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Adrenocortical carcinomas (ACC) are aggressive and resistant to medical
treatment. This study reports a single-nucleus transcriptome atlas of steroid
and microenvironment cells in 38 human normal adrenals and adrenocor-
tical tumors. We identify intermediate-state cells between glomerulosa and
fasciculata, a transition state in the centripetal trans-differentiation of nor-
mal steroid cells. In tumors, steroid cells show expression programs
reflecting this zonation. Although ACC microenvironment is scarce, its sig-
natures combine with those of steroid cells into ecotypes. A first ecotype
combines cancer-associated fibroblasts, tumor-associated endothelial cells,
with hypoxia and mitosis signatures in steroid cells. Another ecotype com-
bines exhausted T cells, with fasciculata steroid signature. These ecotypes
are associated with poor survival. Conversely, a third ecotype combines
inflammatory macrophages, with reticularis steroid signature, and better
outcome. These steroid/microenvironment cells interplays improve out-
come predictions and may open therapeutic options in aggressive ACC,
through immune microenvironment activation by modulating glucocorti-
coids/androgens balance.

The adrenal cortex, corresponding to the external part of adrenal fasciculata produces cortisol, and the zona reticularis produces
glands, is divided into three well differentiated anatomical and func-  androgens'.

tional regions, which produce different steroid hormones. From per- Primary tumors arising from the adrenal cortex include common
iphery to center, the zona glomerulosa produces aldosterone, thezona  benign unilateral tumors -referred to as adrenocortical adenomas
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(ACA)-, rare malignant tumors -referred to as adrenocortical carcino-
mas (ACC)-, and multiple nodules on both adrenals -referred to as
primary bilateral macronodular adrenocortical hyperplasia (PBMAH)-.
Morbidity of adrenal tumors is high, related either to steroid hormone
excess in benign and malignant tumors, or to tumor growth and
metastases in ACC>”.

Bulk genomic studies have identified distinct molecular classes
for adrenocortical tumors. ACC cluster in two distinct transcriptome
classes, named C1A with poor outcome and C1B with better outcome*”,
Transcriptome signatures show an enrichment of steroidogenic and
cell-cycle related genes in C1A, and of immune related genes in C1B*.
Benign tumors cluster in several distinct groups, following their
somatic or germline genetic driver mutations®’.

Adrenocortical tumors present a limited proportion of stromal
and immune cells'®, with poorly established prognostic and patho-
physiologic relevance so far. Single-cell tumor atlases recently
emerged as a powerful tool for characterizing tumor microenviron-
ment and intra-tumor heterogeneity" . However, single-cell studies
on the human adrenal cortex are limited, focusing on normal adrenal
cortex™, and on the steroid cells of adrenocortical tumors™™.

In this work, we provide an atlas of human normal and tumoral
adrenals, covering normal and tumor steroid cells, and micro-
environment cells in a series of different tumor types. We show original
steroid and microenvironment cell signatures, integrated into eco-
types associated with outcome in ACC.

Results

Single-nucleus atlas of human adrenal cortex reveals cancer-
specific microenvironment signatures

To elucidate the cellular architecture of adrenal tumors, we ana-
lyzed 4 normal adrenals and 34 primary tumors, including 11 C1A
ACC, 9 C1B ACC, 8 adenomas and 6 PBMAH (Supplementary
Data 1-2). A total of 168,927 cells passed quality control (Sup-
plementary Fig. 1la-e). Cells were annotated using canonical
lineage markers and cell type predictions based on published
gene signatures™™® (Fig. 1a, b, Supplementary Data 3, Supple-
mentary Fig. 1f, g). All major cell types were represented across all
samples (Fig. 1c). Uniform manifold approximation and projec-
tion (UMAP) visualization showed a clear separation of steroid
cells by tumor, with a tendency of tumors to aggregate according
to the normal/benign/malignant status, and according to the
tumor types previously reported®® (Fig. 1d, e). In contrast, UMAP
visualization of stromal and immune cells across tumors clus-
tered together without batch correction (Fig. 1a, d, e). Remark-
ably, stromal and myeloid cells were distributed along gradients
reflecting malignancy (Fig. 1a, d, e).

We estimated single-nucleus copy number variant (CNV) profiles
using inferCNV". As expected, neoplastic cells cumulated large-scale
genomic rearrangements (Fig. 1f, Supplementary Fig. 1h), including
chromosome 5, 7, 12 gains and 1, 18, and 22 losses commonly reported
in ACC®’, or the recurrent 1p losses in KDM1A-mutated PBMAH*,
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Fig. 1| Cell atlas of normal adrenal cortex and adrenocortical tumors. Individual
cells from 34 adrenocortical tumors and 4 normal adrenals are presented (single-
nucleus transcriptomes). a Uniform manifold approximation and projection
(UMAP) annotated with cell types. b Stacked violin plot of cell types markers,
showing log-scaled raw counts for top differentially expressed genes for each cell
type. ¢ Proportion of cell types in each sample, presented by sample type:

adrenocortical carcinoma (ACC), adrenocortical adenoma (ACA), primary bilateral
macronodular adrenocortical hyperplasia (PBMAH) or normal adrenal. d UMAP
annotated by sample identifier. e UMAP annotated by sample type. f UMAP anno-
tated by benign/malignant statuses, based on copy number alterations (CNA)
scores inferred from transcriptome. Tumor cells were called if >3% of the genome
was altered.
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Fig. 2 | Characterization of normal steroid cells. Individual steroid cells from 4
normal adrenals are presented (single-nucleus transcriptomes). a UMAP annotated
by transcriptome clusters; clustering and projection were performed after inte-
gration of samples (Seurat PrepSCTIntegration, FindIntegrationAnchors, and
IntegrateData functions). b Stacked violin plot of transcriptome cluster markers,
showing log-scaled raw counts for top differentially expressed genes for each
cluster. ¢ Proportion of transcriptome clusters in each sample. d Steroid cells tra-
jectory annotated by pseudotime, using discriminative dimensionality reduction
via learning a tree (DDRtree). e Steroid cells trajectory annotated by transcriptome
clusters, using DDRtree. f Expression profiles of selected genes with pseudotime
variation, including genes related to calcium signaling (ATP10A, CACNB2, CALNI), to
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Wnt-Bcatenin signaling (AFF3, LEF1, LGRS), to cell adhesion (/ITGAI, NCAMI, VCAN),
and to steroidogenesis (CYP1IB2, SCARBI, CYP11BI, STAR, CYBS5A, SULT2AI). Black
lines: mean expression over pseudotime. g Hematoxylin eosin coloration of NAd4,
a normal adrenal sample used for spatial transcriptomics. Capture area

6.5 x 6.5 mm. h Spatial transcriptomic representation of the 6 signatures of normal
steroid cells in NAd4. Normal steroid cells signatures were deconvoluted with
Cell2location in spatial transcriptomics spots. i DAB2 (ZG marker, brown) and
CYP17A1 (ZF/ZR marker, red) immunohistochemistry staining of a normal adrenal
(magpnification x400, barscale 50 um). Some cells co-expressed DAB2 and CYP17A1
(arrowheads). Abbreviations: ZG zona glomerulosa, ZF zona fasciculata, ZR zona
reticularis, HSP heat-shock proteins.

