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Awearable-based aging clock associateswith
disease and behavior

Andrew C. Miller 1 , Joseph Futoma1, Salar Abbaspourazad 1,
Christina Heinze-Deml1, Saba Emrani1, Ian Shapiro 1 & Guillermo Sapiro1,2

Aging biomarkers play a vital role in understanding longevity, with the
potential to improve clinical decisions and interventions. Existing aging clocks
typically use blood, vitals, or imaging collected in a clinical setting. Wearables,
in contrast, can make frequent and inexpensive measurements throughout
daily living. Here we develop PpgAge, an aging clock using photo-
plethysmography at the wrist from a consumer wearable. Using the Apple
Heart & Movement Study (n = 213,593 participants; >149 million participant-
days), our observational analysis shows that this non-invasive and passively
collected aging clock accurately predicts chronological age and captures signs
of healthy aging. Participants with an elevated PpgAge gap (i.e., predicted age
greater than chronological age) have significantly higher diagnosis rates of
heart disease, heart failure, and diabetes. Elevated PpgAge gap is also a sig-
nificant predictor of incident heart disease events (and new diagnoses) when
controlling for relevant risk factors. PpgAge also associates with behavior,
including smoking, exercise, and sleep. Longitudinally, PpgAge exhibits a
sharp increase during pregnancy and concurrent with certain types of
cardiac events.

Age is a major driver of disease and functional decline1,2 and is con-
sidered in awide range of clinical and policydecisions—from screening
for and treating disease3,4 to the determination of insurance costs and
retirement benefits5,6. Yet age-related decline can vary markedly from
individual to individual7,8. It is not uncommon for a physician to assess
a patient’s “apparent age” relative to their “stated age”9,10, suggesting
some unmeasured aging process informative of patient health. And
while a clinician’s first impression may elude standardization, the idea
that appearing older (or younger) might carry prognostic value moti-
vates the construction of a more objective biological aging clock.

Biological aging generally refers to the constellation of changes
due to the consequences of biological processes and daily living,
leading to changes in physiology, functional decline, disease, and
ultimately mortality11–13. While the typical treatment strategy for age-
related chronic disease focuses on the specific condition, the ger-
oscience hypothesis posits that theonset and severity of all age-related
chronic disease could be delayed by slowing the process of aging
itself14–16. The aging process, beyond simple chronological age, is

challenging to measure, highlighting the need to establish biomarkers
of aging that are easy to collect longitudinally, predictive of age-
related decline, and responsive to longevity-targeting interventions
(e.g., lifestyle, pharmacological, etc.)13. Such validated biomarkers will
play a vital role in the translation of aging research into clinical
practice17.

Research into aging clocks has intensified accordingly13. Seminal
work proposed DNA methylation patterns as an epigenetic biomarker
of aging18,19, and the resulting clocks are predictive of chronological
age, chronic disease, disability, and mortality20, as well as sensitive to
some longevity interventions21. More recent aging clocks leverage
other—typically clinical—data modalities, including electro-
cardiograms (ECGs)22,23, polysomnograms (PSGs)24, electro-
encephalograms (EEGs)25, magnetic resonance imaging (MRI) of the
brain26, fundus imaging27, labs and vitals28, and clinical photo-
plethysmography (PPG)29; each targeting some aspect of the multi-
dimensional (and heterogeneous) process of aging. In these approa-
ches, the underlyingmeasurement is either invasive (e.g., blood-based
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labs), expensive (e.g., an MRI), or inconvenient (e.g., clinical ECG or
PSG). Such data modalities limit scalability and frustrate longitudinal
collection, reducing the likelihood of observing changes, inflection
points, or responses to interventions.

This longitudinal scarcity has turned attention toward wearables.
A recent effort to quantify aging with wearables uses step count and
accelerometry correlated with blood-based biological age estimates
and disease30. However, activity-focused predictors leverage beha-
vioral changes associated with aging and can be confused by social
factors that influence aging estimates. For example, Pyrkov et al.30 also
find that activity-based biological age estimates sharply increased
when physical activity levels dropped during the early stages of the
COVID-19 pandemic.

Alternatively, wearable PPG is a sensor modality that presents an
opportunity tomore directly assess health and aging throughout daily
living. PPG in general is a non-invasive optical measure of volumetric
variation in blood circulation, using a light source and a photodetector
at the surface of the skin—in wearables, this is typically at the finger or
wrist29. The shape of the PPGwaveform exhibits a pulsatile component
attributed to changes in blood volume with each heart beat, super-
imposed on a slowly varying component attributed to respiration and
the sympathetic nervous system31. In clinical settings, PPG (typically at
the finger) is widely used in pulse oximetry, providing continuous
blood oxygen measurements32, and has been incorporated into early
warning systems33. Clinical PPG has also been studied in relation to
aging, with a particular focus on vascular health34,35.

Consumerwearables have incorporated PPGprimarily tomeasure
heart rate (HR) and heart rate variability (HRV) (including irregular
rhythms), producing estimates that have been validated against
reference devices36,37, and are particularly accurate when the user is at
rest38. Despite the focus on HR and HRV (derived mainly from the
pulsatile component), the shape of the PPG waveform contains infor-
mation about cardiac, vascular, respiratory, and autonomic nervous
system function29, including atherosclerosis and arterial stiffness39.
Age-related changes in cardiovascular physiology and function are
well-documented, including a stiffening of the myocardium, a
decrease in cardiac output, and an increase in arterial stiffness11,39.
Furthermore, features of infrared finger PPG recordings are known to
change with age40. As such, wearable PPG is a well-motivated modality
for investigating cardiovascular-related signatures of aging.

In this work, we develop and study a wearable-based aging clock,
which we call PpgAge. PpgAge can be measured non-invasively, inex-
pensively, and passively multiple times per day, producing a scalable
and rich longitudinal time series of biological age estimates through-
out daily life. Based on wearable PPG, PpgAge is constructed to be
predictive of chronological age in a healthy cohort derived from the
Apple Heart & Movement Study (AHMS), a large-scale digital health
study (n = 213,593 participants spanning over 149 million participant-
days at the timeof study)41 (ClinicalTrials.gov IdentifierNCT04198194).
Because PPG recordings are high-dimensional and highly structured
waveforms, and because the physiologicalmechanism underlying PPG
morphology arenot yet fully understood31, we leverage a deep learning
approach to devise a succinct and sample efficient feature repre-
sentationof eachPPG recording. Recentwork has shown this approach
to be an effective way to cope with real-world variability and distill
useful information from raw, multi-channel PPG waveforms42,43.

Our analysis demonstrates that PpgAge and PpgAge gap—i.e., the
deviation between predicted age and chronological age—are infor-
mative summaries of participant physiology and health. We show that
(i) PpgAge accurately estimates chronological age across a range of
demographic subpopulations (i.e., by self-reported age, biological sex,
race/ethnicity, body mass index, and disease status), predicting
chronological age with MAE of 2.43 years (95% CI 2.33–2.53) in a
healthy cohort, while also being accurate in the general population; (ii)
the PpgAge gap is strongly associated with the diagnosis of a wide

variety of chronic diseases; (iii) the PpgAge gap predicts incident heart
disease events and metabolic disease diagnoses, even when control-
ling for common risk factors; (iv) PpgAge gap is associated with
behavioral factors, including sleep, exercise, and smoking status; and
(v) PpgAge exhibits sensitivity to some longitudinal physiological
changes, such as pregnancy and cardiac events. PpgAge is an easy-to-
measure aging clock with potential utility in longevity research and
translation into clinical practice.

