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Systematic benchmarking of high-
throughput subcellular spatial
transcriptomics platforms across
human tumors

Pengfei Ren1,2,10, Rui Zhang1,10, Yunfeng Wang1,2, Peng Zhang2, Ce Luo 2,
Suyan Wang3, Xiaohong Li2, Zongxu Zhang 2, Yanping Zhao4, Yufeng He 1,
Haorui Zhang1, Yufeng Li5, Zhidong Gao 6, Xiuping Zhang7, Yahui Zhao8,
Zhihua Liu 8, Yuanguang Meng9 , Zhe Zhang9 & Zexian Zeng 1,2,3

Recent advancements in spatial transcriptomics technologies have significantly
enhanced resolution and throughput, underscoring an urgent need for sys-
tematic benchmarking. Here, we generate serial tissue sections from colon
adenocarcinoma, hepatocellular carcinoma, and ovarian cancer samples for
systematic evaluation. Using these uniformly processed samples, we generate
spatial transcriptomics data across four high-throughput platforms with sub-
cellular resolution: Stereo-seq v1.3, Visium HD FFPE, CosMx 6K, and Xenium 5K.
To establish ground truth datasets, we profile proteins on tissue sections adja-
cent to all platforms using CODEX and perform single-cell RNA sequencing on
the same samples. Leveraging manual nuclear segmentation and detailed
annotations, we systematically assess each platform’s performance across cap-
ture sensitivity, specificity, diffusion control, cell segmentation, cell annotation,
spatial clustering, and concordance with adjacent CODEX. The uniformly gen-
eratedandprocessedmulti-omicsdataset couldadvancecomputationalmethod
development and biological discoveries. The dataset is accessible via SPATCH, a
user-friendly web server for visualization and download.

Spatially resolved transcriptomics integrates high-throughput tran-
scriptomic profiling with spatially contextualized tissue architecture,
bridging the gap in single-cell RNA sequencing (scRNA-seq) by linking
molecular profiles to their spatial context. With preserved spatial

information, this technology offers unprecedented insights into cel-
lular states, intercellular interactions, and tissue organization1–6. Its
applications span multiple biological disciplines: in neuroscience, it
enables high-resolution mapping of neural circuits and molecular
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connectivity; in developmental biology, it illuminates the molecular
mechanisms underlying tissue morphogenesis; and in cancer biology,
it provides detailed characterization of tumormicroenvironments and
immune landscapes7–10. Driven by its transformative potential, spatial
transcriptomics (ST) technology has undergone rapid development
and innovation.

Spatial transcriptomics technologies can be broadly categorized
into sequencing-based (sST) and imaging-based (iST) platforms, each
offering distinctmethodologies and advantages. sST platforms enable
unbiased whole-transcriptome analysis by capturing poly(A)-tailed
transcripts with poly(dT) oligos on spatially barcoded arrays. These
platforms vary in capture efficiency, transcript diffusion control, and
spatial resolution, ranging from microscale to nanoscale. Notable
platforms include Visium11, DBiT-seq12, Patho-DBiT13, Stereo-seq14,
Slide-seq15, Slide-seqV216, HDST17, sciSpace18, PIXEL-seq19, Seq-Scope20,
MAGIC-seq21, and Open-ST22. Conversely, iST platforms utilize iterative
hybridization of fluorescently labeled probes followed by sequential
imaging to profile gene expression in situ at single-molecule resolu-
tion. iST technologies differ in probe design, signal amplification
strategies, imaging modalities, and target genes. Notable platforms
include ISS23, CosMx24, Xenium25, MERFISH26, seqFISH27, osmFISH28,
and STARmap29. These complementary approaches underscore the
strengths of ST, with sST providing unbiased transcriptome-wide
coverage and iST offering high resolution and sensitivity for the
detection of target genes.

Several efforts have been made to benchmark both sST and iST
technologies. A comprehensive evaluation by Yue et al.30 compared
different sST platforms, including Stereo-seq14 with 0.5μmsequencing
spots and Visium11 with its 55 μm resolution. For iST platforms,
Xenium, MERSCOPE, and CosMx were compared using gene panels
ranging from 200 to 1000 genes31–33. A comparative study involving
four iST platforms was conducted using in-house and public data, with
genepanels reaching 345 genes34. Additionally, Austin et al.35 evaluated
six iST platforms using public datasets, with panel sizes ranging from
99 to 1147 genes. While these studies provide valuable insights, they
primarily focus on ST technologies with lower spatial resolution or
limited gene panel sizes. Furthermore, many benchmarking studies
rely on public datasets generated under varying experimental condi-
tions or with varying tissue types, which often lack consistent ground
truth data for robust evaluation. As a result, existing efforts offer only a
partial understanding of the latest advancements in ST technologies.
This underscores the urgent need for a systematic benchmarking
study conducted under unified experimental conditions to compre-
hensively evaluate the performance and comparative strengths of
current high-resolution, high-throughput ST platforms.

Spatial transcriptomics has undergone remarkable advance-
ments, with commercial platforms now achieving subcellular resolu-
tion and high-throughput gene detection. Among sST platforms,
Stereo-seq v1.314 by BGI employs poly(dT) oligos to capture poly(A)-
tailed RNA at a resolution of 0.5 μm. Visium HD36 by 10x Genomics
utilizes poly(dT) oligos to capture poly(A)-tailed probes targeting
18,085 genes at a resolution of 2 μm. Compared to earlier technolo-
gies, these higher resolutions facilitate more accurate profiling of
individual cell transcriptional states. In parallel, iST platforms, such as
CosMx 6K24 by NanoString and Xenium 5K25 by 10x Genomics, rely on
fluorescently labeled probes and sequential imaging to profile 6175
and 5001 genes, respectively, offering single-molecule precision.
Compared to earlier iST platforms such as ISS (39 genes), MERFISH
(1000 genes), and STARmap (1020 genes), the substantially expanded
gene panels of CosMx 6K and Xenium 5K offer enhanced resolution of
cellular states, enable more comprehensive inference of intercellular
communication networks, and allow for broader coverage of signaling
pathway activities. Notably, the increased transcriptomic coverage
also supports cross-disciplinary investigations, facilitating integrative
analyses across domains such as immunology, oncology, and

neuroscience. These advancements underscore the pressing need for a
systematic benchmark to enable more informed applications and
continued innovation in this rapidly evolving field.

In this study, we collected clinical samples from three cancer
types and generated serial tissue sections to systematically evaluate
four commercially available high-throughput ST platforms with sub-
cellular resolution. Toestablish ground truth datasets, we usedCODEX
to profile proteins in tissue sections adjacent to those used for each ST
platform. In parallel, scRNA-seqwasperformedon the samesamples to
provide a comparative reference.Wemanually annotated cell types for
both the scRNA-seq andCODEXdata, alongwith nuclear boundaries in
hematoxylin and eosin (H&E) and DAPI-stained images. Leveraging
these comprehensive annotations, we systematically evaluated each
platform’s performance across critical metrics, including sensitivity,
specificity, diffusion control, cell segmentation, cell annotation, spatial
clustering, and transcript-protein alignment. The resulting uniformly
generated, processed, and annotatedmulti-omics dataset, comprising
8.13 million cells, serves as a valuable resource for advancing compu-
tational method development and enabling biological discoveries. To
ensure broad accessibility, we developed a user-friendly web server
(SPATCH: http://spatch.pku-genomics.org/) for data visualization,
exploration, and download.

Results
Sample preparation and multi-omics profiling
To enable a comprehensive and systematic benchmarking of ST plat-
forms, we collected treatment-naïve tumor samples from three
patients diagnosed with colon adenocarcinoma (COAD), hepatocel-
lular carcinoma (HCC), and ovarian cancer (OV) (Supplementary
Data 1). To accommodate the sample preparation requirements of
each platform, we divided the tumor samples into multiple portions
and processed them into formalin-fixed paraffin-embedded (FFPE)
blocks, fresh-frozen (FF) blocks embedded in optimal cutting tem-
perature (OCT) compound, or dissociated into single-cell suspensions
(Fig. 1a). Serial tissue sections were uniformly generated for parallel
profiling across multiple omics platforms. Detailed timelines for sam-
ple collection, fixation, embedding, sectioning, and transcriptomic
profiling were documented (Supplementary Data 2).

We benchmarked four advanced ST platforms–Stereo-seq v1.3,
Visium HD FFPE, CosMx 6K, and Xenium 5K–selected for their high-
throughput gene capture capacity (>5000 genes), subcellular resolu-
tion (≤ 2 μm), and widespread commercial adoption (Fig. 1a). These
platforms represent diverse technological strategies (Supplementary
Data 3) and utilize overlapping yet distinct gene panels to capture key
biological pathways (Supplementary Fig. 1a, b and Supplementary
Data 4, 5). To establish comprehensive ground truth datasets for
robust evaluation,weprofiledproteins usingCODEXon tissue sections
adjacent to those used for each ST platform. In parallel, we performed
scRNA-seq on matched tumor samples (Fig. 1a). The uniformly gen-
erated reference datasets enabled integrative and cross-modal com-
parisons across diverse platforms.