Normal human adrenal cortex differentiates following the
adrenal zonation

Normal steroid cells gathered into zona glomerulosa, zona fasciculata,
and zona reticularis clusters, in agreement with the adrenal cortex
functional zonation (Fig. 2a-c, Supplementary Fig. 2a-f). An
intermediate-state cluster was identified, showing features of both
zona glomerulosa and zona fasciculata (Fig. 2a-c, Supplementary
Fig. 2d, Supplementary Data 4), as well as an enriched expression of
cell adhesion coding genes (/ITGA1, NCAMI) (Supplementary Data 4,
Supplementary Fig. 2e). A last cluster was individualized, characterized

by high expression of heat shock proteins (HSP, Supplementary Data 4,
Supplementary Fig. 2e).

In order to estimate the gradual transition of adrenocortical cells,
cells were sorted according to pseudotime, revealing a trajectory
starting from zona glomerulosa cells to zona fasciculata and zona
reticularis cells. In this trajectory, the intermediate-state cluster
appeared between zona glomerulosa and zona fasciculata cells, and
the HSP+ cluster was disseminated within intermediate-state and zona
fasciculata clusters (Fig. 2d, e). Genes associated with pseudotime
reflected the specific gene expression pattern observed in the adrenal
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cortex functional zonation, starting with high expression of zona glo-
merulosa markers (CYPI1B2, calcium signaling, and Wnt-Bcatenin sig-
naling genes), followed by zona fasciculata markers (CYP11BI and other
steroidogenesis related genes) and then zona reticularis markers”
(CYBS5A, SULT2AI) (Fig. 2f, Supplementary Data 5).

In order to precise the in-situ localization of steroid cell types, we
performed spatial transcriptomics in two normal adrenals. The dif-
ferent adrenal cell types could be identified by unsupervised clustering
(Supplementary Fig. 2g-i, Supplementary Data 6). Deconvolution of
single-nucleus clusters properly localized zona glomerulosa, zona
fasciculata, and zona reticularis cells. In accordance with the pseudo-
time analysis, the intermediate-state cells were located between zona
glomerulosa and zona fasciculata (Fig. 2g, h, Supplementary Fig. 2j, k).
Of note, the proportion of intermediate-state cells in spatial tran-
scriptomics and sn-RNAseq was variable, depending on clustering
parameters. This variability may reflect the unclear delineation of
intermediate-state cells in a progressive trans-differentiation from ZG
to ZF. These intermediate-state cells could be independently validated
by immunohistochemistry staining, showing co-expression of ZG
marker DAB2 and ZF/ZR marker CYP17A1 (Fig. 2i). HSP+ cells were
concentrated into a focused area, within zona fasciculata (Fig. 2g, h,
Supplementary Fig. 2j, k).

Recurrent gene modules drive steroid cell heterogeneity

In steroid tumor cells, 8 recurrent gene modules drove neoplastic cell
heterogeneity (Fig. 3a, Supplementary Data 7). Four gene modules
corresponded to steroid cells signatures found in normal adrenals, one
enriched in markers of ZG cells (GM1_ZG), two enriched in markers of
ZF cells (GM2_ZF1 and GM3_ZF2) and one enriched in markers of ZR
cells (GM4_ZR, Fig. 3b). The four remaining gene modules were related
to tumor signatures, enriched in extracellular matrix genes
(GM5_ECM), translation-related genes (GM6_Translation), mitosis-
related genes (GM7_Mitosis), and hypoxia-related genes (GM8_Hy-
poxia) respectively (Fig. 3b).

Each of the 8 gene modules was scored in each cell of each adrenal
tumor sample. Each cell was labeled following the maximal gene
module score. Cancer cells were enriched in GM7 Mitosis and
GMS8_Hypoxia, while benign tumor cells were enriched in GM5_ECM
(Fisher simulated p = 0.0005, Fig. 3¢, d). The proportion tumor steroid
cells expressing GM7_Mitosis module correlated with tumor mitotic
count (Spearman r=0.59, p=0.003) and Ki-67 index (Spearman
r=0.58, p=0.005, Supplementary Fig. 3a, b). The proportion of tumor
steroid cells expressing GM3_ZF2 module correlated with cortisol
secretion in patients (Spearman r=0.63, p=0.01, Supplementary
Fig. 3c). These correlations confirmed the biological relevance of gene
modules.

To evaluate the clinical relevance of these signatures, each gene
module was scored in bulk transcriptomes from three ACC
datasets®’*2. GM7_Mitosis was positively correlated with GM8_Hy-
poxia (Pearson r=0.38, p<107) and negatively correlated with
GM4 7R (Pearson r=-0.44, p<107°, Supplementary Fig. 3d). Gene
modules were associated with several clinical parameters, including
GM3_ZF2 with cortisol secretion in patients (Spearman r=0.43,
p <107®), and GM7_Mitosis with tumor mitotic count and Ki-67 index
(Spearman r=0.48 and 0.36, and p<10® and <10* respectively,
Supplementary Fig. 3d). Six of the 8 gene modules were associated
with disease-free and overall survival (Cox p <0.001), with a better
outcome for GM4 ZR, and a worse outcome for GM1_ZG, GM2_ZF1,
GM3_ZF2, GM6_Translation and GM7_Mitosis (Fig. 3e, Supplemen-
tary Data 8).

Cancer-associated stromal cells combine pan-cancer and
adrenal-specific features

Fibroblasts and endothelial cells represented 4.7% and 5.1% of total
cells, respectively (Fig. 1a).

Unsupervised clustering segregated resident fibroblasts -pre-
dominant in normal adrenals-, and cancer-associated fibroblasts (CAF)
(Fig. 4a-c, Supplementary Fig. 4a). CAF were characterized by
enrichment in extracellular matrix (ECM) remodeling and cell-matrix
adhesion processes (Supplementary Fig. 4b, Supplementary Data 9).
CAF were further clustered in three groups (CAF1, CAF2, CAF3), each
with specific marker genes (Fig. 4b).

Sorting cells according to pseudotime revealed a branched tra-
jectory starting from resident fibroblasts, towards CAF1 or towards
CAF2 and CAF3 (Fig. 4d, e). Genes associated with pseudotime inclu-
ded ECM remodeling markers® towards CAF1 (VCAN, BNC2, Fig. 4f),
and pro-angiogenic** (RGS5, SEMASA) and immunosuppressive
markers® towards CAF3 (CD36, Fig. 4g, Supplementary Data 10).

Endothelial cells clustered into the three canonical endothelial
types -lymphatic, arterial, and venous- (Fig. 5a-c, Supplementary
Fig. 5a). A subset of venous endothelial cells expressed high levels of
heat shock proteins (EC-HSP+). In addition, two clusters were almost
exclusively observed in adrenocortical tumors (Fig. 5a-c). One cluster
-tumor endothelial cells 1 (TEC1)- included both ACC and benign
adrenocortical tumors, whereas the other -tumor endothelial cells 2
(TEC2)- was restricted to ACC (Fisher simulated p = 0.0005). These two
clusters were characterized by high expression of pro-angiogenic
markers previously reported in tumor endothelial cells, such as NRPI in
TEC1*, and VWF and ANGPT2 in TEC2¥* (Fig. 5b, Supplementary
Fig. 5b, Supplementary Data 11).

Sorting cells according to pseudotime revealed a branched tra-
jectory starting from venous endothelial cells, towards lymphatic
endothelial cells or towards TEC2 (Fig. 5d, e). Genes associated with
pseudotime included known TEC-associated genes (VWF, ANGPT2)
towards TEC2, as well as markers not described before (ANO2, KCNQ3,
LAMBI, ENPP2, Fig. 5f, Supplementary Data 12).