Results
PpgAge is developed using Apple Watch PPG data collected under
informed consent from participants in the AHMS41. First, we train a
general-purpose deep neural network from about 20 million 60-s PPG
segments via self-supervised learning (SSL), with the objective of dis-
tinguishing participants from each other, summarizing each segment
with a 256-dimensional feature vector, i.e., a PPG representation42. To
build a normative model of healthy aging, we select self-reported
healthy participants with sufficient PPG data (n = 6728) and fit a model
to predict chronological age (self-reported and approximate, see
“Methods”) from the average PPG representation (i.e., 256-dimension
vector)within thefirst 30daysof study, and separately, the last 30days
(minimum 30 segments per period, see Fig. 1 and “Methods”) using a
randomly selected set of 80% (n = 5355) participants. We refer to pre-
dictions from this model as PpgAge, and the difference between
PpgAge and chronological age as the PpgAge gap—higher PpgAge age
gap values indicate older looking, while negative PpgAge age gap
indicates younger looking. We study PpgAge estimates on the
remaining healthy test cohort (n = 1373) and the general cohort
(n = 120,235).We analyze the accuracy of PpgAgepredictions, its cross-
sectional associations with disease and behavior, and its longitudinal
sensitivity to physiological changes, such as pregnancy and cardiac
events (Fig. 1 and “Results” below). Figure 2a–c detail summaries of the
study population and the self-reported healthy cohort, including
behavioral and medical history characteristics at baseline.

Wearable PPG robustly predicts chronological age via PpgAge
PpgAge predicts chronological age with high accuracy in both the
“healthy” and “general” group. Prediction accuracy is highest in the
healthy cohort, with mean absolute error (MAE) of 2.45 years (95% CI
2.22–2.71) in female participants (n = 258) and 2.42 years (95% CI
2.30–2.54) in male participants (n = 1115). In the general cohort (i.e., a
distribution distinct from the training data), PpgAge predicts chron-
ological age with MAE of 3.26 years (95% CI 3.24–3.29) among female
participants (n = 42,734) and 3.13 years (95% CI 3.11–3.15) among male
participants (n = 77,501). Age prediction accuracy is based on the first
30 days of PPG segments, limited to held out subjects with at least 30
PPG segments present (n = 120,235), predicting average participant
age within that 30-day window. Figure 3a–d graphically summarize
model predictions and error metrics.

Chronological age prediction error varies little by demographic
sub-population. In addition to parity between self-reported biologi-
cal male and female participants, in the healthy cohort, we observe
similar prediction accuracy among self-reported race/ethnicity
groups (MAE 1.4–2.6 years), and self-reported BMI groups (MAE
2.1–2.5 years). We also observe a modest increase in error by
chronological age—healthy participants with chronological age less
than 25 years are predicted with an MAE of 2.15 years (95% CI
1.95–2.34), while participants with chronological age between 65 and
75 years are predicted with an MAE of 3.21 years (95% CI 1.73–4.56).
Prediction error in the general cohort is higher and more variable
across all demographic groups. Figure 3e summarizes chronological
age estimator error in demographic subpopulations. PpgAge resi-
duals appear to be close to normal in the healthy test cohort with
non-normality driven by a small number of outliers, and farther from
normal in the general cohort, see Fig. S1.
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PpgAge gap associates with disease
We investigate the hypothesis that an elevated predicted age relative
to chronological age—i.e., the age gap—is associated with disease, and,
inversely, a reduced (or negative) age gap is associated with better
health. Using medical history surveys from participants at enrollment,
we study age- and sex-matched diagnosis rates of a variety of condi-
tions, stratified by PpgAge gap measured within the first 30 days of
enrollment. We bin subjects by PpgAge gap (adjusted, see “Methods”)
within discrete categories: <−2, (−2, 0], (0, 2], (2,4], (4,6], and >6 years.

We observe a strong association between PpgAge gap and a
variety of conditions, controlling for sex and chronological age (Fig. 4).
Those with a higher (i.e., older looking) age gap tend to have higher
diagnosis rates than average; those with lower (i.e., younger looking)
age gap tend to have lower diagnosis rates. For example, the rate of
diabetes diagnosis among 35–45 year old women is 6.3% (95% CI
5.7–6.8). However, for 35–45 year old women with a >6 year PpgAge
gap, that rate jumps to 14.9% (95% CI 12.8–16.9), or 2.38 times the
average rate (95% CI 2.10–2.70)—we refer to this ratio as the “relative
rate of diagnosis” (see “Methods” for further details). For participants
with a <−2 year gap, that rate drops 3.7% (95% CI 2.9–4.5), or a 0.59
relative rate of diagnosis (95% CI 0.47–0.71, Fig. 4b).

As another example, among 35–45 year old male participants, a
heart disease diagnosis is rare, reported at a rate of 1.0% (95% CI
0.9–1.2). However, among 35–45 year old male participants with >6
year PpgAge gap, the rate of heart disease diagnosis is 3.6% (95% CI
2.7–4.5), or 3.46 × the average (95%CI 2.80–4.10); and for those with
<−2 year PpgAge gap, that rate drops to 0.4% (95% CI 0.2–0.6) or a
0.37 times the average rate (95% CI 0.19–0.56). Among 45–55 year
old men, the relative rate of heart disease diagnosis for participants
with >6 year PpgAge gap is 2.54 × (95% CI 2.22–2.87); for 45–55 year
old men with a <−2 year gap, the relative rate is 0.55 × (95% CI
0.41–0.71, Fig. 4a).

This association is also strong for heart failure and peripheral
artery disease (Fig. 4c)—in 45–55 year old men, those with a >6 year
PpgAge gap have a 2.97 × (95% CI 2.39–3.56) relative rate of heart
failure diagnosis; for 45–55 year old women the rate is 2.75 × (95% CI
2.08–3.43).

The association between PpgAge gap and diagnosis rates is not
strong with all conditions. Allergy, asthma, vision loss, hearing loss,
and cancer diagnosis rates remain similar in the youngest and oldest
PpgAge groups. See Fig. 4 for a more detailed summary (and
Figs. S2 and S3 for additional results).

Fig. 1 | Study overview.Methods summary. (i) Following Abbaspourazad et al.42, we
use a contrastive loss to learn PPG segment representations, a 256-dimensional
vector summarizing features of a 60-s PPG segment, on a subset of 172,318 partici-
pants. (ii) PPG representations from a self-reported healthy subpopulation are used
to fit a linear regression model, targeting chronological age. For a new subject,

predicted age (PpgAge) is computed, and we examine the gap between PpgAge and
chronological age and longitudinal changes in PpgAge time series that may co-occur
with physiological changes. (iii) We analyze held out “healthy” and “general” parti-
cipants, assessing accuracy of PpgAge, cross-sectional associations with disease and
behavior, and longitudinal analyses of participant-level PpgAge time series.
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PpgAge gap predicts incident cardiometabolic disease
To better understand the utility of PpgAge age gap as a predictor, we
conduct a survival analysis, predicting incident (i) atherosclerotic
cardiovascular disease (ASCVD) events (new diagnosis of coronary
artery disease, heart failure, or peripheral artery disease; or heart
attack, stroke, angioplasty, stent, or coronary bypass; n = 1328 events),
(ii) hypertension (n = 1449 events), (iii) hyperlipidemia (n = 1666
events), (iv) diabetes diagnosis (n = 1049 events); all while controlling
for relevant risk factors.

For ASCVD events, we use the continuous-valued adjusted
PpgAge gap, and control for biological sex, age, BMI, VO2 max,
smoking status, and previous diagnoses of hypertension, high cho-
lesterol, and diabetes. We find that a PpgAge gap of six years is asso-
ciated with a significant risk increase, with a hazard ratio of 1.464
(1.36–1.57 95%CI). For context, a previous diagnosis of hypertension is
associated with a hazard ratio of 1.277 (1.13–1.44 95% CI), and high
cholesterol is associatedwith a hazard ratio of 1.226 (1.09–1.38 95%CI).
Fitted survival curves from the Cox model for different ages and
PpgAge gaps overlap, as well—the survival for a chronological 55 year
old with a PpgAge gap of +6 is lower than for a chronological 65 year
old with a PpgAge gap of −6.

We see a similarly strong association between a PpgAge gap of six
years and risk for developing new hypertension, with a hazard ratio of
1.620 (1.51–1.74 95% CI). See Fig. 5 for full results on these conditions.