Evaluation of molecular capture efficiency for marker genes
We first assessed the detection sensitivity of diverse cell marker genes
across different ST platforms. To ensure consistent resolution across
platforms and balance spatial specificity with transcript detection
sensitivity, all subsequent bin-level analyses were conducted at 8 μm
resolution—a biologically meaningful unit approximating the typical
diameter of small immune cells. The epithelial cell marker EPCAM
showed well-defined spatial patterns across all platforms, consistent
with H&E staining and supported by Pan-Cytokeratin (PanCK) immu-
nostaining on adjacent sections (Fig. 1b). Xenium 5K demonstrated
superior sensitivity for multiple marker genes (Fig. 1c). To reduce
potential biases from scanning area and tissue morphology, we
restricted our analysis to regions shared across FFPE serial sections
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Fig. 1 | Evaluation of gene detection sensitivity across ST platforms.
a Experimental workflow. For each tumor type (COAD, HCC, OV), samples were
divided into three parts: (1) FFPE blocks were used for Visium HD FFPE, CosMx 6K,
and Xenium 5K; (2) fresh-frozen OCT-embedded tissue was used for Stereo-seq
v1.3; (3) dissociated tissue was subjected to scRNA-seq. Sections adjacent to each
ST slide were profiled by 16-plex CODEX for spatial proteomics. bH&E staining and
EPCAM expression from ST data, along with PanCK staining from adjacent CODEX
sections of COAD samples across the four ST platforms. Color intensity reflects the
transcript count per 8 μm bin. Scale bars, 1mm. cMean transcript count per 8 μm
bin for selected marker genes, computed across all bins with non-zero expression
values over the entire tissue sections. d Pearson correlation of gene expression
levels between ST data and scRNA-seq data. For each gene, the total transcript
counts across three cancer types were averaged and log10 transformed. Each data
point represents one gene. The diagonal red line indicates a slope of 1, and color
intensity corresponds to relative gene counts. R denotes the correlation coefficient,

and n indicates the number of genes included in the analysis. e Log2-transformed
total transcript count per gene across the ten selected regions (400× 400μmeach)
in HCC and OV. Each data point represents one gene (n = 17,134 for Stereo-seq v1.3
and Visium HD FFPE, n = 6175 for CosMx 6K, n = 5001 for Xenium 5K). Center lines
indicate themedian value, and lower and upper hinges represent the 25th and 75th
percentiles, respectively. The whiskers denote 1.5× the interquartile range. f Log2-
transformed gene and transcript counts per 8 μm bin within the ten selected
regions in HCC and OV. Each data point represents one bin. Center lines indicate
the median value, and lower and upper hinges represent the 25th and 75th per-
centiles, respectively. The whiskers denote 1.5× the interquartile range. g Mean
sequencing saturation across the 10 selected regions for human transcripts
detected by Stereo-seq v1.3 and Visium HD FFPE, calculated at stepwise increasing
sequencing depths. Panel a created with BioRender.com. Source data are provided
as a Source Data file.
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(Visium HD FFPE, CosMx 6K, and Xenium 5K, Supplementary Fig. 2a).
Within these shared regions, Xenium 5K consistently outperformed
the other platforms (Supplementary Fig. 2b). To further reduce varia-
bility in the scanning areas, we selected ten regions of interest (ROIs,
400 × 400μm each), primarily composed of cancer cells with similar
morphology and cell density from each dataset (Supplementary
Fig. 2c). Within these ROIs, we evaluated the sensitivity of cancer cell
marker genes and found that Visium HD FFPE outperformed Stereo-
seq v1.3, while Xenium 5K showed higher sensitivity than CosMx 6K
(Supplementary Fig. 2d).

Evaluation of molecular capture efficiency across entire
gene panels
We calculated total transcript count per gene for each ST dataset and
assessed their gene-wise correlation with matched scRNA-seq profiles.
Stereo-seq v1.3, Visium HD FFPE, and Xenium 5K showed high corre-
lations with scRNA-seq (Fig. 1d and Supplementary Fig. 3a). Although
CosMx 6K detected a higher total number of transcripts than Xenium
5K (Supplementary Fig. 3b), its gene-wise transcript counts showed
substantial deviation frommatched scRNA-seq reference (Fig. 1d). This
discrepancy persisted when the analysis was restricted to the 2522
genes shared between CosMx 6K and Xenium 5K (Supplementary
Fig. 3c). Increasing quality control thresholds for CosMx 6K transcript
calls did not significantly improve the correlation with scRNA-seq,
indicating that the discrepancy is unlikely due to low-quality detec-
tions (Supplementary Fig. 3d). Cross-platform comparisons further
revealed strong concordance among Stereo-seq v1.3, Visium HD FFPE,
and Xenium 5K, highlighting their consistent ability to capture gene
expression variation (Supplementary Fig. 3e).

To assess transcript capture across gene panels, we quantified
total transcript count per gene within the ten selected ROIs from HCC
and OV samples. Stereo-seq v1.3, Visium HD FFPE, and Xenium 5K
exhibited comparable distributions characterized by substantial inter-
gene variability, reflecting effective detection across a wide range of
gene expression. While CosMx 6K reported higher overall transcript
counts than Xenium 5K, its reduced gene-to-gene variation suggests a
more limited ability to resolve differential expression (Fig. 1e). This
pattern persisted when the analysis was restricted to the 2522 genes
shared between CosMx 6K and Xenium 5K (Supplementary Fig. 4a).
Additionally, similar patterns were observed in analyses limited to
shared regions in serial FFPE sections (Supplementary Fig. 4b).

In addition to evaluating total transcript counts for individual
genes, we analyzed the total numbers of transcripts and genes detec-
ted per 8 μm bin across the ten ROIs in HCC and OV samples. The
COAD samples were excluded from this analysis due to their incon-
sistent cell density across regions. VisiumHDFFPE exhibited enhanced
detection capacity compared to Stereo-seq v1.3 (Fig. 1f). Xenium 5K
demonstrated higher sensitivity than CosMx 6K in HCC but showed
lower sensitivity in OV. This discrepancy was likely attributable to
differences in the cancer type and gene panels (Fig. 1f). Restricting the
analysis to shared regions in FFPE serial sections revealed comparable
sensitivity (Supplementary Fig. 4c). When focusing on the common
genes shared by the two iST platforms, Xenium 5K detected higher
numbers of transcripts and genes per bin compared to CosMx 6K
(Supplementary Fig. 4d).

For sST platforms, we evaluated quality metrics related to read
alignment. Stereo-seq v1.3 exhibited a higher proportion of reads
passingUniqueMolecular Identifier (UMI) quality control compared to
VisiumHDFFPE and scRNA-seq, indicating improved retention of valid
transcript information (Supplementary Fig. 4e). However, it also
showed an elevated proportion of reads with invalid spatial barcodes,
indicating greater loss of spatial information (Supplementary Fig. 4e).
In addition, Stereo-seq v1.3 had a higher proportion of reads mapped
to intergenic regions and multiple genomic loci compared to scRNA-
seq (Supplementary Fig. 4f). To account for differences in sequencing

depth, we performed read downsampling and calculated the mean
sequencing saturation across the ten selected ROIs from HCC and OV
samples. Visium HD FFPE showed lower sequencing saturation for
human transcripts at comparable sequencing depths (Fig. 1g).

Evaluation of transcript background noise and diffusion control
Accurate transcript identification is essential for uncovering the
underlying biological mechanisms using ST platforms. In iST plat-
forms, negative probes and codes are used to assess nonspecific
binding and fluorescence detection errors. For both iST platforms,
negative control signals were evaluated alongside probes targeting the
human transcriptome using 8 × 8μm bins (Fig. 2a). Overall, CosMx 6K
detected a higher total number of transcripts but exhibited reduced
spatial variation and elevated negative control signals compared to
Xenium 5K (Fig. 2b and Supplementary Fig. 5a, b). Spatial auto-
correlation analysis using Moran’s I revealed stronger aggregation of
negative control signals in CosMx 6K (Fig. 2b and Supplementary
Fig. 5a, b), indicating higher background interference. After normal-
ization by total signal counts, Xenium5Kshowed a lower proportion of
negative control signals (Fig. 2c). Moreover, negative control signals in
the necrotic regions of OV samples weremarkedly reduced in Xenium
5K, reflecting lower background noise (Supplementary Fig. 5c, d).
Notably, acrossbothplatforms, negative probes consistently exhibited
stronger signals than negative codes, indicating that nonspecific probe
binding is the primary source of background noise in iST platforms
(Fig. 2b, c, and Supplementary Fig. 5a–d). Across a range of quality
control thresholds, Xenium 5K consistently maintained a lower pro-
portion of negative control signals, highlighting its advantage in
minimizing background noise (Supplementary Fig. 5e).