TEC2 signature was deconvoluted in bulk transcriptome from
three ACC datasets, showing an association with poor outcome
(Fig. 5g, Supplementary Data 8).

Better-outcome adrenocortical carcinomas are enriched in
inflammatory macrophages

Lymphoid and myeloid cells represented 1.2% and 9.9% of total cells,
respectively (Fig. 1c).

Lymphoid cells were mainly distributed into four T cells clusters,
including naive/memory -expressing IL7R-, exhausted -expressing
higher levels of TOX- and NK-like” -expressing GNLY and KLRFI-, and a
group of unassigned T cells (Fig. 6a-c, Supplementary Fig. 6a, b,
Supplementary Data 13). Exhausted and NK-like T cells were pre-
dominant in ACC, while unassigned T cells were predominant in nor-
mal adrenal and benign tumors (Fisher simulated p = 0.0005, Fig. 6¢).

Sorting cells according to pseudotime revealed a trajectory
starting from unassigned towards NK-like or exhausted T cells
(Fig. 6d, e). Genes associated with pseudotime included NK differ-
entiation markers towards NK-like T cells (KLRD1, KLRFI and GNLY,
Fig. 6f), and THEMIS, a negative regulator of effector CD8" T cells®,
towards exhausted T cells (Fig. 6g, Supplementary Data 14).

Myeloid cells clustered into resident -predominant in normal
adrenals-, inflammatory - expressing C3, CX3CRI, and MHCII markers-,
perivascular® -expressing SELENOP and LYVEI- and cycling
macrophages® -expressing MKI67 and TOP2A-, and two groups of
tumor-associated macrophages (TAM1 and TAM2, Fig. 7a-c, Supple-
mentary Fig. 7a). TAM markers were validated in situ using high defi-
nition spatial transcriptomics and immunohistochemistry staining
(Fig. 7d, e, Supplementary Fig. 8a, b). Resident macrophages and TAM
expressed high levels of “M2” polarization markers®* (CD163 and
MRCI), and of FKBPS, reflecting glucocorticoid receptor activation***,
Conversely, inflammatory macrophages showed low expression of
CD163, MRCI and FKBPS (Fig. 7b, Supplementary Fig. 7b, Supplemen-
tary Data 15).
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Fig. 3 | Characterization of tumor steroid cells. a Similarity heatmap of gene
modules. For each tumor, gene expression variability was captured by the 10 first
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50 genes positively and negatively associated with each component). The heatmap
of gene modules similarities (Sgrensen indexes) revealed 8 recurrent gene mod-
ules. b Gene set enrichment (normal adrenal signatures and GO-BP, over-
representation test) of the 8 recurrent gene modules. ¢ UMAP of the steroid tumor

cells. Individual steroid cells from 34 adrenocortical tumors are presented (single-
nucleus transcriptomes). The main gene module is assigned to each cell.

d Proportion of main gene modules assigned to steroid cells of each tumor sample.
e Association of gene modules and outcome. Gene modules were scored in bulk
ACC transcriptomes from 201 patients with ssGSEA. Kaplan-Meier curves represent
disease-free and overall survival.
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Fig. 4 | Characterization of adrenocortical fibroblasts. Individual fibroblasts cells
from 34 adrenocortical tumors and 4 normal adrenals are presented (single-
nucleus transcriptomes). a UMAP annotated by transcriptome clusters. b Stacked
violin plot of transcriptome cluster markers, showing log-scaled raw counts for top
differentially expressed genes for each cluster. ¢ Proportion of transcriptome
clusters in each sample type. d Fibroblasts trajectory annotated by pseudotime,
using discriminative dimensionality reduction via learning a tree (DDRtree).

Pseudotime (stretched)

e Fibroblasts trajectory annotated by transcriptome clusters, using DDRtree.

f Expression profiles of top genes with pseudotime variation from resident fibro-
blasts towards CAF1 (dashed line), including ECM remodeling markers (VCAN,
BNC2). g Expression profiles of top genes with pseudotime variation from resident
fibroblasts towards CAF3 (solid line), including pro-angiogenic (RGSS, SEMASA) and
immunosuppressive markers (CD36). Black lines: mean expression over
pseudotime.

Sorting cells according to pseudotime revealed a branched tra-
jectory starting from resident macrophages towards either TAMI or
inflammatory macrophages (Fig. 7f, g). Genes associated with pseu-
dotime included M2/TAM markers*****” (PPARG, GPNMB, CCLIS)
towards TAMI, as well as anti-inflammatory markers such as choles-
terol transporters®® (ABCA1, ABCGI) and the metalloproteinase MMPI9,
degrading the cytokine CX3CL1* (ligand of CX3CR1, Fig. 7h). Genes
associated with pseudotime included pro-inflammatory markers
(CX3CRI1, C3, PRKGI) towards inflammatory macrophages, as well as
the adhesion G protein-coupled receptor ADGRB3 (Fig. 7i, Supple-
mentary Data 16).

Using deconvolution in bulk transcriptome, inflammatory mac-
rophages signature was negatively correlated with GM3_ZF2 score -
reflecting cortisol secretion (Supplementary Fig. 3c, e) - (Pearson
r=-0.43, p<10~°, Supplementary Fig. 7c), probably reflecting the
immunosuppressive effect of glucocorticoids. Inflammatory macro-
phages signature was associated with better outcome in three

independent ACC datasets (Fig. 7j). The prognostic value of inflam-
matory macrophages was further tested against other microenviron-
ment signatures and against established prognostic factors
(Supplementary Data 8). In stepwise multivariable models (for DFS and
for OS), the prognostic value of inflammatory macrophages remained,
while other microenvironment signatures were discarded. In these
models, inflammatory macrophages, GM7_Mitosis score - reflecting
tumor grade (Supplementary Fig. 3a, b) -, and ENSAT tumor stage were
independent prognostic factors of DFS and OS (Supplemen-
tary Data 8).

Tumor regions with distinct aggressive features correspond to
intra-tumor variations of steroid and microenvironment
signatures

Two features of tumor heterogeneity were explored: (i) the meta-
static spreading, by comparing primary tumor (ACCla) and a meta-
chronous metastasis (ACC1b) in one patient (Supplementary Fig. 9a);
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Fig. 5 | Characterization of adrenocortical endothelial cells. Individual endo-
thelial cells from 34 adrenocortical tumors and 4 normal adrenals are presented
(single-nucleus transcriptomes). a UMAP annotated by transcriptome clusters.

b Stacked violin plot of transcriptome cluster markers, showing log-scaled raw
counts for top differentially expressed genes for each cluster. ¢ Proportion of
transcriptome clusters in each sample type. d Endothelial cells trajectory annotated
by pseudotime, using discriminative dimensionality reduction via learning a tree

Pseudotime (stretched)

(DDRtree). e Endothelial cells trajectory annotated by transcriptome clusters, using
DDRtree. f Expression profiles of top genes with pseudotime variation from EC-
venous towards TEC2 (dashed line), including known TEC-associated genes (VWF,
ANGPT2) and novel markers (ANO2, KCNQ3, LAMBI, ENPP2). Black lines: mean
expression over pseudotime. g Association of TEC2 signature and outcome.
TEC2 signature was deconvoluted in bulk ACC transcriptomes from 201 patients
with CIBERSORTX. Kaplan-Meier curves represent disease-free and overall survival.

