

Author Correction: Endocannabinoids disinhibit the ventral tegmental nucleus of Gudden to dorsal premammillary nucleus pathway to enhance escape behavior following learned threat experience

Correction to: *Nature Communications*
<https://doi.org/10.1038/s41467-025-60080-1>,
published online 27 May 2025

<https://doi.org/10.1038/s41467-025-64121-7>

Published online: 18 September 2025

Check for updates

Ruikai Chai, Nawen Wang, Jinlu Nie, Zongyi Xu, Shuqian Zhang, Suixin Deng, Rongxin Wang, Mu Li, Xinyi Gao, Ruijie Geng, Haibin Li , Lei Li, Hebi Wu, Zhiming Li, Tian-Lin Cheng , Xiao-Hong Xu, Yousheng Shu , Huilin Hong, Xiao Huang & Weisheng Wang

Following publication of this article, some patch clamp recording raw data were found to be in error, resulting in mistakes in Fig. 3j, Supplementary Fig. 5c–f and associated Source data. In the Results section “eCB system controls plasticity at VTg–PMd synapses and behavioral adaptation”, the original sentence reading “We first measured the effect of single or five-time 2MT exposure conditioning on VTg^{PV} neurons’ excitability (Supplementary Fig. 5a) and found no difference among groups (Supplementary Fig. 5b–f)” has now been amended and extended as follows: “We first measured the effect of single or five-time 2MT exposure conditioning on VTg^{PV} neurons’ excitability (Supplementary Fig. 5a). Since we recorded the membrane potentials while holding the cell at about -45 to -60 mV with no spontaneous firing (already in the method). Although baseline membrane potentials differed among the various groups (Supplementary Fig. 5d), this only reflects variations in fundamental intrinsic and extrinsic electrophysiological properties. Crucially, when we applied simulated current injection to test excitability, the number of action potentials elicited showed no difference among groups (Supplementary Fig. 5c), indicating that the level of cellular excitability remained unchanged. These data suggest that learning-induced suppression of VTg^{PV} neurons does not affect their excitability at the somatic level, but could be due to changes at the VTg^{PV} → PMd^{CCK} synapses.” The text, figures and source data are now amended in the HTML and PDF versions of the article.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025