Transcript diffusion beyond tissue boundaries was observed in
both Stereo-seq v1.3 and Visium HD FFPE (Fig. 2d and Supplementary
Fig. 5f). To evaluate the diffusion, we measured transcript abundance
in 8 μm bins located outside the tissue and calculated their distances
from the tissue boundary. To reduce potential bias fromdifferences in
chip size, we restricted the maximum diffusion distance analyzed
(Methods). Quantification of diffusion distance and transcript abun-
dance revealed more effective diffusion control in Visium HD FFPE
(Fig. 2e and Supplementary Fig. 5g, h). To account for differences in
sequencing depth, we normalized themean transcript counts of extra-
tissue bins by those within the tissue. This analysis revealed sub-
stantially greater transcript diffusion in Stereo-seq v1.3 (Fig. 2f).

Evaluation of transcript identification and localization accuracy
We utilized CODEX to profile proteins on tissue sections adjacent to
each ST section, providing a high-resolution reference for evaluating
transcript localization accuracy. To enable cross-modality compar-
isons, CODEX data were spatially registered to the corresponding ST
datasets (Supplementary Fig. 6, Methods). We first assessed local
concordance between ST and CODEX data in representative tissue
areas. Tertiary lymphoid structures (TLS), aggregates of T and B cells
that support both humoral and cellular immunity, play a crucial role in
anti-tumor responses37. In COAD, we identified TLS-like structures and
examined the spatial distribution of corresponding transcripts. Visium
HD FFPE and Xenium 5K demonstrated strong spatial concordance
with CODEX for B cell, CD4+ T cell, and CD8+ T cell markers (Supple-
mentary Fig. 7a). In HCC, we leveraged the liver’s intricate vascular
architecture to evaluate the localization of CD34 (endothelial cell
marker) near vascular structures. Xenium 5K showed high levels of
CD34 transcripts along vascular edges (Supplementary Fig. 7b). In OV,
we identified macrophage-rich regions and assessed CD68 transcript
localization, with all platforms detecting substantial CD68 expression
(Supplementary Fig. 7c). To evaluate global concordance, we anno-
tatedCODEX-derived cell types (Supplementary Fig. 7d,Methods) and
compared the spatial patterns of diverse cell types with marker gene
expression in adjacent ST sections. Visium HD FFPE and Xenium 5K
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showed higher concordance with CODEX than Stereo-seq v1.3 and
CosMx 6K, respectively (Supplementary Fig. 7e). For epithelial cells,
which are highly abundant in both COAD and OV, inter-platform dif-
ferences were relatively minor (Supplementary Fig. 7f).

To address the inherent sparsity of ST data, we evaluated
signature-level correlations in addition to individual marker genes.
Differentially expressed genes formajor cell typeswere identified from
paired scRNA-seq data (Supplementary Fig. 8) and used to construct
cell-type signatures for evaluating spatial concordance with CODEX.
Within selected TLS-like ROIs, these cell-type signatures showed
stronger spatial concordance with CODEX than individual markers
(Fig. 3a and Supplementary Fig. 7a). Global concordance analysis
indicated higher consistency for Visium HD FFPE and Xenium 5K over
Stereo-seq v1.3 and CosMx 6K, respectively (Fig. 3b). As observed
previously, the differences for epithelial cells among platforms
remained minimal (Fig. 3c).

Evaluation of the single-cell segmentation
Accurate cell segmentation is essential for ST platforms with sub-
cellular resolution, as it significantly influences downstream analyses.
We first compared automated cell segmentation results across plat-
forms using four key morphological metrics: cell size, solidity (with
higher values indicating greater convexity), aspect ratio (length-to-
width ratio), and circularity (where 1 represents a perfect circle).

CosMx 6K and Xenium 5K performed cell segmentation based on
multi-channel staining images that included nuclear, membrane, and
cytoplasmic markers, while Stereo-seq v1.3 estimated cell boundaries
by expanding nuclear masks by 5 μm. Visium HD FFPE was excluded
from this analysis due to the absence of an official cell segmentation
algorithm. Overall, CosMx 6K produced larger, more convex, and
more circular cells, suggestive of more regular cell shapes (Supple-
mentary Fig. 9a–d). To assess segmentation accuracy, we manually
annotated nuclear boundaries for 72,405 cells across five regions (500
× 500 μm each) per dataset as ground truth (Supplementary Fig. 9e).
The automatic cell segmentation results from CosMx 6K and Xenium
5K closely matched the number of cells manually identified by the
manual nuclear segmentation within the same field of view, indicating
their segmentation accuracy and reliability (Fig. 4a, b and Supple-
mentary Fig. 9f, g). In contrast, Stereo-seq v1.3 exhibited reduced
segmentation accuracy, likely due to staining artifacts that led to the
misclassification of non-cellular structures as cells (Fig. 4a, b and
Supplementary Fig. 9f, g).

Following cell segmentation, we compared transcript and gene
counts within segmented cells across platforms. CosMx 6K and
Xenium 5K retained a higher proportion of transcripts within the cell
boundaries (Supplementary Fig. 10a), indicating more effective tran-
script assignment. Compared to the ST platforms, scRNA-seq con-
sistently detectedmore transcripts and genes per cell (Fig. 4c).Marker
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gene expression levels also remained higher in scRNA-seq (Supple-
mentary Fig. 10b). However, when restricting the analysis to a shared
gene set (2522 genes), the iST platforms demonstrated comparable
transcripts and genes per cell to scRNA-seq (Fig. 4c). Additionally, we
performed whole-slide nuclear segmentation using StarDist38 across
the four ST platforms. Xenium 5K consistently identified nuclei with
higher gene and transcript counts, both for all detected genes and for
genes shared across platforms (Supplementary Fig. 10c).

Accurate cell segmentation is critical for resolving mutually
exclusive transcripts into distinct cells, thereby improving cell type
annotation. In COAD samples, ST data revealed substantial co-
expression of the epithelial marker EPCAM and immune markers
CD3E and CD68within the same cell (Fig. 4d). The co-expression levels
observed in ST data were notably higher than those observed in
scRNA-seq (Fig. 4d). A comparison of cell-level and bin-level co-
expression further highlighted platform-specific differences in cor-
rectly assigning EPCAM, CD68, and CD3E to distinct cells (Supple-
mentary Fig. 10d). To generalize these findings, we extended the
analysis to 36 gene pairs derived from nine mutually exclusive lineage
markers (Supplementary Data 6). scRNA-seq consistently exhibited
lower co-expression than ST platforms (Fig. 4e). Among ST platforms,
Xenium 5K showed the greatest reduction in artificial co-expression
after segmentation (Fig. 4e), indicating better single-cell segmentation
results.

Evaluation of cell clustering and cell type annotation
Cell clustering is fundamental for characterizing cell heterogeneity
and is critical for identifying novel cell types in both physiological and
pathological contexts. To assess each platform’s capacity to resolve
cellular heterogeneity, we performed unsupervised clustering based
on transcriptomic profiles (8 μm bins for Visium HD FFPE) (Fig. 5a).

Clustering performance, evaluated using the average silhouette score,
showed that scRNA-seq provided the most effective separation of cell
populations (Fig. 5b). Among the ST platforms, iST technologies
achieved better resolution of transcriptomic differences between cell
clusters, highlighting the advantage of their higher spatial resolu-
tion (Fig. 5b).

Cell type annotation is another key step in downstream analysis,
critical for interpreting ST data. To evaluate the ability of different ST
platforms to identify diverse cell types, we transferred annotations
from matched scRNA-seq data to ST data using five annotation tools,
including SELINA39, Celltypist40, Spoint41, Tangram42, and TACCO43.
Among the ST platforms, CosMx 6K and Xenium 5K recovered a
greater number of distinct cell types (Supplementary Fig. 11a). Notably,
Xenium 5K exhibited a higher proportion of cells consistently anno-
tated as the same cell type across five tools (Fig. 5c), suggesting better
annotation robustness. Annotation consistency was further quantified
by calculating entropy scores based on cell type assignments across
tools. iST platforms showed higher entropy, indicating greater con-
cordance in inferred cell type composition (Supplementary Fig. 11b).
To obtain a consensus annotation, we integrated the outputs of the
five tools using amajority vote approach (Methods). We then assessed
concordance between ST and scRNA-seq data by computing pairwise
gene expression correlations across annotated cell types. Stereo-seq
v1.3 showed high agreementwith scRNA-seq in COAD andOV samples,
whereas Xenium 5K outperformed other platforms in HCC and OV
(Supplementary Fig. 11c). Visualization of marker gene expression
across annotated cell types revealed thatXenium5Kachieved themost
distinct and biologically coherent expressionpatterns (Supplementary
Fig. 11d), further supporting its annotation accuracy. Finally, we nor-
malized gene expression using either the total expression of shared
genes across platforms or the mean expression of housekeeping
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genes. Xenium 5K most closely recapitulated scRNA-seq profiles for
canonical cell typemarkers, includingCD34 (endothelial cells),COL5A2
(fibroblasts),CD68 (macrophages), and CD8A (T cells) (Supplementary
Fig. 11e, f).