(ii) the tissue morphology, by comparing one tumor region with
aggressive features (ACC2b and ACC8a) and another without (ACC2a
and ACCS8b) in two different patients (Supplementary Fig. 9b).
Tumor heterogeneity was associated with variations in the micro-
environment (Fig. 1c) and gene module composition (Fig. 3d, Sup-
plementary Data 17). In ACC1, the metastasis sample (ACC1b) showed
a lower proportion of microenvironment cells (<1% of cells, Fisher
simulated p = 0.0005) and an enrichment in gene modules reflecting
aggressive steroid cells (higher GM3_ZF2 and GM7_mitosis and lower
GM4 7R, Fisher simulated p=0.0005, Supplementary Data 17). In
ACC2, the region with more aggressive morphological features
(ACC2b) showed a lower proportion of microenvironment cells
(<10% of cells, Fisher simulated p=0.0005) and an enrichment in
TEC2 and GM3_ZF2 (Fisher simulated p=0.0005, Supplementary
Data 17). In ACCS, variations related to aggressive features in the
microenvironment and in gene modules were more limited (Sup-
plementary Data 17).

ACC2 was further characterized using spatial transcriptomics.
Unsupervised clustering of spatial spots revealed three compartments
(clusterl, cluster2, cluster3), corresponding to spatially distinct tumor
regions, with different levels of cyto-nuclear atypia (Supplementary
Fig. 9c-e). High level of chromosome alterations confirmed the
malignant nature of cells (Supplementary Fig 9f). Cluster3 was enri-
ched in immune cells while clusterl and cluster2 were enriched in
steroid cells (Supplementary Fig. 9g, h, Supplementary Data 18).
Similarly, deconvolution of single-nucleus signatures showed an
enrichment in TAMI, inflammatory macrophages, and NK-like T cells in
cluster3 spots. In clusterl and cluster2, spots were enriched in ster-
oidogenic modules GM2_ZF1 and GM3_ZF2 (Supplementary Fig. 9i).
Clusterl and cluster2 differed by their enrichment in CAF1 and
inflammatory macrophages, higher in cluster2 (Supplementary Fig. 9i).

Altogether, these results support that regions with aggressive
features present higher levels of module GM3_ZF2 and GM7_mitosis
with rather low immune cells.
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Fig. 6 | Characterization of adrenocortical lymphocytes. Individual lymphoid
cells from 34 adrenocortical tumors and 4 normal adrenals are presented (single-
nucleus transcriptomes). a UMAP annotated by transcriptome clusters. b Stacked
violin plot of transcriptome cluster markers, showing log-scaled raw counts for top
differentially expressed genes for each cluster. ¢ Proportion of transcriptome
clusters in each sample type. d Lymphocytes trajectory annotated by pseudotime,
using discriminative dimensionality reduction via learning a tree (DDRtree).

Pseudotime (stretched) Pseudotime (stretched)

Branch —— NK-like ---- Exhausted

e Lymphocytes trajectory annotated by transcriptome clusters, using DDRtree.

f Expression profiles of top genes with pseudotime variation, from unassigned

T cells towards NK-like T cells (solid line), including NK differentiation markers
(KLRDI, KLRF1 and GNLY). Black lines: mean expression over pseudotime.

g Expression profiles of top genes with pseudotime variation, from unassigned

T cells towards exhausted T cells (dashed line), including THEMIS, a negative reg-
ulator of TCR signaling. Black lines: mean expression over pseudotime.

Single-nucleus signatures combine into ecotypes associated
with outcome

Using deconvolution in bulk transcriptomes, the main single-nucleus
signatures were scored in 201 ACC. Five clusters of signatures,
referred to as ecotypes, were identified, including Ecol reflecting
mitosis and hypoxia with TEC2, Eco2 reflecting glucocorticoid ster-
oidogenesis differentiation with exhausted T cells, Eco5 reflecting
androgen steroidogenesis differentiation with inflammatory macro-
phages, Eco3 and Eco4 combining miscellaneous immune and
endothelial cells (Fig. 8a, b). Of note, Ecol mitosis/hypoxia and Eco2
ZF-like were associated with tumor grade (t-test statistic —4.63,
p<10 and cortisol secretion (t-test statistic -5.90, p<107)
respectively, supporting the biological relevance of these signatures.
Beyond ecotypes, this clustering of single-nucleus signatures also
discriminated two groups of tumors, with significant enrichment in
C1A and C1B ACC respectively (Fisher p <107™). C1A-like group was
enriched in Ecol mitosis/hypoxia and Eco2 ZF-like (t-test statistic
9.79, p<107" and statistic 11.69, p < 107" respectively), while C1B-like
group was enriched in Eco3 and Eco4 miscellaneous (t-test statistic
-2.67, p=0.008 and statistic —4.36, p < 10™* respectively), and in Eco5
ZR-like (t-test statistic —8.76, p<10™%).

Ecotypes were further explored in terms of cell-cell interactions
using CellChat*’ in single-nucleus transcriptomes. In Ecol, interactions
of GM8_hypoxia steroid cells with TEC2 or with CAF3 were enriched in
ligand-receptor pairs related to angiogenesis pathways (Supplemen-
tary Fig. 10a, b, Supplementary Data 19). In Eco2, cell-cell interactions
were enriched in ligand-receptor pairs related to cell adhesion path-
ways (Supplementary Fig. 10a, c, Supplementary Data 19). In EcoS,
interactions of GM4_ZR steroid cells with inflammatory macrophages

or with CAF1 were enriched in ligand-receptor pairs related to
inflammation pathways and immune activation (Supplementary
Fig. 10a, Fig. 8c, Supplementary Data 19).

The prognostic value of ecotypes was explored in bulk tran-
scriptomes. Ecol mitosis/hypoxia and Eco2 ZF-like were associated
with poorer outcome, while Eco5 ZR-like was associated with better
outcome (Fig. 8d, Supplementary Data 20). The prognostic value of
ecotypes was further tested in stepwise multivariable models including
ENSAT stage. Ecol, Eco2, and stage were independent prognostic
factors of DFS and OS (Supplementary Data 20). Finally, compared to
models based only on clinical variables, models including ecotypes
were better predictors for both DFS (C-index 0.808 vs 0.728, like-
lihood ratio test LRT p<10™) and OS (C-index 0.841 vs 0.820, LRT
p <1073, Supplementary Data 21).

Discussion

This study yields significant insights into the normal adrenal cortex
and its pathophysiology through the single nucleus characterization of
benign and malignant adrenocortical tumors.

In normal steroid cells, this study reveals an intermediate state
signature that falls in between zona glomerulosa and zona fasciculata
both functionally -as shown by the pseudotime trajectory-, and ana-
tomically -as shown by spatial transcriptomics. Pseudotime trajectory
analysis also shows a continuation between zona fasciculata and zona
reticularis. Taken together these data are supporting in humans the
kinetic lineage model of adrenocortical cells starting from the capsule
towards the adrenal centers, as established in mouse models**.
Normal adrenal analysis also identifies an original cluster of HSP+
steroid cells, projecting within the intermediate and zona fasciculata
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cells in pseudotime trajectory and spatial transcriptomics. This HSP+
signature may reflect a stress response to steroidogenesis-associated
reactive oxygen species production****. Potentially in line with
hypothesis, the inference of chromosome alterations with InferCNV in
HSP+ cells showed a slight but limited increase of chromosome
alterations (Supplementary Fig. 2f).