For all conditions, we observe that an increase in PpgAge gap is a
strong and statistically significant risk factor for onset of new disease,
with the effect size for a gap of +6 being comparable to or occasionally
greater than for other common risk factors like hypertension, smok-
ing, or high cholesterol. In the general cohort,wenote thatPpgAgegap
greater than 6 years constitutes 11.6% of participants (14,027 of
120,235), roughly the top decile. For comparison, the prevalence of
hypertension, high cholesterol, diabetes, and heart disease diagnoses
are 23%, 25%, 6.1%, and 2.3%, respectively.

In Fig. S5 in the supplement, we detail a sensitivity analysis that
yields similarly strong associations between PpgAge gap and incident
disease when we fit models within older and younger subgroups. In
Fig. S6, we also show Kaplan–Meier curves for each of the outcomes
stratified by PpgAge gap, where we observe statistically significant
increases in risk for all conditions for subjects with the highest
PpgAge gap.

PpgAge predictions associate with smoking behavior
Participants in AHMS are surveyed about behaviors related to health,
including smoking status. Individuals are asked, “Have you smoked at
least 100 cigarettes in your entire life?”, and if the response is “yes” or
“do not know,” participants are asked, “Do you now smoke cigarettes
every day, some days, or not at all?” We categorize individuals into
never smokers (n = 58,025), former smokers (n = 25,644), occasional

Fig. 2 | Data summary. a Summary statistics of all AHMS participants with at least
one background PPG segment ("All subjects'') and the subset of participants that
self report no history of disease, no medications, and no history of smoking
behavior ("Healthy subjects''); see Section S1 in the Supplement for precise char-
acterizations of these criteria. Bracketed values report interquartile range.

b Inclusion/exclusion of subjects that comprise the “healthy” cohort used to train
and validate age models. c Chronological age (top) and BMI (middle) distributions
comparing the general and healthy cohorts, and study duration distribution (bot-
tom) for all participants.
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smokers (n = 2453), or daily smokers (n = 4190) based on available sur-
vey responses, and study the age gap of each group (see “Methods”).

More frequent smoking is consistent with a higher PpgAge
gap. Across all age groups, and for both male and female

participants, daily smoking is associated with the highest age gap,
followed by occasional smokers, former smokers, and then never
smokers. Additionally, the age gap difference across smoking
categories grows from the youngest to oldest chronological age

Fig. 3 | PpgAge predictions of chronological age. a–d Wearable PPG segments
(minimum30 segments over a 30-day span) predict chronological agewith amean
absolute error of 2.42 years (95% CI 2.30–2.54) and 2.45 years (95% CI 2.22–2.71) in
healthy male and female test participants, respectively (dashed line is the identity).
In the general population, prediction errors are 3.13 years (95% CI 3.11–3.15) and
3.26 years (95% CI 3.24–3.29) for male and female participants, respectively. Ana-
lysis was restricted to participants with chronological age between 18 and 85, as
participants older than 75 are rare in the healthy training cohort. e Within the

healthy cohort, predictions error remains relatively stable across demographic
categories—biological sex (first panel), BMI (second panel), and self reported race/
ethnicity (third panel). Younger participants enjoy a modestly lower error than
older participants (fourth panel), which may be partially explained by a lower
expectation of misdiagnosis and therefore more accurate “healthy” labels. Within
the general cohort, prediction error is systematically higher and more variable, as
expected as non-healthy participants were not used for training. Error bars are 95%
confidence intervals computed from 1000 bootstrap replicates.
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categories. Among males younger than 25 years, the predicted age
gap for daily smokers, 0.55 years (95% CI −0.06–1.343), is similar to
the predicted age gap for never smokers, 0.076 (95% CI −0.01–1.7).
However, older populations deviate markedly—among 25–35 year
old males, the predicted age gap for daily smokers is 1.36 years
higher than for never smokers (1.79 vs 0.43); that difference
increases to 2.3 years in the 35–45 group (3.2 vs 0.89), and 3.53

years in the 55–65 group (5.27 vs 1.74). See Fig. 6A, B for additional
details.

PpgAge predictions associate with exercise behavior
The Activity app on Apple Watch estimates physical activity level,
including daily “exercise minutes,” the time spent on a “brisk activity”
(defined asanactivity ator above abriskwalk38), or a loggedworkout44.

Article https://doi.org/10.1038/s41467-025-64275-4

Nature Communications |         (2025) 16:9264 6

www.nature.com/naturecommunications


For each participant in the general cohort, we compute average daily
exercise minutes over the course of study enrollment, and categorize
men (n = 98,986) and women (n = 54,256) into five groups based on
quintiles of the (age- and sex-matched) average exercise minutes dis-
tribution.We then study the age gap in relation to this activity variable
and age.

For both male and female participants and across age categories,
higher daily exercise minutes is consistent with a smaller age gap, see
Fig. 6C, D. Similar to the smoking result above, we observe an increase
in the age gap across exercise groups from the youngest cohort to the
oldest. Individuals younger than 25 years old have mostly similar
average age gaps across all quintiles of exercise minutes, with the

Fig. 4 | PpgAge gap associates with disease. a, b Age- and sex-matched diagnosis
rates (left) and risk relative to average (right) stratified by different age gap buckets
for heart disease (n = 37,201 female and n = 63,345 male participants) and diabetes
(n = 37,366 female and n = 63,571 male participants). Grey line indicates average
diagnosis rate (by age and sex); all intervals are 95% confidence intervals computed
with 1000 bootstrap samples. The effect size (relative to age- and sex-matched
average) varies with age—e.g., heart disease diagnosis is less strongly associated
with age gap in the [65, 75) year old group than the [35, 45) age group. Details for

additional diseases are included in Supplemental Figs. S2 and S3. Heart disease
diagnosis rates. c, d Age gap risk relative to average for all surveyed diseases; left:
female participants aged 45–55 (n = 6,364), right: male participants aged 45–55
(n = 12,787), comparing oldest age gap bucket (>6) and youngest age gap bucket
(<−2). Cardiometabolic diseases (e.g., heart failure, peripheral artery disease, dia-
betes) appear to have larger associations with age gap than other conditions (e.g.,
asthma, cancer, allergy). Intervals are 95% confidence intervals computed with
1,000 bootstrap replicates. See Fig. S13 for additional results.

Fig. 5 | PpgAge gap predicts incident disease after adjusting for relevant risk
factors. a Fitted survival curves from the Cox model for incident atherosclerotic
cardiovascular disease (ASCVD) for different ages. Average values for other cov-
ariates (except PpgAge gap) are used within each stratum (defined as ± 5 years).
b Fitted survival curves from the Coxmodel for ASCVD stratified for 55 and 65 year
old subjects, and further fixing PpgAge gap values, with other covariates set to
average values within age strata. There is substantial overlap—55 year old subjects
with high PpgAge gaps have lower survival to 65 year old subjects with low PpgAge
gaps. c Fitted survival curves from the Cox model for incident hypertension diag-
nosis for different ages. Average values for other covariates (except PpgAge gap)
are used within each age stratum (defined as ± 5 years). d Fitted survival curves
from the Cox model for incident hypertension for 55 and 65 year old subjects, and