Advancements in iST platforms, particularly their capacity to
capture large gene panels, enablemore refined characterization of cell
subtypes. To evaluate each platform’s ability to recover T cell sub-
types, we first established a reference based on matched scRNA-seq
data (Supplementary Fig. 12a). Cell type annotations were then trans-
ferred to the ST datasets using five annotation tools. Among all plat-
forms, CosMx 6K and Xenium 5K recovered the highest number of T
cell subtypes (Supplementary Fig. 12b). Additionally, Xenium 5K
exhibited a higher proportion of cells consistently annotated as the
same subtype across tools, reflecting superior annotation reliability
(Supplementary Fig. 12c).

We next evaluated the advantages of multimodal staining in cell
segmentation and transcript assignment. InHCC samples, hepatocytes
exhibited markedly irregular cellular morphologies relative to their
nuclei. Moreover, distinct morphological differences were observed
across cell types; in particular, hepatocytes displayed much less reg-
ular shapes compared to T cells (Supplementary Fig. 13a). Since
Xenium 5Kprovided paired nuclear and cell segmentation, we used its
results to evaluate the segmentations derived from different staining
modalities. The irregular morphology of hepatocytes was effectively
captured by the cell segmentation, as reflected by the lower solidity
and circularity, highlighting the advantage ofmultichannel staining for
improving cell segmentation accuracy (Supplementary Fig. 13b).
Importantly, this improved segmentation enhanced transcript
assignment accuracy: cell boundaries encompassed significantlymore
transcripts from identity-defining genes, such as cluster of
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differentiation markers (Supplementary Fig. 13c, d). Furthermore,
multimodal cell segmentation enabled the identification of multi-
nucleated cells, including neutrophils and hepatocytes, which were
poorly resolved using nucleus-only segmentation approaches (Sup-
plementary Fig. 13e–i). Together, these results underscore the added
value of multimodal cell segmentation in improving transcript locali-
zation and delineating complex or multinucleated cells.

Evaluation of ST cell type annotation accuracy against CODEX
To evaluate the cell type annotation accuracy across ST platforms, we
compared them with reference annotations derived from adjacent

CODEX-stained sections. In COAD samples, all ST platforms showed
strong concordance with CODEX in capturing tissue architecture and
cellular organization (Fig. 5d). To specifically assess immune cell
detection,wequantifiedCD4+ T cells, CD8+ T cells, andmacrophages in
both ST and CODEX datasets (Supplementary Fig. 14a). Platforms
demonstrating higher concordance with CODEX were considered
more effective in identifying these immune cell types. Overall, iST
platforms outperformed sST platforms in detecting lymphocytes,
which are characterized by small cell sizes (Supplementary Fig. 14a).
We also evaluated cell type annotation concordance by correlating
cell-type-specific counts across spatial grids between ST and adjacent
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CODEX data. Xenium 5K exhibited the highest overall concordance,
particularly for immune cells, while all platforms performed compar-
ably in detecting epithelial cells, which are abundant and broadly dis-
tributed (Fig. 5e, f).

We further assessed the ability of different ST platforms to
discriminate diverse immune cell populations in lymphocyte-
enriched regions. Lymphocyte aggregates were identified in COAD
sections for each ST platform (Fig. 5g), withmarker genes associated
with CD4+ T cells (CD4), CD8+ T cells (CD8A), B cells (MS4A1), plasma
cells (MZB1 and CD38) effectively captured (Supplementary Fig. 7a
and Supplementary Fig. 14b, c). Xenium 5K demonstrated high effi-
ciency and accuracy in identifying CD4+ T cells, CD8+ T cells, and B
cells (Fig. 5g). Although Visium HD FFPE exhibited high sensitivity
and specificity for markers such as CD4, CD8A, and MS4A1 (Supple-
mentary Fig. 7a), it demonstrated limited ability to distinguish CD4+

T cells, CD8+ T cells, and B cells from plasma cells (Fig. 5g and
Supplementary Fig. 14b, c). This discrepancy is likely due to bin-level
analyses resulting in mixed transcripts from neighboring cell types.
Beyond COAD, we evaluated endothelial cell distribution in HCC.
Both CosMx 6K and Xenium 5K successfully identified endothelial
cells distributed along blood vessels, in agreement with anatomical
expectations (Supplementary Fig. 14d). In OV,macrophage-enriched
regions were detected by all ST platforms, demonstrating
their robust capacity to identify macrophages (Supplementary
Fig. 14e).

Evaluation of spatial clustering and spatial pathway enrichment
Spatial clustering plays a key role in identifying functional cellular
aggregates within tissues. To evaluate the extent to which ST data can
recapitulate spatial patterns observed in CODEX, we performed
spatial clustering on both datasets using CellCharter44 (Fig. 6a and

Supplementary Fig. 15a, b, Methods). Overall, comparable clustering
concordance with CODEX was observed across ST platforms, with the
exception of Stereo-seq v1.3 inHCC, which exhibited low concordance
(Fig. 6b). This suggests that inter-platform differences in capturing
large-scale tissue organization were relatively minor, although
platform-specific limitationsmay affect performance in certain tissues.
Spatial clustering also enabled the identification of spatially distinct
cellular subtypes, potentially reflecting transcriptomic variations
associated with tissue architecture. All ST platforms successfully
identified malignant cells localized to either the tumor core or
boundary, with Visium HD FFPE and Xenium 5K delineating more
continuous tumor margins (Fig. 6c and Supplementary Fig. 15c).
Additionally, spatial clustering revealed distinct subsets of CD8+

T cells, those infiltrating the tumor versus those positioned at the
periphery, based on their spatial co-localization with cancer cells
(Supplementary Fig. 15d). This highlights the utility of spatial cluster-
ing in characterizing immune cell localization and heterogeneity
within the TME.

To evaluate each platform’s ability to resolve biologically mean-
ingful pathways, we examined the enrichment of functional pathways
across matched tissue regions. Three region types, including immune
cell-infiltrated areas, tumor regions, and normal epithelial regions,
were selected from anatomically aligned positions on consecutive
sections processed with Visium HD FFPE, CosMx 6K, and Xenium 5K
(Supplementary Fig. 16a). Given that reduced sensitivity and specificity
may limit the detection of region-specific gene expression, we first
examined differentially expressed genes (DEGs) between immune-
infiltrated and tumor regions, and between tumor and normal regions.
Xenium 5K identified the highest number and proportion of DEGs
across the three platforms, whereas CosMx 6K identified the fewest
(Supplementary Fig. 16b–e). While some DEGs overlapped across
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platforms, many were platform-specific (Supplementary Fig. 16d, e),
highlighting differences in gene detection sensitivity and coverage.

We next performed Gene Ontology (GO) pathway enrichment
analysis using these DEGs. In immune-infiltrated regions, Xenium 5K
uniquely prioritized immune-related pathways, including T cell acti-
vation and leukocyte-mediated cytotoxicity, whereas Visium HD FFPE
and CosMx 6K more frequently enriched for pathways related to
extracellular matrix organization (Supplementary Fig. 16f). In tumor
regions, Visium HD FFPE and Xenium 5K identified pathways asso-
ciatedwith cell division andproliferation,whileCosMx6Kenriched for
pathways associated with metabolisms (Supplementary Fig. 16g).
Across all comparisons, Xenium 5K detected the largest number of
significantly enriched pathways (Supplementary Fig. 16h, i). Although
some pathways were shared across platforms, each platform also
revealed unique enrichments (Supplementary Fig. 16j, k), under-
scoring their differing sensitivities and gene coverage profiles.

Discussion
In this study, we performed a comprehensive benchmarking of four
cutting-edge ST platforms—Stereo-seq v1.3, Visium HD FFPE, CosMx
6K, and Xenium 5K—using treatment-naïve human tumor tissues.
Compared to previous benchmarking efforts that primarily relied on
histologically homogeneous tissues, our study focused on tumor
samples characterized by high cellular heterogeneity, complex tissue
architecture, and spatially irregular gene expression, thereby offering
a more stringent and biologically relevant context. To ensure rigorous
evaluation, we integrated orthogonal references, including high-
resolution protein profiling via CODEX and matched scRNA-seq data.
Beyond standard technical metrics such as sensitivity and specificity,
we systematically evaluated downstream analytical capabilities,
including cell type annotation, spatial clustering, and pathway-level
enrichment, thereby establishing a comprehensive, multidimensional
framework for comparing ST platform performance.