Time from diagnosis (months)

Time from diagnosis (months)

The functional zonation of normal adrenal gland is also retrieved
in tumor steroid cells, with GM1_ZG, GM2_ZF1, GM3_ZF2, and GM4_ZR
gene modules reflecting zona glomerulosa, zona fasciculata, and zona
reticularis respectively. The co-existence of these different steroid
cells signatures within a single tumor questions a potential cell trans-
differentiation in tumors. In normal adrenals, trans-differentiation
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Fig. 7 | Characterization of adrenocortical myeloid cells. Individual myeloid cells
from 34 adrenocortical tumors and 4 normal adrenals are presented (single-
nucleus transcriptomes). a UMAP annotated by transcriptome clusters. b Stacked
violin plot of transcriptome cluster markers, showing log-scaled raw counts for top
differentially expressed genes for each cluster. ¢ Proportion of transcriptome
clusters in each sample type. d High definition spatial transcriptomics of an ACC,
expressing the TAM marker SPPI. Capture area 6.5 x 6.5 mm.

e Immunohistochemistry staining in two ACC, one negative (left) and one positive
(right) for SPP1, showing SPP1 staining in intra-tumor macrophages in contact with
necrosis. Magnification x400, barscale 100 um. f Myeloid cells trajectory annotated
by pseudotime, using discriminative dimensionality reduction via learning a tree
(DDRtree). g Myeloid cells trajectory annotated by transcriptome clusters, using

DDRtree. h Expression profiles of top genes with pseudotime variation from resi-
dent macrophages towards TAMLI (solid line), including M2/TAM markers (PPARG,
GPNMB, CCL18), and anti-inflammatory markers including cholesterol transporters
(ABCAI, ABCGI) and the metalloproteinase MMPI9. Black lines: mean expression
over pseudotime. i Expression profiles of top genes with pseudotime variation from
resident macrophages towards inflammatory macrophages (dashed line), including
pro-inflammatory markers (CX3CR1, C3, PRKGI) and the adhesion G protein-
coupled receptor ADGRB3. Black lines: mean expression over pseudotime.

j Association of inflammatory macrophages signature and outcome. Inflammatory
macrophage signature was deconvoluted in bulk ACC transcriptomes from 201
patients with CIBERSORTXx. Kaplan-Meier curves represent disease-free and overall
survival.

from ZG towards ZF/ZR is related to transient Wnt-Bcatenin pathway
activation in ZG, followed by cAMP/PKA pathway activation in ZF/ZR'.
In contrast, in ACC, the Wnt-Bcatenin pathway is commonly activated
by CTNNBI mutations, leading to a constitutive activation that cannot
be switched off. In addition, the co-existence of different steroid cells
signatures in ACC does not seem to be linked to “classical” tumor sub-
clonality, as assessed by chromosomal alterations. Indeed, ACC com-
monly exhibit chromosomal alterations with >90% clonality®’. This
suggests that the observed heterogeneity might instead be due to a
functional cellular process leading to different cell states. One
hypothesis could be the interplay between the cell cycle and
steroidogenesis®. Further studies are needed to elucidate the
mechanisms of steroid differentiation dynamics in ACC.

The poor outcome associated with GM1_ZG, GM2 ZF1, and
GM3_ZF2 compared to GM4_ZR may reflect the pejorative impact of
Whnt-Bcatenin activation and glucocorticoid (cortisol) secretion on
immune microenvironment. Wnt-Bcatenin activation in tumor cells
results indeed in T-cell exclusion*¢, whereas glucocorticoids are major
inhibitors of the immune system, preventing T-cell activation and
inducing macrophages polarization towards M2/TAM states*’~**.

Our findings support the immunosuppressive effects of cancer
cells specifically in ACC, through specific associations of steroid and
immune signatures. While single-nucleus isolation could favor the
isolation of certain cell types and bias cell proportions, our results are
consistent with previous studies identifying ACC as “immune cold”
tumors'®*°, with lymphocyte depletion. Despite this “cold” immune
landscape, this study demonstrates immune variability in ACC, with
different levels of exhausted T-cells, pro-inflammatory “Mi-like” mac-
rophages and TAM. ACC steroid and immune single-nucleus signatures
combine into distinct tumor ecotypes. Eco2 ZF-like ecotype combines
GM1_ZG, GM2_ZF1, and GM3_ZF2 steroid signatures with exhausted
T-cell signature, and is associated with poor survival. Conversely, Eco5
ZR-like ecotype combines GM4 _ZR and inflammatory macrophages
signatures, and is associated with better survival. These two ecotypes
elucidate at the single-nucleus level the C1A/C1B bulk transcriptome
signatures, with Eco2 associated with C1A and Eco5 associated with
CIB. In summary, these ecotypes describe the specific association of
steroid cells profiles with immune cell states. The functional impor-
tance of tumor immune microenvironment is now well established in
response to cytotoxic chemotherapies or immunotherapies in several
cancer types®*. Indeed, cytotoxic chemotherapies induce the release
of tumor antigens which recruits and activates antigen-presenting
cells, ultimately triggering an antitumor adaptive immune response.
And immunotherapies boost the antitumor immune response. To
which extent these general oncologic mechanisms apply to ACC
remains to be established.

Beyond specific steroid and immune cells signatures, this study
also demonstrates the existence of cancer-associated signatures in
endothelial cells (TEC) and fibroblasts (CAF). TEC2 and
CAF3 signatures combine with GM7_Mitosis and GM8_Hypoxia cancer
cell signatures into another ecotype, Ecol hypoxia/mitosis. Ecol is also

associated with CIA and poor outcome. Ecol further reflects the
mechanisms of aggressiveness in CI1A, associating cell proliferation
and angiogenesis activation, as seen in a majority of aggressive
cancers™.

ACC ecotypes can be leveraged in a translational framework for
patient stratification. Cell states provide a valuable prognostic infor-
mation, applicable to individual patients. A theranostic perspective
could also emerge from the association of cell states and response to
treatment, which remains to be explored. Determination of cell states
statuses could rely on specific markers or on transcriptomic sig-
natures, that can be inferred from bulk transcriptome. This latter
approach is increasingly integrated into routine oncology*** and is
applicable to paraffin-embedded samples®. Treatment options in
advanced ACC are limited, with less than 20% of objective response to
mitotane, platinum-based chemotherapy or immune checkpoints
inhibitors®**". The single-nucleus atlas of ACC paves the way towards
novel therapeutic strategies. Firstly, this study identifies several ligand-
receptor interactions implied in immune inhibition and angiogenesis.
Of note, these interactions are based only on gene expression levels at
this stage and are therefore speculative. However, the list of potential
interactions may orient future experimental studies in search for novel
therapeutic targets. Secondly, the duality of Eco2/Eco5 steroid cells
and immune microenvironment raises the question of a possible
reversion of Eco2 ZF-like/exhausted T-cells towards Eco5 ZR-like/
inflammatory macrophages. Would it be possible to inhibit gluco-
corticoid (cortisol) secretion at the tumor tissue level in ACC with Eco2
ecotype? Novel anticortisolic drugs®® and combination of these drugs®
may be sufficient to reach full blockade of intra-tumor cortisol synth-
esis. Tumor biopsies after treatment would be needed to ascertain the
proper intra-tumor cortisol suppression®. If full cortisol blockade
could be achieved, would it promote the recruitment of inflammatory
macrophages as in Eco5 ZR-like? In addition, the Eco5 ZR-like ecotype
is potentially signing an androgen secretion at the tissue level. Indeed,
the Eco5 GM4_ZR cancer cell signature is enriched in markers of zona
reticularis, the functional zone producing androgens in normal adre-
nals. In recent ACC mouse models, the protective role of androgens
has been established through the promotion of phagocytic
macrophages®*°’. However, direct evidence of intra-tumor androgen
levels in ACC with Eco5 ZR-like is lacking so far. And whether increasing
androgens at the tissue level would inhibit tumor progression through
macrophages promotion, in mice and in humans, remains to be
established.