further fixing PpgAge gap values, with other covariates set to average values within
age strata. PpgAge is a much stronger predictor than chronological age, which has
minimal effect. e Hazard ratios for the incident ASCVD Cox model, adjusting for
common risk factors (C-index: 0.758, N: 89,553, number of events: 1328). f Hazard
ratios for the incident hypertension Cox model, adjusting for common risk factors
(C-index: 0.704, N: 70,636, number of events: 1449). P-values reflect a two-sided
Wald test, unadjusted for multiple comparisons. See Supplemental Fig. S4 for
additional results on incident diabetes and hyperlipidemia, Fig. S5 for young vs old
subgroup analyses, and Fig. S6 for Kaplan–Meier curves with confidence intervals
stratified by PpgAge gap. As we are not modeling repeated or competing events,
cumulative incidence is equivalent to the inverse of the survival probability,
CIF(t) = 1 – S(t).
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exception of female participants in the lowest exercise minutes quin-
tile (i.e., the least active individuals). For this group, the average age
gap already deviates upwards from the remaining quintiles. For older
age groups, individuals in the lowest exercise minutes quintile have an
average age gap that deviates more and more from individuals in the
higher exercise minutes quintiles. For example, for men younger than
25 years, the average age gap is 0.33 years (95% CI 0.17–0.48) in the
lowest quintile vs 0.19 years (95% CI 0.06–0.33) in the highest quintile.
For men between 35 and 45 years, individuals in the lowest quintile
have an average age gap of 1.84 years (95% CI 1.73–1.95) vs 0.65 years
(95%CI 0.56–0.74) for the highest quintile. Finally, formenbetween 65
and 75 years, the least active individuals have an average age gap of
3.85 years (95% CI 3.58–4.11) vs 1.34 years (95% CI 1.11–1.58) for the
highest quintile. For women, we observe similar effects, although the

uncertainty is slightly larger due to the smaller sample size. Finally, the
ranking of the average age gap is consistent with increasing amounts
of exerciseminutes. See Fig. 6C, D for additional details, andSection S2
and Figs. S8 and S9 for additional summaries of activity and fitness.

PpgAge gap associates with disease rates when controlling for
cardiorespiratory fitness
We also compare diagnosis rates within age-, sex-, and VO2 max-mat-
ched groups using a subset of participants that have a VO2 max esti-
mate (n = 89,062). We find that the association observed for age- and
sex-matched categories remains when controlling for VO2 max. For
example, for women 45–55 years old, even among themost fit (highest
VO2 max) quintile, the oldest looking (q4) participants have a 2.1 times
higher rate of high blood pressure diagnosis—a figure thatwasmore in

Fig. 6 | PpgAge gap associateswith behavior. PpgAge gap (adjusted) stratified by
self-reported smoking status and chronological age for A male and B female par-
ticipants. Results in both subpopulations are consistentwith a dose-response effect
—never smokers (n = 58,025) appear younger than former smokers (n = 25,644),
who appear younger than occasional smokers (n = 2453), who appear younger than
daily smokers (n = 4190). In both populations, results are also consistent with an
exposure effect—i.e., the gap between daily smokers and never smokers is small in
the youngest population, but grows to be about 3–4 years in the [55,65) year old
groups. PpgAge gap stratified by C male (n = 98,986) and D female (n = 54,256)
participants, stratified by exercise minutes. Among men, the age gap is largest for
the lowest exercise minutes quintile, i.e., the least active individuals, and the

difference between the lowest and the remaining quintiles grows with age, con-
sistent with an exposure effect. The ranking of the average age gap is consistent
with increasing amounts of exerciseminutes. Amongwomen, a similar effect canbe
observed, although the uncertainty is slightly larger due to a smaller sample size.
(See quintile cutoffs in Table S1.) E, F PpgAge gap by REM latency quintile for male
(n = 56,802) and female (n = 32,769) participants, respectively. An increased REM
latency is associated with an elevated PpgAge gap across all age categories. See
Fig. S10 for analysis of total sleep duration, deep sleep duration, and sleep effi-
ciency. All intervals are 95% confidence intervals about the mean from 1000
bootstrap replicates.
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line with the average diagnosis rate of the second lowest VO2 max
category. See Fig. S9 for comparisons.

PpgAge gap associates with sleep stages
A subset of participants in AHMS contribute sleep stage data collected
byAppleWatch45 (n = 56,802menandn = 32,769women). Sleep stages
are categorized as “Awake,” “Deep,” “Core,” and “REM,” in the Health
app and are derived from an accelerometer-based algorithm45. We
study the association between PpgAge and several sleep-related vari-
ables, controlling for demographic factors.

For each available participant night (n = 16,093,920), we extract 4
sleep-related variables, (i) total sleep duration, the total time spent in
non-"Awake” stages, (ii) deep sleepduration, the total time spent in the
“Deep” stage, (iii) sleep efficiency, the total sleep duration divided by
the elapsed time from the onset of first non-"Awake” stage to the end
of the final non-"Awake” stage, and (iv) REM latency, the time from the
onset of first non-"Awake” stage to the onset of first “REM” stage.
Similar to smoking and exercise, we investigate the association of age
gap with these sleep-related variables across age- and sex-matched
groups. For further validation, we fit ordinary least squares (OLS)
model for age-matched groups as well as the entire population, where
the target variable is the age gap and explanatory variables include
chronological age, biological sex, BMI, and the four sleep-related
variables (see “Methods” for additional details).

We observe that across age- and sex-matched groups, earlier
REM latency, longer total sleep duration, longer deep sleep duration,
and higher sleep efficiency, are consistent with lower age gap, see
Figs. 6E, F and S10a–f. Consistently, we observe similar association
effects in the sign of the coefficients in OLS models, see Fig. S10g, h.
First, the sign of the coefficients for total sleep duration, deep sleep
duration and sleep efficiency are negative and consistent across
different age-matched groups, indicating that longer total sleep
duration, longer deep sleep duration and higher sleep efficiency
associate with negative age gap (i.e., younger-looking status). Sec-
ond, the sign of the coefficient for REM latency is positive across
different age-matched groups, indicating that earlier REM latency
associates with negative age gap (i.e., younger-looking). Figure S10h
contains the statistics from the OLS models, indicating that all
coefficients are significant. Interpreting efffect sizes, one additional
hour of total sleep associates with 0.09 years of reduced age gap, and
one additional hour of deep sleep associates with 0.99 years of
reduced age gap. One extra percentage of sleep efficiency associates
with 0.05 reduced age gap, and one hour earlier REM latency
associates with 0.47 reduced age gap.

PpgAge predictions use morphological features beyond heart
rate and heart rate variability
HR and HRV are common summaries of cardiac rate and rhythm esti-
mated from PPG segments. HRV is known to decline with age and
decreasedhealth, and risewith increased aerobicfitness46. The full PPG
waveform reflects changes in blood volume in the microvascular bed
of tissue31, which may contain subtle-yet-informative patterns relevant
to aging (see Fig. S11. To investigate this information difference, we
compare PpgAge predictions (i.e., using the full PPG waveform via the
learned representation) tomodels that only useHR andHRV as inputs.

Using the same training subjects and segments, we compute the
30-day mean, standard deviation, minimum, and maximum of HR and
a set of HRVmetrics (see S3 for full details), and use as features in both
a linear model and a random forest model. HR/HRV-based models
predict age less accurately than PpgAge across all subpopulations. In
the healthy cohort, the linear and random forest model predict age
with MAE of 6.10 years (95% CI 5.87–6.33) and 6.14 years (95% CI
5.91–6.37), respectively, significantly worse than the PpgAge predic-
tions on the same test subjects, 2.42 years (95% CI 2.30–2.54). See
Fig. S12 for additional details and comparisons to HR/HRV models.

PpgAge predictions are consistent with known features of aging
To shed light on what features PpgAge uses, we visualize segmented
PPG beats that correspond to high and low age gaps across a range of
chronological age groups in Supplemental Fig. S11. The age gap is
picking up on the typical features of aging (see Charlton et al.29 Fig. 4),
i.e., the dicrotic notch and diastolic peak disappear as an individual
appears older across all chronological age groups.While these features
appear to be important to our prediction (and are not captured byHR/
HRV metrics), it is possible that predictions exploit more subtle, data-
driven features with unknown physiological roots.