At the technical level, both sST and iST platforms demonstrated
distinct strengths and limitations. Among the sST platforms, Visium
HD FFPE outperformed Stereo-seq v1.3 in transcript detection sensi-
tivity and specificity, likely due to its targeted transcript capture
strategy and reduced transcript diffusion. Within the iST platforms,
Xenium 5K exhibited stronger gene-wise correlations with scRNA-seq
and more effective background signal control than CosMx 6K, which
showed elevated signals for low-abundance genes. Notably, both
Xenium 5K and Visium HD FFPE exhibited higher spatial concordance
with CODEX-based protein maps, underscoring their spatial accuracy.
Beyond transcript-level assessments, we also benchmarked cell seg-
mentation performance. Xenium 5K achieved superior segmentation
accuracy, minimizing transcript spillover between adjacent cells and
enabling better resolution of single-cell boundaries. Importantly, it
also captured more irregular cell morphologies, reflecting the well-
established morphological heterogeneity among different cell types.

In downstream analyses, Xenium 5K demonstrated the highest
accuracy in cell type annotation across all platforms, as evidenced by
several key metrics. It achieved the greatest annotation consistency
across multiple computational tools, exhibited cleaner marker gene
expression, and showed the strongest concordance with adjacent
CODEX protein data. Furthermore, Xenium 5K effectively delineated
fine-grained spatial organization of specific cell types, such as immune
cells within TLS-like regions and endothelial cells lining vascular
structures. The use of multi-channel imaging enhanced annotation
accuracy by enabling more precise cell boundary delineation and
identification of multinucleated cells, a feature often missed by
nucleus-only segmentation strategies. This multimodal segmentation
approach improved transcript assignment to the correct cells, thereby
providing more accurate cellular transcriptomic profiles. In contrast,
Visium HD FFPE, while demonstrating high transcription detection
sensitivity and specificity, showed reduced cell type annotation due to

the absence of reliable single-cell segmentation. For spatial clustering,
all platforms successfully recapitulated large-scale tissue architecture.
However, only Visium HD FFPE and Xenium 5K accurately delineated
continuous tumor boundaries. In regional pathway enrichment ana-
lyses, Xenium 5K identified the highest number of differentially
expressed genes and pathways due to its higher sensitivity and
specificity.

Ourfindings provide practical guidance for selecting STplatforms
based on study objectives. For single-cell level analyses, iST platforms
are preferable due to their use of multichannel staining and full-cell
segmentation, which enable more accurate cell boundary delineation
and reduce transcript spillover. Their targeted capture strategies also
enhance the sensitivity and specificity of marker gene detection, sup-
porting cell state inference. Among the iST platforms, CosMx 6K was
more susceptible to background noise, which may lead to false
detection of low-abundance genes and reduce annotation fidelity. In
contrast, for spatial analyses focused on tissue-region level patterns,
sST platforms may be more suitable due to their broader gene cov-
erage, which improves sensitivity for pathway-level enrichment ana-
lyses. Lastly, for applications involving host–microbe interactions,
Stereo-seq v1.3 holds unique advantages due to its unbiased poly(A)-
based capture, which allows for the detection of both human and non-
human transcripts.

Looking ahead, each platform class faces distinct technical chal-
lenges. For iST technologies, expanding toward whole-transcriptome
coverage while maintaining high specificity and detection efficiency is
a critical frontier. However, optical crowding remains a limiting factor,
as larger gene panels may reduce detection efficiency due to signal
overlap45. Current strategies, such as reducing the number of probes
per gene and increasing imaging cycles, show promise but require
further innovations in probe design, codebook optimization, and the
elimination of background fluorescence to maintain specificity. For
sST platforms, improvements in spatial resolution, control of tran-
script diffusion, and accurate segmentation are needed to limit tran-
script leakage from neighboring cells. These may be addressed
through advanced chip engineering and integration of DNA-staining-
based segmentation methods. Importantly, permeabilization proto-
cols remain a key determinant of transcript diffusion. Optimizing
reagent formulations and incubation times can significantly reduce
leakage30. This consideration is especially critical for FFPE samples
relative to FF samples, as FFPE embedding can compromise RNA
integrity. The resulting RNA fragmentation increases the likelihood of
transcript leakage during the permeabilization process. Additionally,
protocols could be improved during fresh-frozen tissue preparation,
as slow freezing of tissues can induce ice crystal formation and
membrane disruption, exacerbating transcript diffusion artifacts.
Beyond these platform-specific considerations, broader technological
advances will shape the future of ST development as well. The devel-
opment of three-dimensional spatial transcriptomics for thick tissue
sections, relaxation of sample input constraints, progress in non-
destructive spatial profiling, and integrationwithmultiomicmodalities
will collectively expand the scope, accessibility, and impact of ST
technologies in both research and clinical settings.

Our study has several limitations that should be taken into
account. First, we focused on commercialized ST platformswith larger
gene panels, excluding those with smaller panels or limited commer-
cial availability, which may narrow the scope of our comparisons.
Second, CODEX was performed on adjacent tissue sections instead of
the original ST sections, which provided essential reference but also
introduced morphological discrepancies that may impact direct
comparisons across platforms. Additionally, because Stereo-seq v1.3
relies on fresh frozen sections, its comparison with FFPE tissues was
inherently constrained by structural differences associated with sam-
ple preparation methods. Third, our alignment and segmentation
analyses utilized commercial pipelines, representing standardized
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workflows commonly used by researchers but potentially missing
insights from custom computational optimizations. Lastly, as our
study exclusively used freshly collected samples, the generalizability
of our findings to archived or long-term stored samples remains
unclear, underscoring the need for further validation in a broader
range of sample types and conditions.

Despite these limitations, our benchmarking study provides a
comprehensive and biologically relevant evaluation of high-resolution
ST platforms within the context of complex tumor tissues. By lever-
aging uniform sample processing, orthogonal multimodal references,
and a multidimensional assessment framework, we offer practical
guidance for selecting ST platforms tailored to specific biological
questions, ranging from single-cell characterization to spatial pathway
analysis. Beyond informing platform selection, the curated datasets,
reference annotations, and evaluationmetrics established in this study
constitute valuable resources for the development, benchmarking,
and optimization of next-generation spatial technologies. To further
facilitate data exploration and reuse, we developed the SPATCHportal
(https://spatch.pku-genomics.org/), which enables interactive visuali-
zation of gene expression and annotated cell type distributions across
platforms and samples. The portal also provides access to both raw
and processed ST and proteomic datasets, transcript-level spatial
coordinate files, high-resolution histological images, multiplexed
immunofluorescence-stained morphology images, and segmentation
masks derived from both platform-specific pipelines and expert-
curated nuclear boundaries. Together, these publicly available
resources offer a valuable foundation for advancing spatial tran-
scriptomics modeling, methodological innovation, and biological
discovery.

Methods
Human sample collection and preprocessing
This study was approved by the Research and Biomedical Ethical
Committee of Peking University (IRB00001052-24061) and conducted
following pertinent ethical regulations. All patients provided informed
consent for collecting clinical information and tumor samples. All
protocols adhered to the Interim Measures for the Administration of
Human Genetic Resources, administered by the Ministry of Science
and Technology of China. Participants received no compensation for
their participation. Sex was self-reported by participants, and no sex-
or gender-related factors were incorporated into the study design or
data analysis. The tumor specimens were obtained from three patients
at the Chinese PLA General Hospital and Peking University People’s
Hospital, with each individual presenting a distinct cancer diagnosis:
COAD, HCC, and OV. Necrotic areas and regions adjacent to major
blood vessels were excluded during collection. Each tissue was further
evenly divided into three sections. Themiddle portion was submerged
in the MACS® Tissue Storage Solution (Miltenyi #130-100-008) and
further processed for scRNA-seq. One of the remaining sections was
fixed in a 10% neutral formalin fixing solution (Solarbio #G2161) for 24
to 48h before paraffin embedding. The other section was embedded
in 4 °C OCT compound (Sakura #4583), quickly frozen on dry ice, and
transferred to a –80 °C freezer for storage until further experimenta-
tion. The entireprocesswas completedwithin30min tominimizeRNA
degradation. Serial sections of FFPE samples were prepared at Peking
University and loaded onto platform-specific chips under the super-
vision of trained technicians for Visium HD FFPE, Xenium 5K, and
CosMx 6K. Sections adjacent to all ST sections were reserved for
subsequent CODEX profiling. The tissue samples were destroyed after
the analysis.