Beyond adrenal tumors, modulation of immune microenviron-
ment by intra-tumor glucocorticoids has been suggested. Indeed,
recent studies report evidence of intra-tumor glucocorticoids in other
tumor types, either by de novo synthesis*® or by conversion of corti-
sone to cortisol®’. Furthermore, enzymatic inhibition of cortisone
conversion promotes an anti-tumor microenvironment®>. To which
extent modulation of intra-tumor glucocorticoids - and potentially of
intra-tumor androgens - would reverse immune escape and promote
response to immune checkpoints inhibitors remains to be established.
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Fig. 8 | Interactions between single-nucleus signatures. a Hierarchical clustering
of the main single-nucleus signatures in the 201 ACC bulk transcriptomes. The
single-nucleus signatures included 13 main microenvironment signatures and 8
gene modules scores. These signatures were transformed into Z-scores in each of
the three ACC bulk datasets (ENSAT 2014, TCGA 2016, ENSAT 2022) before clus-
tering. Ecol-5 represent the different ecotypes. b Consensus partition clustering of
the main single-nucleus signatures in ACC bulk transcriptomes. ¢ Chord plot
representation of main ligand-receptor interactions related to inflammation and

Time from diagnosis (months) Time from diagnosis (months)

immune activation in Eco5 ecotype. Ligand-receptor pairs interactions related to
inflammation and immune activation are presented for the following signaling
pathways enriched in Eco5: FASLG, LT, IL4, IL6, MSTN, TGFb, COMPLEMENT, CD40,
CD80, CD86, ICAM, CCL, CXCL, and IL1. d Association of ecotypes and outcome.
Ecotype scores (sum of single-nucleus signatures scores in each ecotype) were
computed in bulk ACC transcriptomes from 201 patients. Kaplan-Meier curves
represent disease-free and overall survival.
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In this perspective, adrenal immune cells profiles may be used for
evaluating the impact of intra-tumor steroids in cancers.

In conclusion, single-nucleus transcriptome identifies the
dynamics of steroid cell differentiation in normal adrenals and adre-
nocortical tumors, with an intermediate differentiation state and a
parallel between tumorigenesis and adrenal functional zonation.
Adrenal cortex microenvironment is scarce but heterogeneous, with
distinct immune and stromal signatures associated with ACC outcome.
This atlas opens potential perspectives for the treatment of advanced
tumors.

Methods
Experimental model and participants’ details
Ethical statement. This study was reviewed and approved by the
Institutional Review Board “Comité de protection des personnes lle de
France 1” (application #13311 COMETE-TACTIC). Signed informed
consent for somatic molecular analysis and for access to de-identified
clinical data was obtained from each patient.

Patients did not receive any compensation for the study.

Human tumor samples. A total of 39 adrenal samples from 36 patients
were included. Age, gender, tumor type, and other clinical features are
provided in Supplementary Data 1 and 2. Gender was determined
based on self-report and was considered in the study design to reflect
the sex ratios typically observed in the different types of adrenal
tumors. All but one patient (ACC17) were operated at Cochin Endo-
crine Surgery Department.

Adrenal samples were snap-frozen into liquid nitrogen immedi-
ately after surgery, then stored at 80 °C. Thirty-eight samples from 35
patients (28 females/7 males, median age 46 years) were used for
single-nucleus RNA-seq. For three patients, two tumor samples were
collected: (i) one primary tumor (ACCla) and one metastasis (ACCIb);
(ii) two distinct regions from a primary tumor, one with aggressive
morphological features (ACC2b and ACC8a) and the other without
(ACC2a and ACCS8Db).

One frozen sample (ACC2) was used for spatial transcriptomics.

Remaining tissue samples were formalin-fixed, and paraffin
embedded (FFPE) for histological examination and immunohisto-
chemical study by adrenal expert pathologists (MS, FV). Two FFPE
samples (NAd4 and NAd5) were used for spatial transcriptomics.

Extensive hormone and imaging explorations were performed at
diagnosis following standard adrenal tumors guidelines®***. After
surgery, additional treatments and follow-up were performed follow-
ing the clinical guidelines®***. All samples were collected before the
initiation of antitumor treatment.

Public datasets. Three bulk transcriptome cohorts of patients with
ACC were used to test the association between single-nucleus sig-
natures and outcome. These cohorts, referred to as ENSAT 2014,
TCGA_ 2016, and ENSAT 2022, were generated with Affymetrix
U133 Plus 2.0 microarray from frozen samples, full-length RNA-
sequencing from frozen samples, and 3’ RNA-sequencing from FFPE
samples respectively®’*,

Single-nuclei RNA sequencing data production, processing and
analysis

Tissue dissociation and isolation of single nuclei. Single nuclei were
isolated using an in-house protocol®. Frozen tissue samples were
minced in a lysis buffer (10 mM Tris-HCI, 10 mM NaCl, 3 mM MgCI2
and 0,1% Nonidet TM P40 in Nuclease Free-Water) and mechanically
dissociated using a A and B pestle gently 15 times each. Samples were
then suspended in 2% BSA PBS, sieved through 100 um cell strainers
(VWR), centrifuged twice for 10 min at 500 g with 2% BSA PBS resus-
pension. Nuclei were stained with the Alexa Fluor® 647-conjugated
Mab414 antibody (BioLegend, clone Mab414, 1:250) targeting Nuclear

Pore Complex proteins. Sorting was performed on a FACSAria™ Il cell
sorter (BD Biosciences) equipped with an 85um nozzle using BD
FACSDiva™ software. The gating strategy consisted of selecting nuclei
based on their size and internal complexity on a FSC-A vs. SSC-A dot
plot to exclude debris and isolating Mab414-positive nuclei on a FSC-A
vs. Alexa Fluor® 647 fluorescence dot plot (Supplementary Fig. 1a).
Sorted nuclei were immediately processed on a Chromium Controller
(10x Genomics).

Droplet-based snRNA-seq. Single-nucleus RNA sequencing was per-
formed using the Chromium Single-Cell v3 3’ Gel Bead, Chip, and
Library Kits (10x Genomics) according to the manufacturer’s protocol.
A total of 5000 cells were targeted per bead. Libraries were sequenced
on a NextSeq 500 platform (Illumina) with paired-end sequencing. A
total of 28, 8 and 56 cycles were run for Read 1, i7 index and Read 2,
respectively.

SnRNA-seq data processing, cluster annotation and data integra-
tion. Raw BCL files were demultiplexed and mapped to the reference
genome GRCh38, including pre-mature mRNA sequences, using the
Cell Ranger Single Cell v3.1.0 software (10x Genomics). Doublets were
filtered out using Scrublet®® v0.2.3 with default parameters.