Modeling healthy aging strengthens association between age
gap and disease
Additionally, training the PpgAgemodel on a healthy cohort induces a
stronger association between the age gap and diagnosis rates com-
pared to a model trained on a randomly selected (i.e., representative)
cohort of equal size. Among 35–45 year old men, a PpgAge gap >6
years based on the model trained on the healthy cohort has a relative
rate of diabetes diagnosis of 2.99 × the average (95% CI 2.74–3.23);
when training on a random subset, this relative diagnosis rate drops to
2.18 × (95% CI 1.89–2.46). Differences between the two models are
more pronounced in older groups. Among 65–75 year old men, a
PpgAge gap >6 years from the healthy-trained model carries a
1.61 × relative diabetes diagnosis rate (95% CI 1.47–1.75); the general-
trainedmodel has a relative rate of 1.1 × (95% CI 0.97–1.23)—that is, the
general model age gap does not stratify older male subjects into high
and low prevalence groups at all. See Supplemental Fig. S13 for a more
details.

Compared to PpgAge HR/HRV-based age gaps weakly associate
with disease
We again compare age gap associations using the full PPG model to
models trained using only HR/HRV features. In general, we see a much
weaker association with self-reported diagnoses than the full wave-
formmodel. As an example, for 45–55 year oldmen, the relative rate of
diabetes diagnosis in the oldest looking quintile is 2.1 (95% CI
1.96–2.20) with PpgAge (i.e., using the full waveform). That drops to
1.25 (95% CI 1.15–1.35) when using the HR/HRV-based random forest
model. For peripheral artery disease in that same group, the compar-
ison is 2.8 (95%CI 2.32–3.26) for the full waveformmodel, which drops
to 1.47 (95% CI 1.044–1.90) for the HR/HRV model. This weakened
association suggests that HR and HRV alone convey some information
about disease in the PPG signal, while the full waveform morphology
contains richer information. Notably, we see either no change or
improvement for prevalence of pacemaker, suggesting HR/HRV
information is a sufficient correlate of the condition. See Figs. S12
and S11 for more details.

Longitudinal PpgAge associates with pregnancy status
Recent work has shown that pregnancy is associated with accelerated
biological aging as measured by epigenetic biomarkers47,48. Here, we
examine the relationship between PpgAge and pregnancy on a subset
of participants in AHMS who become pregnant during the study. We
subset to participants who self-report no pregnancy at baseline and
report either a vaginal birth or Cesarean section in a monthly health
update survey (n = 690). We further subset to participants with suffi-
cient age estimates proximal to the date of the reported pregnancy
outcome—at least 20 days of age estimates in three 3-month periods
before and one 3-month period after parturition (n = 165).

In the 270 days preceding birth, we observe a steady median
increase leading into a sharp median increase around 60 days before
parturition, where PpgAge peaks and then slowly declines. Over this
(approximate) pregnancyperiod,weobserve amedian increase of 3.56
years (IQR 1.65–5.65). Additionally, we observe a significantly larger
slope in the three month period directly preceding birth, and a
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negative median slope in the 90-day period following pregnancy. We
note this increase in PpgAge over the pregnancy period is in line with
increases estimated with DNA methylation biomarkers47; see Fig. 7 for
visual and statistical summaries. A longer observation window is
required to assess how persistent this effect is, or if PpgAge reverts to
pre-pregnancy levels. On a smaller subset with sufficient longitudinal
data (n = 29), we observe a slightly negativemedian age gap slope for a
year post parturition; see Fig. S14 for more details and subpopulation
comparisons by age, BMI, and pregnancy complications.

PpgAge often increases around certain major adverse
cardiovascular events
We investigate the sensitivity of participant-level PpgAge time series to
cardiac events. Centering the self-reported event date at time 0, we
examine the time period of 180 days before to 180 days after, and
visualize the median and interquartile range of lowess-smoothed
PpgAge time series. For coronary artery bypass graft (CABG) surgery,
mycoardial infarction events, and valve replacement surgery, we see
median predicted age increases from 1.7 to 2.5 years. Investigating
individual time series for subjects with a CABG (Fig. 8), we see varia-
bility from participant-to-participant. Some participants exhibit a
sharp changepoint at the time of the event, while others exhibit more
gradual increases PpgAge time series. Additional time series and dis-
tributions of the cumulative change in PpgAge for myocardial infarc-
tion and valve replacement can be found in Fig. S7.

Discussion
We propose PpgAge, a wearable-based biomarker that is easy to col-
lect, highly predictive of healthy aging, strongly associated with a
variety of age-related conditions, predictive of incident disease, and

sensitive to some longitudinal physiological changes. Within the bio-
logical aging literature, this work is a unique combination of data
modality and study scope—wrist PPG from a consumer wearable and
evidence from hundreds of thousands of participants with over 149
million participant-days in a naturalistic setting, with some contribut-
ing up to 4 years of longitudinal data. Such an easy-to-collect aging
clock has the potential to shed light on interventions and clinical
decisions at much finer time scales than existing age clocks. PpgAge
could be a more granular lens in the study of human longevity, the
monitoring of patient health, and the assessment of new treatments.

Moqri et al.13 delineate four desiderata for a biomarker of aging to
support human longevity research—such a biomarker should be (i)
minimally invasive and reliable (i.e., longitudinal measurements are
feasible), (ii) relevant to age, (iii) predictive of functional aspects of
aging (e.g., disease and decline) better than age alone, and (iv)
responsive to longevity interventions. The proposed PpgAge
addresses each.

The size and scope of AHMS itself establishes that PpgAge is
minimally invasive and reliably measurable. The use of signals from a
popular consumer wearable indicates the potential scalability of our
approach.

We show that PpgAge accurately predicts chronological age—
achieving an MAE of about 2.4 years for healthy subjects and 3.2 years
for the general cohort (Fig. 3). This accuracy compares favorably to
studies of other aging biomarkers, including ECG (e.g., MAE 6.9–8.4
years22,23), labs and vitals (e.g., MAE 3.7–4.5 years28), EEG (e.g., MAE 7.6
years25), PSGs (e.g., MAE 5.8 years24), and retinal imaging (e.g., MAE
2.86–3.30 years7).We also demonstrate that PpgAge is accurate across
demographic subpopulations, including biological sex, race/ethnicity,
and BMI (Fig. 3e). Further, PpgAge remains accurate despite a strong

Fig. 7 | PpgAge during and following pregnancy. a Median (black) and inter-
quartile range (gray) of lowess-smoothed predicted age time series (centered
around predicted age during first 90 days of approximate pregnancy period),
n = 165 participants. We observe a median 3.56 year [1.65–5.65 IQR] increase in
predicted age throughout the pregnancy period, peaking at time of birth. Estimate
age increase is similar to those reported in epigenetic age biomarkers47.b Examples
of longitudinal predicted age with parturition date (i.e., vaginal delivery or Cesar-
ean section) highlighted, with background colors denoting the three 90-day

periods before, and one 90-day period after. We subset to individuals in the study
that (i) report not pregnant at study start, (ii) report a pregnancy outcome, and (iii)
have at least 20 days with predicted age available in each of the three month
periods (n = 161). c The distribution of slopes within each of these 90-day periods
(n = 165). We observe a significantly higher slope in the period immediately pre-
ceding birth, and a slight negative slope in the period immediately following birth.
The box depicts quartiles of the data, with the whiskers 1.5 times the inter-quartile
range from the first and third quartiles. See Fig. S14 for additional analysis.
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distribution shift; though trained on healthy participants, PpgAge
produces accurate predictions on the general study population.

Our analysis also shows that PpgAge is associated with diseases
and behaviors linked to age-related decline. The PpgAge gap statistic
stratifies participants into low and high prevalence groups for a variety
of conditions, including heart disease, heart failure, diabetes, liver
disease, peripheral artery disease, among others. This stratification
persists evenwhen adjusting for age, sex, and cardiorespiratoryfitness
as measured by estimated VO2 max (Fig. S9).

PpgAge gap is also a significant predictor of incident heart disease
events and diabetes diagnoses (Fig. 5), even when controlling for
relevant risk factors. For predictingnewheart disease events, a PpgAge
gap of 6 years had a similar effect size as a previous diagnosis of high
cholesterol, and a stronger effect than a previous diagnosis of hyper-
tension or diabetes. For both new heart disease events and new

diabetes diagnoses, PpgAge gap is a significant predictor even when
controlling for relevant risk factors.