Stereo-seq v1.3 data generation
Stereo-seq v1.3 assay is compatible with OCT-embedded tissues and
H&E staining. Sample preparation and sectioning followed the Guide
for Fresh Frozen Samples on Stereo-seq Chip Slides (Document No.:

STUM-SP001). RNA quality was evaluated to determine whether to
proceed with the following experiments. Only samples with RIN
values ≥ 6 were accepted for further procedures. Cryosections were
cut at a thickness of 10 μm in a Leica CM1950 cryostat. H&E staining,
in situ reverse transcription, amplification, library construction, and
sequencing followed the User Manual of the Stereo-seq Tran-
scriptomics Set v1.3 (STOmics, #201ST13114 or 211ST13114). Tissue
sections were loaded onto the Stereo-seq chip (generated by BGI,
China; with a maximum size of 1 × 1 cm) and fixed in pre-cooled
methanol. H&E staining was performed prior to tissue permeabiliza-
tion. RNAwas released from the permeabilized tissue, captured by the
DNA nanoball (DNB), and subsequently underwent in situ reverse
transcription. Following reverse transcription, tissue sections were
removed to release complementary DNA (cDNA), which was purified
using the VAHTSTMDNAClean Beads (VAZYME#N411-02) and Stereo-
seq 16 Barcode Library Preparation Kit (STOmics, #101KL160 or
111KL160). For library construction, 100 ng of cDNA was utilized for
fragmentation and amplification. PCRproductswere purifiedusing the
VAHTSTM DNA Clean Beads. Ultimately, the purified PCR products
were used for DNB production, and the libraries were sequenced using
the MGI DNBSEQ-T7 sequencer.

Visium HD for FFPE data generation
Visium HD assay is compatible with FFPE-embedded tissues and H&E
staining. RNA quality of FFPE samples was assessed by calculating the
percentage of RNA fragments >200 nucleotides (DV200) extracted
from tissue sections. DAPI and H&E staining were also used to assess
tissue morphology before performing the Visium HD assay. Tissue
sections were cut at a thickness of 5 μm following the Visium HD FFPE
Tissue Preparation Handbook (CG000684, 10x Genomics), spread out
in RNA enzyme-free water at 42 °C, and loaded onto the slides pre-
pared in advance (Fisher Scientific #1255015). Subsequently, these
slides were air-dried at room temperature for 30min and baked at
42 °C for 3 h. The subsequent experiments were carried out after
drying overnight at room temperature.

Tissue sections were subjected to deparaffinization, H&E staining,
and imaging following the Visium HD FFPE Tissue Preparation Hand-
book (CG000684, 10xGenomics). Probe hybridization, probe ligation,
Visium HD slide preparation, probe release, extension, library con-
struction, and sequencing followed the Visium HD Spatial Gene
Expression Reagent Kits User Guide (CG000685, 10x Genomics). The
tissue sections were destained and decrosslinked after H&E staining.
The human whole transcriptome probe panel, consisting of about
three specific probes per target gene, was added to the tissue sections.
After hybridization, the Probe Ligation Enzyme (PN-2000425, 10x
Genomics) was added to establish connections between the probe
pairs hybridized to RNA, resulting in the formation of ligation pro-
ducts. The subsequent release and capture of these probes within the
6.5 × 6.5mm capture areas were facilitated by the Visium CytAssist
instrument following the User Guide. Treatment with RNase Enzyme
andPermEnzymedetached the single-stranded ligation products from
the tissue and directed them onto the Visium HD Slide for capture.
These ligation products were then elongated by adding the Spatial
Barcode, UMI, and partial Read1 primer. Subsequent elution and
amplification of the ligation products prepared them for indexing
through the sample index PCR. The final libraries were cleaned up by
SPRIselect. Sequencing was performed on an Illumina NovaSeq 6000
to obtain paired-end reads.

Xenium 5K data generation
Xenium 5K assay is compatible with FFPE-embedded tissues and H&E
staining. RNA quality of the tissue block was assessed by calculating
the percentage of RNA fragments > 200 nucleotides (DV200) extrac-
ted from tissue sections. DAPI and H&E staining were also used to
assess tissue morphology before performing the Xenium 5K assay.
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Tissue sections were cut at a thickness of 5μmfollowing the Xenium In
Situ for FFPE-Tissue Preparation Guide (CG000578, 10x Genomics),
spread out in RNA enzyme-free water at 42 °C, and attached to the
Xenium slides (PN-3000941, 10x Genomics) within the sample area
(with a maximum size of 10.45 × 22.45mm) without overlapping with
the surrounding fiducials. The slides were dried at room temperature
for 30min and baked at 42 °C for 3 h. The follow-up experiment was
carried out after drying overnight at room temperature.

After drying overnight, the Xenium slides were subjected to
deparaffinization and decrosslinking following the Xenium In Situ
Protocol for FFPE-Deparaffinization and Decrosslinking (CG000580,
10x Genomics). Priming hybridization, RNase treatment & polishing,
probe hybridization, probe ligation, amplification, cell segmentation
staining, autofluorescence quenching, and nuclear staining followed
the Xenium Prime In Situ Gene Expression with optional Cell Seg-
mentation Staining (CG000760, 10x Genomics). The Xenium Cell
Segmentation Staining Reagents (PN-1000661, 10x Genomics) were
used for membrane, cytoplasm and nuclear staining. The assay was
performed using the Xenium Prime 5K Human Pan Tissue & Pathways
Panel (PN-1000724, 10x Genomics), which targets 5,001 individual
human genes. After priming hybridization and RNase treatment &
polishing steps, the Xenium slides were incubatedwith probes at 50 °C
for 16-24h for probe hybridization and then washed with PBS-T. Then
the slides were subjected to probe ligation at 42 °C for 30min,
amplification enhancement at 4 °C for 2 h, and amplification at 30 °C
for 1.5 h. Following additional washing procedures, the slides under-
went cell segmentation staining, then treatment with an auto-
fluorescence suppressor and nuclear staining. The slides were loaded
onto Xenium Analyzer (PN-1000529, 10x Genomics) according to the
Xenium Analyzer User Guide (CG000584, 10x Genomics) and run for
about 90 h. The Xenium Onboard Analysis pipeline v.3.1.0 (10x
Genomics) was run directly on the instrument for imaging processing,
cell segmentation, image registration, decoding, deduplication, and
secondary analysis. After that, the slides were washed to perform post-
run H&E staining.

CosMx 6K data generation
CosMx 6K assay is compatible with FFPE-embedded tissues and H&E
staining. RNA quality of the tissue block was assessed by calculating
the percentage of RNA fragments >200nucleotides (DV200) extracted
from tissue sections. DAPI and H&E staining were also used to assess
tissue morphology before performing the CosMx 6K assay. Tissue
sections were cut at a thickness of 5 μm following the CosMx SMI
Manual Slide Preparation for RNA Assays (MAN-10184-02, NanoString
Technologies), spread out in RNase-free water at 42 °C, and attached
to the slides (CIITOTEST #188105) within the scan area (with a max-
imum size of 2.0 × 1.5 cm). The slides were dried at room temperature
for 30min and baked at 65 °C for 30min. The follow-up experiment
was carried out after drying overnight at room temperature.

Deparaffinization, target retrieval, protease digestion, blocking,
hybridization, stringent washing, blocking, nuclear and segmentation
markers staining, and imaging followed the CosMx SMI Manual Slide
Preparation for RNA Assays (MAN-10184-02, NanoString Technolo-
gies). Human 6K Discovery Panel, 6K-plex, RNA (#121500041, Nano-
String Technologies) was used. The tissue sections were
deparaffinized, subjected to target retrieval at 100 °C for 15min,
treated with protease for digestion at 40 °C for 30min, incubatedwith
applied fiducials for 5min, post-fixed, blocked, and incubated with the
human 6K Discovery Panel overnight. The slides were washed and
blocked, followed by nuclear staining. Then the sections were incu-
batedwithMarker StainMix (PanCK, CD45) andCell SegmentationMix
(CD298, B2M) using CosMxTM Human Universal Cell Segmentation Kit
(RNA) (121500020, NanoString Technologies). The slides werewashed
again and loaded onto the CosMx SMI system (cat #101000, S/N:
SMI_2307H0124) for UV bleaching, imaging acquisition, cycling

processing, and scanning according to the Instrument User Manual
(MAN-10161-05, NanoString Technologies). The raw images were sub-
sequently decoded using Atomx (v.1.3.2). Finally, the slides were
washed to perform post-run H&E staining.

