available at https://gitlab.bham.ac.
uk/owendz-protein-databank/nano-org-similarity-scoring18.
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