We used the Seurat® v4.3.0 in R v4.3.1 for subsequent analyses. To
filter out low-quality nuclei, nuclei with <500 detected genes, >8000
detected genes, or >5% of mitochondrial transcripts were removed.
Data were normalized using SCTransform method®®, including a
regression step on mitochondrial transcripts if they impacted the
clustering (normal and tumor steroid cells, fibroblasts, endothelial
cells, lymphocytes). Dimensionality reduction was performed using
principal component analysis (PCA) depending on the elbow plot
inflexion point, with 50 dimensions for general cell atlas, 5 dimensions
for lymphoid cells, and 10 dimensions for all other analyses. Clustering
was performed using graph-based clustering (FindNeighbors and
FindClusters functions), and visualized using Uniform Manifold
Approximation and Projection (UMAP). Clustering resolution was
selected on clusters stability using Clustree®” v0.5.0. To achieve the
best balance between over- and under-clustering, resolution was
chosen based on the following criteria: (i) clusters remain consistent
across small resolution changes, (ii) separate groups of cells on UMAP
form distinct clusters, and (iii) each cluster shows differentially
expressed genes compared to others.

Cells were annotated with SciBet’® v1.0 and Garnett” v0.1.23,
using the following references: a melanoma dataset for
microenvironment™ and a fetal adrenal dataset for adrenocortical
cells'®. Cells properly clustered and annotated were further processed
for subclustering.

For the global cell atlas and microenvironment analyses, no batch
correction was applied, since microenvironment cells properly clus-
tered irrespective of their sample of origin. For normal adrenal steroid
cells, data integration was performed to overcome inter-individual
variability. We used SCTransform normalization and canonical corre-
lation analysis with default parameters. For tumor steroid cells, data
integration tools were tested to overcome inter-individual variability,
but led to over-correction. We therefore used another method
(recurrent gene modules; see below) to explore intra-tumor variability
of tumor steroid cells.

Inferred CNV analysis from snRNA-seq. The copy number variation
(CNV) signal for steroid cells was estimated using the InferCNV
method" with a 100-gene sliding window. Genes with a mean count of
less than 0.1 across all cells were filtered out before the analysis and the
signal was denoised using a threshold of 1.5 standard deviation from
the mean. For each window, CNV were inferred if the CNV signal was
out of the 99% confidence interval of the CNV signal distribution in
steroid cells from normal adrenals.

Nature Communications | (2025)16:8860

12


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63912-2

Differential gene expression analyses. For each cluster, a list of
differentially expressed genes (DEG) was established in compar-
ison with all other clusters. Group comparisons were performed
on raw counts, using the Wilcoxon rank-sum test with Bonferroni
correction, implemented in Seurat FindAllMarkers function, with
the following parameters: filtering only positive differences, with
log2 fold-change threshold >0.25, and genes expressed in >10% of
cells in one group.

Gene set enrichment analysis. For each cluster, the top 100 most
differentially expressed genes with adjusted p < 0.05 were selected for
enrichment analyses. Over-representation of these genes in human
MSigDB collections (Gene Ontology-Biological Process (GO-BP) and
Reactome databases) was tested using the ClusterProfiler’” package
v4.10.0 (enricher, enrichGO and compareCluster functions).

Pseudotime trajectory analysis. Cells were ordered in pseudotime
trajectories with Monocle”® v2.30.0, using default parameters.
The 1000 most variable genes were used for cell ordering.
Dimensionality reduction was performed with DDRTree without
additional normalization. For normal steroid cells, zona glomer-
ulosa was defined as the starting point of the trajectory. For
microenvironment cells, the most abundant cluster in normal
adrenal samples was defined as the starting point of the trajec-
tory. Genes significantly varying with pseudotime were identified
with the differentialGeneTest function for linear trajectories, and
with the BEAM function for branch trajectories.

Gene modules of intra-tumor heterogeneity. Recurrent gene
modules were defined by the following steps: (i) Capturing gene
modules with variable expression among steroid cells in each
tumor. For each tumor, gene expression variability was captured
by the 10 first PCA components. For each component, two gene
modules were selected, corresponding to the top 50 positively
and top 50 negatively associated genes; (ii) Filtering out non-
recurrent gene modules. Among the different tumors, gene
modules similarity was computed with Sgrensen index (S(AnN
B)=2* (AN B) / (A+B)). The similarity matrix was filtered to dis-
card gene modules associated with <2 other gene modules
(Sgrensen indexes <0.4); (iii) Aggregating gene modules into
clusters of recurrent gene modules. Hierarchical clustering of the
filtered similarity matrix was performed. The corresponding
dendrogram was cut to obtain clusters of gene modules coming
from >3 tumors; (iv) Filtering genes for each recurrent gene
module. In each cluster, genes contributing to gene modules
found in >50% of tumors were selected. Of note, two tumors
(ACC3, ACC14) were excluded due to the limited number of
steroid cells (<250).

Cell-cell interactions in single-nucleus transcriptomes. Cell-cell
interactions were explored with Cellchat*® v1.6.1, with the following
steps: (i) Single cells selection and labeling: steroid cells were labeled
with the gene module with the highest score. Microenvironment cells
from the 13 clusters used for deconvolution in bulk transcriptomes
were selected; (ii) Computation of cell-cell interaction probability for
all possible ligand-receptor pairs in the Cellchat database (compute-
CommunProb function); (iii) Integration of ligand-receptor interac-
tions into signaling pathways (computeCommunProbPathway
function); (iv) Selection of the signaling pathways with high cell-cell
interaction signals: for each signaling pathway, interaction prob-
abilities were transformed into Z-scores. Pathways with at least one
highly probable interaction (Z-score > 3) were selected; (v) Selection of
interactions between cells belonging to the same ecotype.

The relationship between signaling pathways was explored by
unsupervised hierarchical clustering of interaction scores.

Bulk transcriptomes analysis

Single-nucleus signatures in bulk transcriptomes. In bulk tran-

scriptomes, single-nucleus signatures were explored in two ways:

- For gene modules reflecting steroid cells heterogeneity, gene set
enrichment scores were computed in each sample with single
sample GSEA”™ (GSVA package v1.36.2).

- For microenvironment cells transcriptome profiles, signature
deconvolution was performed using the CIBERSORTx Cell Frac-
tions module”, with the parameters recommended for 10x single-
cell data (single_cell, fraction 0.1, rmbatchSmode). Thirteen out of
27 signatures were considered, discarding 14 signatures with low
number of cells (<50 in ACC), or with intermediate signatures in
trajectories (CAF2, TEC1, TAM2). To evaluate the reliability of
deconvolution for resolving each cell subset in bulk tissue, we
randomly sampled each population in 1000 cells (if >2000 cells) or
50% of cells (if <2000 cells) for training set, used to create the
reference matrix for deconvolution, and the remaining cells for
testing set, used to create a pseudo-bulk dataset. Cell proportions
estimated by deconvolution in snRNA-seq pseudobulk and real cell
proportions were highly correlated (r=0.71).

These signatures were transformed into Z-scores to merge the
three ACC bulk dataset, and capped within the -3:+3 range before
clustering.