PpgAge exhibits a strong association with smoking status, exer-
cise, and sleep—behaviors strongly linked to health and longevity. For
both smoking and exercise, we observe a PpgAge gap pattern con-
sistent with a dose-response and an exposure effect. More frequent
smokers are predicted to be older across age groups, and the age gap
between smoking categories grows larger in older participants, con-
sistent with a cumulative effect of smoking on PpgAge (Fig. 6A, B).
Similarly, increased physical activity is associatedwith a lower age gap,
and the PpgAge delta between sedentary and active participants is
wider in older participants (Fig. 6C, D). PpgAge is also correlated with
standard measures of sleep quality—while reduced sleep duration is
consistent with an increase in average PpgAge, reduced deep sleep
duration, increased REM latency, and decreased sleep efficiency are

Fig. 8 | PpgAge around cardiac events of various types. aMedian (blue line) and
interquartile range (shaded blue) of lowess-smoothed PpgAge time series, nor-
malized to 0 at 180 days before the date of the event. Each subplot shows how
PpgAge estimates change before and after cardiac events of different types, as well
as for non-event controls (bottom right subplot). For bypass surgery, myocardial
infarction, and valve replacement surgery, we see median increases of around 2
years over the one year time period. b Distribution of cumulative PpgAge increase
from −180 days before to +180 days after a coronary bypass surgery, within each

90-day period, n = 43 participants. The box depicts quartiles of the data, with the
whiskers 1.5 times the inter-quartile range from the first and third quartiles.
c Individual examples of predicted age trajectories, centered on a coronary bypass
event. Individual examples reveal heterogeneity of predicted age sensitivity–some
exhibit a strong change point around the event, while others continue current
trajectory. A randomized control study complementing this can provide insights
into potential confounders.
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associated with larger increases in predicted age (Figs. 6E, F and S10).
Though suggestive, our evidence is from an observational cohort, and
these behavioral associations do not establish a causal dose-response
or exposure effect. Our analysis does not, however, preclude the
possibility that PpgAge is modifiable and meaningfully responsive to
changes in behavior that promote longevity. A more controlled com-
parison (e.g., involving a detailed history of smoking and exercise
behavior and randomization) is necessary to make stronger claims.

We also find that PpgAge is longitudinally sensitive to concurrent
physiological changes. Pregnancy is associated with a rapid increase in
predicted age, with a median of about 3.5 years (Fig. 7). This rapid
increase is consistent with DNA methylation-based age biomarkers,
which found that maternal biological age increased by 2.39 years for
PCPhenoAge (95% CI 1.75–3.03), 1.19 years for PCGrimAge (95% CI
0.93–1.46), 2.52 years for GrimAge2 (95% CI 2.09–2.95) during
pregnancy47. However, unlike these epigenetic biomarkers, PpgAge
does not appear to rapidly normalize, but decreases slowly following
parturition. A longer observation window and further study is needed
to assess to what degree this increase in PpgAge persists or return to
baseline. Additionally, we see large predicted increases surrounding
reported cardiac events, including bypass surgery, non-ST-elevation
myocardial infarction, ST-elevation myocardial infraction, and valve
replacement surgery. Some individuals exhibit a sharp, sudden
increase, while others continue an existing trend (Fig. 8).

With ease of measurement, scalability, strong association with
chronic disease, health-related behaviors, and apparent longitudinal
sensitivity to physiological changes, PpgAge is a promising candidate
to assess the efficacy of longevity interventions, addressing the desi-
derata of Moqri et al.13. And relative to other wearable data, a core
benefit of PPG at rest is that the signal isolates cardiovascular function
from behavioral changes, reflecting not transient changes in user
behavior, but their physiology.

Beyond potential uses in longevity research, PpgAge has the
potential for clinical translation. The survival analysis (summarized in
Fig. 5) shows that PpgAge gap is predictive of incident disease diag-
noses and adverse cardiovascular events when controlling for relevant
risk factors, motivating further study into PpgAge gap’s incorporation
into cardiovascular disease risk scores. The strong association
between chronic disease history and elevated PpgAge gap suggest that
it may provide complementary information for clinical decisions that
otherwise would be based solely on chronological age, e.g., screening
and triggering additional clinical tests. PpgAge may also be useful for
monitoring individuals outside the clinic, as it may convey signs of
worsening disease (e.g., heart failure) or sudden, unexpected changes.

We also show that reducing the full PPG waveform to a coarser
summary (e.g., HR and HRV) significantly reduces prediction accuracy
and association with health conditions (Fig. S12). PPG morphology, as
here exploited, is known to vary in age-dependent ways as arteries
stiffen, myocardium thickens, and cardiac output wanes—and mor-
phological features are unavailable when only considering rhythmic
summaries.

Additionally, we find that a model fit to only healthy subjects
strengthens the association of PpgAge gap with disease, suggesting
that such cohort selection better captures correlates of the healthy
aging process than a random subsample of participants. While it has
been established that more precise age predictions may reduce the
association of the gap to age-related disease or mortality (with the
extreme of perfect age estimates as being no better than age itself,
trivially)49, there is also evidence that selecting participants to learn a
normative aging model—i.e., by training a model on only healthy par-
ticipants—can produce an aging clock that is predictive of overall
mortality28.

We study this phenomenon by directly comparing a normative
aging model (i.e., trained only on healthy participants) to a general
aging model (i.e., trained on a random subset of participants). And

similarly, we found that while age estimates are slightly more precise
on the general cohort when training on a random subset (as expected,
since there is no distribution shift), the age gap association with dis-
ease diagnosis is weaker across nearly all diseases in all age/sex groups
(see Supplementary Fig. S13). This result is consistent with the pre-
vailing understanding—predicting chronological age without con-
sidering information about participant health yields a less useful age
clock. An advantageof this approach is thatweare able touse themore
widely available chronological age and survey information, as opposed
tomore directmeasurements of arterial stiffness (e.g., carotid-femoral
pulse wave velocity or brachial-ankle pulse wave velocity) or risk
scores of cardiovascular disease (e.g., Framingham or ASCVD scores)
as a vascular age reference50.

There are several limitations to our study. The use of naturalistic
(i.e., observational) data is both a strength—scalability and simplicity—
and a limitation. The participants in the AHMS may not be repre-
sentative of the general population, complicating the generality of our
findings. Further, our association study is based on patient self-report,
which may include unreliable or missing responses. (Though, we note
that under-reported previous diagnoses would weaken the apparent
association between age gap and disease.) Complementing this
observational study with smaller, randomized studies would
strengthen the evidence for PpgAge to act as a useful biomarker for
assessing longevity interventions and augmenting clinical decisions51.
And though AHMS represents a geographically diverse population
across the United States, our analysis and conclusions are currently
limited to this one study. In future work, we aim to validate both age
predictions and PpgAge gap associations with disease on additional
studies.

Despite the size and duration of AHMS, the time series of PpgAge
measurements is atmost four years for any one participant (at the time
of this study). The development of age-related disease and decline
often occurs onmuch larger timescales. We would need to observe an
even longer time period to assess the sensitivity of PpgAge to the
development of disease and to the response to some behavioral
interventions. Further, our study does not have mortality information,
an important endpoint to study. And though we investigate the asso-
ciation between PpgAge gap and sleep, we do not investigate its rela-
tionship to chronotype. A strong association between shift work and
metabolic disease has been established52,53, and it is anopen question if
our metric correlates with such disruption of a regular sleep schedule.

Although we observe evidence of longitudinal sensitivity within
participants, we note that the rate of change of PpgAge appears to be
calibrated differently between age groups (see Fig. S1d). Younger
healthy participants have a PpgAge rate of change closer to one; older
healthy participants have a reduced PpgAge rate, whichmay be due to
a healthy sample that is skewed younger. To properly calibrate PpgAge
age changes for all age groups, a statistical model that incorporates
temporal dynamics, subject-level groupings, and heterogeneity across
age groups is likely needed. If PpgAge rates remain persistently dif-
ferently calibrated, downstream uses cases (e.g., risk stratification)
would need to incorporate age-specific effects on PpgAge gap.