CODEX data generation
Tissues embedded in FFPE were sliced, spread out in RNase-free water
at 42 °C, and loaded onto the slides (Fisher Scientific #1255015) within
the scan area (with a maximum size of 3.5 × 1.8 cm). The slides were
dried at room temperature for 30min and baked at 65 °C for 30min.
The follow-up experiment was carried out after baking overnight at
60 °C. A 16-plex commercial antibody panel was used to target 16
proteins. The sample preparation, tissue staining, and imaging fol-
lowed the PhenoCycler-Fusion User Guide_2.2.0 (PD-000011 REV M,
Akoya Biosciences). After overnight baking, the slides were subjected
to deparaffinization and antigen retrieval using a sodium citrate solu-
tion for 20min at 11.6PSI/110 °C. Subsequently, the slides were washed
using a hydration buffer (P/N 7000017, Akoya Biosciences) and incu-
bated in a staining buffer (P/N 7000017, Akoya Biosciences) at room
temperature for 20min. A mixture of antibodies, blocking solution,
and staining solutionwas prepared. The slides were incubatedwith the
staining mix at room temperature for 3 h. The antibody dilution ratio
was determined based on pre-tests, along with the cycle information
summarized in Supplementary Data 7. Following staining, the tissues
were sequentially fixedwith PFA, ice-coldmethanol, and a final fixative
solution. The slides werewashed, loaded onto the PhenoCycler-Fusion
instrument (PhenoCycler-Fusion 2.0), and imaged according to the
instrument’s instructions.

For the FF samples, cryosections were cut at a thickness of 10 μm
in a Leica CM1950 cryostat, loaded onto the slides (Fisher Scientific
#1255015) within the scan area (with a maximum size of 3.5 × 1.8 cm)
and stored at −80 °C before the experiment. The sample preparation,
tissue staining, and imaging followed the PhenoCycler-Fusion User
Guide_2.2.0 (PD-000011 REV M, Akoya Biosciences). The slides were
dried and warmed for 5min at room temperature, fixed in acetone for
10min, incubated with the hydration buffer (P/N 7000017, Akoya
Biosciences), fixed with 1.6% PFA for 10min, and finally balanced with
staining buffer (P/N 7000017, Akoya Biosciences) at room tempera-
ture for 20min. A mixture of antibodies, blocking solution, and
staining solution was prepared. Then the slides were incubated with
the staining mix at room temperature for 3 h. The antibody dilution
ratio was consistent with that used for FFPE samples. Following
staining, the tissues were sequentially fixed with PFA, ice-cold metha-
nol, and a final fixative solution. The slides were washed, loaded onto
the PhenoCycler-Fusion instrument (PhenoCycler-Fusion 2.0), and
imaged according to the instrument’s instructions.

scRNA-seq data generation
Single-cell suspensions from primary human tumor tissue were gen-
erated using the Tumor Dissociation Kit (Miltenyi Biotec, #130-095-
929). The proportion of viable cells exceeded 85% in all samples. The
single-cell suspension was processed with the Chromium Single Cell 3’
GEM, Library & Gel Bead Kit v3.1 (10x Genomics, PN-1000268) and
loaded onto a Chromium Single Cell Chip (Chromium Single Cell G
Chip Kit, 10x Genomics, PN-1000120) according to the manufacturer’s
instructions for co-encapsulation with barcoded Gel Beads. The cap-
tured cells were lysed, and the released RNA was barcoded through
reverse transcription in individual single-cell gel beads in the emulsion
(GEMS). In each droplet, cDNA was generated and amplified through
reverse transcription on a T100 PCR Thermal Cycler (Bio-Rad) at 53 °C
for 45min, followed by 85 °C for 5min and a hold at 4 °C. Then, cDNA
concentration and quality were assessed using a Qubit Fluorometer
(Thermo Scientific) and bioanalyzer 2100 (Agilent), respectively.
scRNA-seq libraries were then constructed and sequenced on the
Illumina platform according to the manufacturer’s introduction.
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Collection of gene sets
Cell membrane proteins, which span or embed within the plasma
membrane, facilitate communication between cells and the extra-
cellular environment. Both experimental and computational approa-
ches have been employed to identify and predict cell-surface
membrane proteins. However, each method has inherent limitations,
often resulting in incomplete coverage and false positives46–48. Among
the various resources available, we selected the latest and most com-
prehensive database related to cancer research49. Ligands, receptors,
cytokines, and transcription factors were also collected from pre-
viously published studies and databases50–54.

Data preprocessing
scRNA-seq data were processed with cellranger (v.7.0.0). Visium HD
FFPE data were processed with spaceranger (v.3.0.0). Stereo-seq v1.3
data were processed with SAW (v.8.0). GRCh38 was used as the
reference genome. For Xenium 5K, we retained the calls with Phred-
scaled quality scores higher than 20. The calls from CosMx 6K
underwent filtration based on the methodologies described in the
previous study24. The morphology staining images of all field of views
fromCosMx6Kwere stitchedusingnapari-cosmx (https://github.com/
Nanostring-Biostats/CosMx-Analysis-Scratch-Space). We performed
tissuemasking to remove the calls located outside the tissue using the
Python packageOpenCV (v.4.10.0) for both Xenium 5K and CosMx6K.
To enable a fair comparison, we binned the data from Stereo-seq v1.3,
CosMx 6K, and Xenium 5K at a resolution of 8 μm, and used the 8 μm
resolution output of Visium HD FFPE for basic metric evaluations.

Gene-wise expression correlation between ST and scRNA-
seq data
The total transcript count of each gene was log10-transformed, and
gene-wise correlations between ST and scRNA-seq expression profiles
were computed. For CosMx 6K, transcript calls were ranked according
to their probability of representing random signals. We then stepwise
extracted the top percentages of high-quality calls—specifically at 50%,
62.5%, 75%, and 87.5%—and assessed the gene-wise expression corre-
lations with scRNA-seq data.

Sequencing reads downsampling for Stereo-seq v1.3 and Visium
HD FFPE data
The --unmapped-fastq option was used in SAW to retain unmapped
reads for Stereo-seq v1.3. We selected ten regions characterized by a
highdensity of cancer cells in eachdataset basedonH&E staining. BAM
files were filtered to isolate the reads with valid UMI information. The
valid reads with spatial coordinates mapped to the ten regions were
downsampled to fixed proportions (20%, 40%, 60%, and 80%) using
the Python package pysam (v.0.22.1).

Evaluation of diffusion control for Stereo-seq v1.3 and Visium
HD FFPE data
To account for variability in sequencing depth, the total transcript
count for eachbinwasnormalizedby themean transcript count across
all bins. Diffusion distance was defined as the Euclidean distance from
eachbin locatedoutside the tissueboundary to its nearest neighboring
bin within the tissue, computed using the NearestNeighbors function
from the Pythonpackage scikit-learn (v.1.5.2).Given the larger chip size
of Stereo-seq v1.3 and its potential for long-range transcript diffusion,
we restricted our analysis to bins with diffusion distances shorter than
the maximum observed in Visium HD FFPE, thereby ensuring com-
parability across platforms.

Registration of images and alignment of spatial data
Wemanually annotated key landmarks on paired images and employed
the SimpleITK library (v.2.4.0) to achieve accurate registration. Specifi-
cally, the Similarity2DTransform, SetMetricAsMattesMutualInformation,

and sitkLinear functionswere utilized toperformautomated adjustment
after the initial transformation derived from paired landmarks. For the
alignmentof VisiumHDFFPE, CosMx6K, andXenium5Kdata,we set the
grayscale H&E image of Visium HD FFPE as the fixed reference and
registered the DAPI images of CosMx 6K and Xenium 5K to it. The
derived transformations were subsequently applied to map the CosMx
6K and Xenium 5K data onto the coordinate system of the Visium HD
FFPE data. For the alignment of ST data with adjacent CODEX data, the
grayscale H&E images of Stereo-seq v1.3 and Visium HD FFPE were used
as the fixed references. For CosMx 6K and Xenium 5K, the DAPI images
were used as the fixed references. The fixed references were rescaled to
match the resolution of CODEX, and the DAPI channel of CODEX was
registered to these references. The derived transformations were sub-
sequently applied to the remaining CODEX channels. To enable direct
comparisons across FFPE samples, we used the PythonpackageOpenCV
to extract tissue masks of each ST data based on the paired staining
images and intersected them to define the shared regions. A similar
approach was used to extract overlapping regions between ST data and
adjacent CODEX data.