Aggregation of single-nucleus signatures into ecotypes. In bulk
transcriptomes from 201 patients, single-nucleus signatures scores
were clustered using unsupervised hierarchical clustering. Ecotypes
were defined as groups of single-nucleus signatures, following con-
sensus partition clustering (cola package’® v2.8.0, consensus partition,
select_partition_.number and consensus_heatmap functions with
default parameters except max_k =10).

Ecotype scores were computed for each patient, by adding the
scores of single- nucleus signatures corresponding to each ecotype.

Spatial transcriptomics data production, processing and
analysis

Spatial transcriptomics. Tissue samples were cut into 10-pum sections.
One frozen and two FFPE samples (3 females, median age 66 years)
were processed using the Visium Spatial Gene Expression and Visium
Spatial for FFPE Gene Expression Kits respectively (10x Genomics)
according to the manufacturer’s protocol.

For the frozen sample, adrenal tissue permeabilization condition
was optimized using the Visium Spatial Tissue Optimization Kit (10x
Genomics), which was found to be ideal at 18 min.

Sections were stained with H&E (Haematoxylin and eosin, Dako)
and imaged using a Lamina Slide Scanner (Perkin Elmer), then pro-
cessed for spatial transcriptomics. The resulting complementary DNA
library was amplified (17 cycles for the frozen sample, 14 cycles for
FFPE samples) using the Kappa Sybr Fast qPCR kit (Kappa biosystems).
Dual indexed libraries were prepared using the Library Construction
Kit with the Dual Index Kit TT Set A (10x Genomics) for the frozen
sample, and with the Dual Index TS Set A kit (10x Genomics) for FFPE
samples, according to the manufacturer’s protocol. Paired end dual
indexed sequencing was performed on a NextSeq 500 platform
(Illumina).

High definition spatial transcriptomics was performed for one
ACC sample following the Visium HD Spatial Gene Expression protocol
(10x Genomics).

Spatial transcriptomics data processing and clustering. Raw BCL
files were demultiplexed and mapped to either the human GRCh38
genome assembly for the frozen sample, or to the Visium Human
Transcriptome Probe Set V2.0 GRCh38 for the FFPE samples, using the
Space Ranger Single Cell v1.3.1 software (10x Genomics).
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We used the Seurat® v4.3.0 in R v4.3.1 for subsequent analyses.
Data were normalized using SCTransform method®, including a
regression step on mitochondrial transcripts for the frozen sample.
Dimensionality reduction was performed using the first 30 dimensions
of principal component analysis (PCA). Clustering was performed
using graph-based clustering (FindNeighbors and FindClusters func-
tions), and visualized using Uniform Manifold Approximation and
Projection (UMAP). Clustering resolution was selected on clusters
stability using Clustree® v0.5.0.

Data integration was performed for the analysis of FFPE samples
with SCTransform normalization and reciprocal PCA (RPCA) with
default parameters.

Inferred CNV analysis from spatial transcriptomics. Inference of
chromosome alterations was performed with InferCNV", using a
benign tumor as a reference (also processed with Visium Spatial Gene
Expression). Inference was performed in ACC2 and in a benign tumor
(control).

Single-nucleus signatures in spatial transcriptomes. In spatial tran-

scriptomes, single-nucleus signatures were explored in two ways:

- For gene modules reflecting steroid cells heterogeneity, gene set
enrichment scores were computed in each spot with the Seurat
AddModuleScore function.

- For normal steroid cells and microenvironment cells tran-
scriptome profiles, signature deconvolution was performed with
Cell2location” v0.1.3, using an hyper-prior of n=5 cells by spot.

Immunohistochemistry analyses

Immunohistochemistries were performed on dewaxed 3um slides
using a leica BOND llI device (Leica, Berlin, Germany). Double staining
with anti-DAB2 (clone HPA028888, 1:800, Sigma Aldricht, Saint Louis,
USA) and anti-CYP17A1 (clone HPA048533, 1:800, Sigma Aldricht, Saint
Louis, USA) antibodies was carried out with a pH6 buffer solution
(EDTA buffer, Bond Epitope Retrieval Solution 1, Leica, Berlin, Ger-
many) for 20 min by antibody. Single staining with anti-SPP1 (clone
HPA027541, 1: 475, Sigma Aldricht, Saint Louis, USA) antibody was
performed with a pH9 buffer solution (EDTA buffer, Bond Epitope
Retrieval Solution 2, Leica, Berlin, Germany) for 20 min.

Statistical analyses
Statistical analysis was performed using R (version 4.3.1, R Stats, sur-
vival, survcomp).

Comparisons between groups were performed with the Student’s
t test for normally distributed quantitative variables, with the Wilcoxon
and Kruskal-Wallis tests for not normally distributed quantitative
variables, and with Fisher’s test for qualitative variables. For large
contingency tables, the p-values were estimated using a Monte Carlo
simulation approach, with 2000 replicates.

Correlations were computed with Pearson’s coefficient for nor-
mally distributed quantitative variables, and with Spearman’s coeffi-
cient for not normally distributed quantitative variables and ordinal
variables.

Disease-free survival (DFS) was analyzed in stage I-1ll ACC, and
overall survival (OS) was analyzed in stage I-IV ACC. Survival curves of
high and low signatures scores (>vs <median) were obtained with
Kaplan-Meier estimates and compared with the log-rank test. Cox
proportional hazards regression was used to identify variables asso-
ciated with DFS and OS. Significant variables were combined into
stepwise multivariable models. To evaluate the value of single-cell
signatures compared to existing ACC prognostic models, we com-
puted C-indexes for DFS and OS models based on existing prognostic
factors alone and along with single-cell signatures. Comparison of
nested models was performed using likelihood-ratio test.

Adjustments for multiple testing were performed using
Benjamini-Hochberg method.

All tests were two-sided unless otherwise specified, and the level
of significance was set at p <0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw single-nucleus RNA-sequencing and spatial transcriptomics
data generated in this study have been anonymized using BAMboozle™®
and deposited in the European Genome-phenome Archive (EGA)
database under accession code EGAD50000000835. Counts tables of
single-nucleus RNA-sequencing have been deposited on EGA under
accession code EGAD50000000836 and on Zenodo’’ [https://doi.org/
10.5281/zen0do.10534061] (ACC) and [https://doi.org/10.5281/
zenodo.10534245] (benign ACT and normal adrenals). Counts tables
and images of spatial transcriptomics have been deposited on EGA
under accession code EGAD50000000836 and on Zenodo”® [https://
doi.org/10.5281/zenodo.10560206] (ACC) and [https://doi.org/10.
5281/zenodo0.10560525] normal adrenals). The public transcriptome
datasets used in this study are openly available and can be accessed as
follows: - “ENSAT 2014 in the Gene Expression Omnibus (GEO) repo-
sitory under accession number GSE49280. - “TCGA_2016” in the GDC
portal [https://portal.gdc.cancer.gov/projects/TCGA-ACC]
“ENSAT 2022” in the supplementary tables of the original paper?
[https://academic.oup.com/ejendo/article/186/6/607/6853696#
supplementary-datal.

Code availability

Code related to the analyses in this study mainly reuse codes from
other softwares (Cell Ranger, Space Ranger, Scrublet, Seurat, Clustree,
SciBet, Garnett, InferCNV, ClusterProfiler, Monocle, GSVA, CIBER-
SORTX, cola, CellChat, Cell2location) and can be found on GitHub at
https://github.com/GESTE-IC/snRNAseq_ACT atlas®®  under  MIT
License.
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