We also employ a relatively conservative definition of “healthy”
when constructing our agingmodel. For example, we observe very few
individuals above 75 years of age who meet our three criteria (no
disease, no medications, no smoking history), suggesting that our
statistical model does not “see” examples of healthy aging beyond the
age of 75. Potentially a more relaxed (or even age-adapted) definition
of “healthy” would induce a more informative predicted age in the
older population.

Further, we have a limited understanding of the underlying phy-
sical mechanisms that drive age predictions. Based on our under-
standing of the PPG sensor, it is possible that the model is identifies
signatures of cardiovascular-related aging, e.g., arterial stiffening and
reduced cardiac output, andmore general vascular health. Association
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with other categories of disease or physiological state, e.g., sleep and
pregnancy, maybe driven by an underlying correlation with cardio-
vascular function. A better understanding of the physiological
mechanisms underlying these predictions could lead to a more robust
and interpretable biomarker of aging. Such physiological insights
could also shed light on potentially effective longevity interventions or
incorporated into amore holistic, heterogeneousmodel of aging (e.g.,
refs. 28,54).

Despite these limitations, our studydemonstrates that awearable-
based digital biomarker of age may be useful in the study of human
longevity, with the potential for clinical translation.

Methods
Data collection
Our study uses data from the AHMS, an ongoing research study that
started on November 14, 2019, conducted in partnership with the
American Heart Association and Brigham and Women’s Hospital.
AHMSwas designed to examine connections between physical activity
and cardiovascular health. Study participants were all Apple Watch
users, at least 18 years of age (at least 19 years old in Alabama and
Nebraska; at least 21 years old in Puerto Rico), who resided in the
United States and provided informed consent electronically in the
Apple Research app. The study was approved by the Advarra Central
Institutional Review Board and registered to ClinicalTrials.gov (Clin-
icalTrials.gov Identifier: NCT04198194)41. The Apple Research app
collected all data, both raw measurements and metadata.

As mentioned above, Apple Watch intermittently and passively
records green (525 nm) 60-s PPG signals during low-motion periods
throughout the day using light-emitting and light-sensitive diodes.
Participants were included in this study based on availability of back-
ground PPG segments and surveys. Due to comparatively small num-
bers of individuals self-reporting ethnicity of “American Indian or
AlaskanNative,” “Middle EasternorNorthAfrican,” “NativeHawaiian or
other Pacific Islander,” and “None of these fully describes me,” these
subjects were combined into a single race/ethnicity group ("Other”)
when used for downstream subgroup and stratified analysis; subjects
who self reportmultiple race/ethnicity categories are assigned a single
group ("Multi”). Body mass index was determined from self-reported
height andweight at study start. For privacy, subjects report only birth
year, not date; we approximate chronological age by assuming a July
1st birthday within the self-reported birth year.

Upon entering the study, participants are surveyed about their
medical history, asked, “Have you ever been diagnosed with any of the
following conditions?” with the possible responses of “Yes,” “No,” “I
don’t know,” and “I prefer not to answer.”A full list of conditions canbe
found in the Supplement. Participants are also asked, “Do you cur-
rently take any medications?” Additionally, participants are surveyed
about health behaviors, including smoking status and frequency. Par-
ticipants are also periodically asked about health updates. These
questions includeupdates about newdiagnoses, newmedications, and
pregnancy event outcomes, among others. Responses to these surveys
are used to study the association between predicted age, disease, and
behavior. See Supplemental Section S1 for further detail.

Data processing, representation learning, and modeling
Our modeling framework consists of three steps: (i) PPG preproces-
sing; (ii) pre-training a general-purpose encoder via SSL on unlabeled
PPG data from AHMS; and (iii) learning a linear prediction head, i.e.,
linear probing, from the pre-trained encoder to age as target variable.

Passively recorded green PPG signals are sampled at 64Hz or
256Hz, and consist of four separate optical channels corresponding to
different spatial combinations of transmitting and receiving diodes.
Signals are collected from a variety of watch models and OS versions
(see Supplemental Fig. S15). All 60-s PPG measurements used in this
analysis used the same mode of sensor operation, across all Watch

models andOS versions represented in the data set. We pre-processed
PPG segments using dark subtraction (to reject signal introduced by
ambient light), followedbybandpassfiltering, down-sampling to64Hz
(if needed) and temporal channel-wise z-scoring. See Abbaspourazad
et al.42 for further PPG pre-processing details. We also only consider
PPG segments that meet a quality threshold—that a beat segmentation
algorithm is able to find beats that cover at least 90% of the segment.
Other quality metrics may be suitable, such as limiting the accel-
erometer magnitude over the entire segment.

SSL has been proven successful in various domains of deep
learning leading to state-of-the-art general-purpose models in natural
language processing55,56, computer vision57–59, speech recognition60,61,
and health42. These general-purposemodels, also known as foundation
models, are typically large neural networks that are pre-trained on a
large volume of unlabeled data and are shown to contain information
for a wide array of downstream targets. We pre-trained our PPG
foundation model using 19,993,427 PPG segments from 172,318 par-
ticipants in AHMS. Our PPG foundationmodel is a neural network that
maps a 4-channel green PPG signal into a 256-dimensional feature
vector called representation. Pre-training implementation and details
remain the same as Abbaspourazad et al.42, where it was shown that
PPG foundation models encode significant demographic and health-
related information. Though almost all available participants are
incorporated in this SSL preprocessing step, crucially no information
about disease or chronological age is used.

FollowingTianet al.28, weconstruct a normative agemodel byfirst
selecting adults who self-report no disease, no medications, and no
history of smoking at study start (see Supplemental Section S1 and
Fig. S16 for further details), keeping only those with at least 30 PPG
measurements within the first 30 days of the study, which results in
6728 participants. We divide this cohort into two sets at random—the
healthy train cohort (5355 participants, ~ 80%) and the healthy test
cohort (1373 participants, ~ 20%). We fit a linear model with a ridge
penalty that takes the average PPG representation from the firstmonth
of study and predicts chronological age using participants in the
healthy train cohort. The strength of the regularization is tuned using
fivefold cross validation; performance is not particularly sensitive to
regularization. We refer to subjects not in the “healthy” cohort as the
“general” cohort (n = 120,235), all of whom are held out test partici-
pants. See Fig. 2b, c for cohort summary statistics and healthy cohort
inclusion.

For each participant in the study, we use a subsample of the first
month (and last month) of PPG segments to form an age estimate. The
raw PpgAge gap is defined to be the difference between the estimated
age and the true age, ŷ� ytrue, to form the baseline age gap—a higher
value indicates that the participant “appears older,” and a lower value
indicates that the participant “appears younger.” Following Smith
et al.62 and Tian et al.28, we adjust the PpgAge gap statistic to remove
any age dependence using a second step correction model. To do so,
we regress the raw PpgAge gap on chronological age itself using a
spline model, retaining the residual of this stage as the adjusted
PpgAge gap.

Statistical analyses and reproducibility
Due to our large sample size, we conduct a non-parametric analysis of
(chronological) age- and sex-matched cohorts; no statistical method
wasused topredetermine sample size. All results reported in this study
use participants who were not included in model fitting (i.e., held out
test subjects). Each analysis includes a subset of participants with the
appropriate data (e.g., survey response, BMI measurement, etc). All
error bars reported are 95% confidence intervals computed with 1000
bootstrap replicates. We define age bins to be ages into <25, 25–35,
35–45, 45–55, 55–65, 65–75 categories (left inclusive) and consider self-
reported male and female biological sex groups. In analyses that
include body mass index (BMI), following CDC guidance, we bin
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participants into groups corresponding to underweight (<18.5 kg/m2),
healthy weight ([18.5–25) kg/m2), overweight ([25.0–30) kg/m2), and
obese (>30 kg/m2), calculated using self reported weight and height63.