Annotation of scRNA-seq data
Genes detected in fewer than 10 cells were excluded from the analysis.
Cells that did not fulfill the following criteria were removed:
1,000 ≤UMI ≤ 25,000, 500 ≤ Gene ≤ 5,000, and percentage of mito-
chondrial genes ≤ 10%. Putative doublets were identified and removed
using DoubletFinder55 (v.2.0.3). A two-round clustering strategy was
applied for cell type annotation using Seurat56 (v.5.1.0). In the first
round of clustering, the data were normalized and log-transformed to
the same scale. A set of 2000 highly variable genes was identified,
followed by scaling of the expression matrix. The top 30 principal
components (PCs) were identified to build a nearest-neighbor graph.
Clustering was performed using the shared nearest neighbor (SNN)
modularity optimization algorithm. We annotated each cluster based
on its expression of the following knownmarkers: B cell, CD79A, CD19,
and MS4A1; cDC1, XCR1 and CLEC9A; cDC2, CD1C and CLEC10A;
mregDC, LAMP3 and CCR7; pDC, LILRA4; macrophage, CD68, C1QC,
and SPP1; mast cell, KIT and TPSAB1; monocyte, FCN1; neutrophil,
CSF3R and AQP9; endothelial, VWF, CD34, CDH5, and PECAM1; fibro-
blast,ACTA2,COL1A2, and FAP; SMC,ACTA2andRGS5; NKcell, FCGR3A,
GZMA, and NCAM1; plasma cell, SDC1 and MZB1; CD4+ T cell, CD4,
CD3G, CD3D, and CD3E; CD8+ T cell, CD8A, CD8B, CD3G, CD3D, and
CD3E; Tprolif, MKI67, CD3G, CD3D, and CD3E; epithelial, EPCAM;
hepatocyte, ALB; kupffer cell, CD5L. The subtypes of T cells were
annotated after a second round of clustering using a similar approach.

Evaluation of segmentation results
Manual segmentation was conducted using the software Labelme
(v.5.5.0), where nuclear outlines were drawn manually based on DAPI
and H&E staining. Solidity was calculated as the ratio of the contour
area to its convexhull area, with higher values indicating convexity and
lower values suggesting concavity. Circularity measures how closely a
shape approximates an ideal circle, with a value of 1 corresponding to a
perfect circle and 0 indicating amore irregular shape. The aspect ratio
is the ratio of thewidth to the height of the bounding box that encloses
the contour, which describes the elongation of the shape, with values
greater than 1 indicating horizontal elongation and values less than 1
indicating vertical elongation. All metrics were calculated using the
Python library OpenCV.

Evaluation of the clustering of ST data based on the tran-
scriptomic profiles
Genes detected in fewer than 100 bins or cells were filtered out. Bin-
level data demonstrated lower quality than cell-level data due to the
retention of non-cellular regions that would be excluded after cell
segmentation. To address this, we applied a more stringent cutoff to
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filter out the low-quality bins. For Visium HD FFPE, bins with total
counts below the 20th percentile of all bins were excluded. For cell-
level data from Stereo-seq v1.3, CosMx 6K, and Xenium 5K, we filtered
out low-quality cells with total counts below the 10th percentile of all
cells. We further utilized the Python package scanpy (v.1.10.3) to per-
form clustering. Data were normalized and log-transformed to the
same scale. The top 10% of genes with the highest variance were
defined as highly variable genes. The top 30 principal components
were computed to build neighborhood graphs. Data were embedded
using Uniform Manifold Approximation and Projection (UMAP) for
further dimensionality reduction and visualization. Clustering was
performed using the Leiden algorithmwith default resolution settings.
The silhouette_score function from the Python package scikit-learn
was used to assess the clustering quality. This score evaluates cluster
separation by comparing intra-cluster and inter-cluster distances, with
a value approaching 1 indicating better-defined clusters.

Annotation of ST and CODEX data
The latest versions of SELINA39 (v.0.1), Celltypist40 (v.1.6.3), Spoint41

(v.1.1.7), Tangram42 (v.1.0.4), and TACCO43 (v.0.4.0.post1) were used to
transfer the annotations from scRNA-seq data to the filtered ST data.
We utilized two metrics to evaluate the annotation consistency across
different tools: (1) the proportion of cells that were consistently
annotated as the same cell type by different tools; (2) the entropy of
cell numbers detected by different tools for each cell type, which was
calculated with the following formula:

pi =
NiPn
i = 1Ni

ð1Þ

H = �
Xn

i = 1

pi log2ðpiÞ ð2Þ

where the number of cells detected by the i-th tool was denoted with
Ni and its ratio over all tools wasdenoted aspi. Each cell was assigned a
final cell type based on majority voting across annotation tools. For
cells with inconsistent annotations across five tools, the label from the
method showing the highest overall concordancewith other tools was
used to resolve conflicts.

For the CODEX data, we first performed nuclear segmentation
using StarDist38 (v.0.5.0) in QuPath57 (v.0.5.1). Cell boundaries were
defined by expanding the nuclear boundaries by 5 μm. CODEX data
exhibited prominent non-specific binding signals in tumor regions and
background signals across entire sections, which could bias cell
annotation if based solely on the average signal intensity. To address
this challenge, wemanually labeled hundreds of positive cells for each
marker and trained a k-nearest neighbor (KNN) classifier inQuPath. For
membrane markers, cells with fluorescent signals surrounding the
nuclei were defined as truly positive cells. For transcription factors,
cells with fluorescent signals confined exclusively to the nuclei were
defined as truly positive cells. Cells lacking any marker signal were
categorized as negative cases. We trained the classifier using various
signal statistics, including mean, median, minimum, maximum, and
standard deviation for signals in the nucleus, cytoplasm, membrane,
and the entire cell. This classifier was then applied to annotate the
remaining cells across the entire section.

Correlation between ST and CODEX data
We evaluated the concordance between CODEX-based cell annota-
tions and ST-derived features including: (1) individual marker gene
expression, (2) cell-type-specific gene signatures, and (3) cell type
abundance. To construct gene signatures, we selected the top 15 dif-
ferentially expressed genes for each cell type frommatched scRNA-seq
data, and retained those present in at least two tissue types. To

mitigate platform-specific genepanel differences,we intersected these
genes with common genes shared by all four ST platforms. The shared
regions of ST and CODEX data were binned at multiple spatial reso-
lutions (100, 200, 300, 400, and 500 μm). For each spatial bin, we
quantified ST-derived features at all three levels, alongside corre-
sponding cell counts inferred from CODEX. Pearson correlation coef-
ficients were then computed across all spatial bins to assess the spatial
concordance between the ST-derived features and CODEX annota-
tions. Smooth muscle cells (SMCs) and fibroblasts identified by the ST
platforms were both categorized as fibroblasts in alignment with
CODEX data, as they all express ACTA2, which encodes α-SMA—the
marker used to annotate fibroblasts in the CODEX data.

Spatial clustering of ST and CODEX data
CellCharter44 was used to perform spatial clustering on both ST and
CODEX data. CODEX enables accurate measurement of marker
protein distribution across major cell types, providing a reliable
reference for tissue architecture. Given this, we leveraged the opti-
mal number of clusters derived from CODEX data to guide the
clustering of ST data. For HCC, CD34, CD4, FOXP3, and HLA-A
channels were excluded from CODEX clustering due to quality
concerns. To investigate the clustering concordance between
CODEX and ST data, we computed cell proportions within spatial
grids (100, 200, 300, 400, and 500 μm) for each cluster and asses-
sed their correlations across all grids. For each CODEX cluster, we
identified the best-matching ST cluster based on the maximal cor-
relation, and the final metric was defined as the average correlation
across all matched cluster pairs.

Spatial pathway enrichment
To assess pathway-level differences across spatial regions, differen-
tially expressed genes (DEGs) were identified using the scanpy Python
package. Comparisons were made between immune-infiltrated versus
tumor regions and tumor versus normal epithelial regions. Genes with
adjusted p-value ≤0.05 and fold change ≥ 2 were defined as DEGs and
subsequently subjected to GO enrichment analysis (R package
clusterProfiler58, v.4.6.2). Pathways with adjusted p-value ≤0.05 were
retained for downstream comparisons across platforms.

Statistics & reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment. All H&E staining was per-
formedby the respective commercial providers corresponding to each
spatial transcriptomics platform.CODEXexperimentswerecarried out
by the Optical Imaging Core Facility, National Center for Protein Sci-
ences at Peking University. Due to the limited availability of samples
and experimental kits, each experiment was performed once and no
independent replicates were generated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data have been deposited in the Genome
Sequence Archive at the National Genomics Data Center under
accession number HRA011129. The image data have been deposited in
BioImage Archive under accession number S-BIAD1900. Both raw and
processed data are publicly accessible on the SPATCH website at
http://spatch.pku-genomics.org/. Beyond data download, this web
server offers tools for data visualization and exploration, enabling
users to interactively analyze the datasets. Source data are provided
with this paper.
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Code availability
The code utilized for data processing and analysis in this study is
publicly available on GitHub (https://github.com/zenglab-pku/
SPATCH)59.
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