Diagnosis rates
For each group (e.g., 25–35 year old men), and condition (e.g., “dia-
betes”), we compute an average diagnosis rate by only considering
participants with the responses “Yes” and “No” to the survey question.
Concretely, for age group a, biological sex s, and condition c, the
average rate is

μa, s, c =
f# “yes”ga, s, c

f# “yes”or “no”ga, s, c
, ð1Þ

excluding participants with missing responses. Within each group
defined by a, s, c, we stratify participants into buckets based on their
age gap ŷ� y, e.g., a “youngest looking” subgroup with an age gap <−2
and an “oldest looking” subgroup with an age gap >6 years. Within
each bucket q, we compute the diagnosis rate

μa, s, c, q =
f# “yes”ga, s, c,q

f# “yes”or “no”ga, s, c,q
: ð2Þ

Within each group, we also compute the “risk relative to average,”
which is simply the ratio

Ra, s, c, q =
μa, s, c,q

μa, s, c
: ð3Þ

Incident disease survival analyses
To assess PpgAge gap’s association with incident disease, we use Cox
regression models. We analyze four outcomes: (i) new atherosclerotic
cardiovascular disease (ASCVD) events, (ii) new hypertension events,
(iii) newdiabetes diagnosis events, and (iv) newhyperlipidemia events.
For all outcomes, we control for biological sex, chronological age,
smoking status, BMI, andVO2 max. ForASCVD,weadditionally control
for previous diabetes, hypertension, and hyperlipidemia diagnosis. For
hypertension, we control for previous diabetes and high cholesterol.
For hyperlipidemia, we control for previous diabetes and hyperten-
sion. For diabetes, we control for previous high cholesterol and
hypertension.

For each outcome, we study the effect associated with (adjusted)
PpgAge gap at baseline, by taking the average value within the first
90 days of the study. We limit to subjects who self-report not having
the condition in question from the medical history survey taken at
baseline. Other historical diagnoses are also determined by the base-
line medical history survey. All outcome information is obtained from
quarterly/monthly health surveys, where participants are asked about
updates to their medical history (specifically new diagnoses or major
medical events). The new ASCVD event is a composite endpoint of a
new diagnosis of coronary artery disease, heart failure, or peripheral
artery disease; or a new heart attack, stroke, angioplasty, stent,
angiography, or coronary bypass. For non-event subjects, we define
their censoring date to be their last followup survey date before a gap
in survey coverage of 90 days ormore (e.g., if a subject stopped taking
the followup surveys 1 year after enrollment and resumed again at year
3, their censoring date would be 1 year). We also remove any subjects
who have an event or censoring date within the first 90 days of
the study.

For each outcome in results tables in Figs. 5 and S4, wedisplay the
mean (and standard deviation, for continuous values) of the covariate
(i.e., biological sex, chronological age, etc), the associated hazard ratio
(and 95% CI), and the calculated p-value. Though the model was fit
using a continuous-valued age gap, hazard ratios for chronological age

and PpgAge gap are scaled to be in units of 6 years for reporting, while
all other variables are on their original scales. Each Cox regression was
fit with the lifelines Python package. The survival curves shown in
the figures are model-based estimates derived from the fitted Cox
model for each condition, where we condition on different age and
PpgAge gap values. Average values for other covariates (except
PpgAge gap) are used within age strata (defined as ± 5 years) for each
chronological age plotted (35, 45, 55, 65, and 75, depending on
the plot).

In supplemental Fig. S5, we conduct a sensitivity analysiswherewe
refit models for each of the conditions within two age-specific sub-
groups. The threshold for defining these old vs. younger subjects are
defined by the median age of events for that condition, so that the
number of events within each subgroup are roughly the same. As
before, we adjust for the same set of risk factors for each condition. In
Fig. S6of the supplement,we also showKaplan–Meier curves,with 95%
confidence intervals and number at risk over time, stratified by 3
PpgAge gap groups.

Further details about the data and analysis, including counts and
followup time distributions, are in Section S4.

PPG-based age estimates and sleep behavior
Apple Watch employs an accelerometer-based algorithm to detect
sleep stages throughout the night, categorized as “Awake”, “Deep”,
“Core” and “REM”, available in the Health app45. Here, we study the
association between Apple Watch sleep stages and PpgAge gap. For
each night of successfully logged sleep, we extract the following sleep-
related variables: (i) total sleep duration: total time spent in non-
"Awake” stages, (ii) deep sleep duration: total time spent in the “Deep”
stage, (iii) sleep efficiency: total sleep duration divided by the elapsed
time from the onset of first non-"Awake” stage to the end of the final
non-"Awake” stage, and (iv) REM latency: time from the onset of first
non-"Awake” stage to the onset of first “REM” stage.

For each participant night, we compute age gap from segments
collected between 10AM and 6PM (local time) of the following day.
This yields a dataset at the participant-day level, where sleep-related
variables and the biological age gap are paired. We then create a
participant-level variation of this dataset by averaging the sleep-
related variables and age gap for each participant. We then fit OLS
models for age-matched groups aswell as the entire population, where
the target variable is the age gap and the explanatory variables are
demographics, including chronological age, biological sex (mapped to
0 and 1), BMI, and the mentioned sleep-related variables. We calcu-
lated the variance inflation factor (VIF) between the explanatory vari-
ables, and observed no sign of multicollinearity between them with
VIF = 1.11.

PpgAge and cardiovascular events
To investigate whether our PpgAge exhibits changes around the same
time as other major physiological changes, we create a subset of par-
ticipantswho self-reporthaving a cardiac event.We look into a number
of different cardiac event types: a new diagnosis of coronary artery
disease, peripheral arterydisease, heart failure, or valvular disease; or a
stroke, heart attack, CABG surgery, valve replacement surgery, or a
cardiac stent and/or angiography. We also use a composite heart dis-
ease category that combines all of these event types together. As a
reference comparison, we use a subset of the non-event “control”
subjects and choose a random date in the middle of their study
duration as the index date for day 0. We subset to the 180 days before
and 180 days after the date of each event, and bucket events bymonth
to avoidduplicated events.Weonly include eventswith at least 25 days
of PpgAge estimates in each of the four non-overlapping 90-day per-
iods around each event. After lowess-smoothing (locally weighted
scatterplot smoothing) the PpgAge time series for each event and re-
centering each time series to start 180 days before the event, we report
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themedian and interquartile range for each event type.We also report
the distribution of cumulative change in PpgAge within each of the 4
90-day windows before and after the event for a subset of event types,
as well as a few representative individual-level time series of PpgAge
around the time of event.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Apple Heart and Movement Study data cannot be made publicly
available due to privacy assurances included in the informed consent
signed by the study participants, as well as contractual agreements
between the entities conducting the study. Requests to access the data
must be forwarded to the corresponding author, Dr. Andrew C. Miller.
Requests should include name and contact details of the person
requesting the data, which data and clinical variables are requested,
and the purpose of requesting the data. Requests will be subject to
reviewby the study teams atBWHandApple under the guidance of the
study PI, Dr. Calum MacRae, and will be evaluated under the terms of
the informed consent and relevant contractual agreements. Time
frame for a response will be approximately 3 months. As real data
cannot be made publicly available, synthetic data are generated by
accompanying code for the purpose of reproducing the study.
Aggregated figure source data are provided. Source data are provided
with this paper.

Code availability
Code for all data analyses and statistical modeling was written in
Python 3.9 and R 4.3.3. We use pyspark for large-scale data queries,
pytorch for SSL pre-training, scikit-learn and numpy for training
agepredictionmodels and computing confidence intervals (i.e., via the
bootstrap), lifelines for survival analysis modeling, and mat-
plotlib, seaborn (in Python), and ggplot2 (in R) for visualization.
Code to reproduce the representation learning and analysis on syn-
thetically generated data is available at https://github.com/apple/ml-
ppg-age-analysis. The untrained model and training scripts can be
found in the accompanying repository (within the training module).
The architecture, initialization, and training in the accompanying
repository match those used to train the model studied in this work,
and can be used with user-provided data.
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