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Advancing sleep health equity through deep
learning on large-scale nocturnal respiratory
signals

ZhongxuZhuang 1,12, BiaoXue1,12,QiangAn2,12, HuiChu1, YueZhang3, RuiChen4,
Jing Xu5, Ning Ding6, Xiaochuan Cui7, E. Wang 8, Meilin Wang 9, Junyi Xin10,
Xuan Yang1, Yan Xu1, Yaxian Li1, Chang-Hong Fu1, Xiaohua Zhu1,
Mugen Peng 11 & Hong Hong 1

Sleep disorders affect billions globally, yet diagnostic access remains limited
by healthcare resource constraints. Here, we develop a deep learning frame-
work that analyzes respiratory signals for remote sleep health monitoring,
trained on 15,785 nights of data across diverse populations. Our approach
achieves robust performance in four-stage sleep classification (82.13% accu-
racy on internal validation; 79.62% on external validation) and apnea-
hypopnea index estimation (intraclass correlation coefficients 0.90 and 0.94,
respectively). Through transfer learning, we adapt the model to radar-derived
respiratory signals, enabling contactless monitoring in home environments.
The framework demonstrates consistent performance across demographic
subgroups, supports real-time processing through self-supervised learning
techniques, and integrates with a remote sleep health management platform
for clinical deployment. This approach bridges critical gaps in sleep healthcare
accessibility, supporting population-level screening and monitoring, paving
the way for scalable sleep healthcare, and advancing sleep health equity.

Healthy sleep is essential for maintaining physical and mental well-
being, enhancing cognitive performance, and preventing chronic dis-
eases. However, sleep health remains underrepresented in public
health agendas1 and is often underestimated as a global health issue2.
Common sleep problems–such as insomnia, insufficient sleep, and
sleep-disordered breathing–are linked to poor mental health3,

cardiovascular conditions like hypertension, and respiratory diseases
such as chronic obstructive pulmonary disease (COPD)4. Despite its
importance, public awareness remains low. Surveys show that a
majority of individuals with sleep problems remain undiagnosed5 and
unaware of related health risks6. Modern lifestyles and urban stress
have also increased sleep issues among younger populations, with
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global adolescent prevalence of sleep disorders reaching nearly 10%1.
Beyond individual health, sleep-related productivity losses and long-
termcomplications pose a significant socioeconomicburden7. Current
sleep diagnostics still rely heavily on resource-intensive laboratory
assessments, highlighting the need for scalable, accessible solutions to
promote global sleep health equity.

The allocation of sleep medical resources is a key factor con-
tributing to the aforementioned challenges. Sleep centers and diag-
nostic facilities are often concentrated in urban areas, leaving
individuals in rural or underserved regions with limited access to
essential services8. For instance, only 2% of primary healthcare insti-
tutions in China offer sleep-related services9, mainly due to shortages
in specialized personnel (76%) and high equipment costs (70%).
Meanwhile, the current gold standard for sleep
evaluation–polysomnography (PSG)10–requires multi-channel record-
ings of electrophysiological and cardiorespiratory signals, making it
costly, complex, and unsuitable for long-term home monitoring.
Although home sleep apnea tests (HSAT) offer improved
accessibility11, even Type III devices require multiple contact-based
sensors12, compromising comfort and limiting user compliance.
Wearable devices such as smartwatches have gained attention for
home monitoring using electrocardiography (ECG)13,14 and photo-
plethysmography (PPG) signals14,15. However, sensor discomfort,
motion artifacts, battery limitations, and incomplete data remain sig-
nificant issues. Recently, ring oximeters and actigraphy-based devices
have been widely explored for sleep assessment, but challenges rela-
ted to sampling rates, battery life, and limited specificity continue to
restrict their clinical applicability. Moreover, although wearables may
induce less psychological stress than PSG, the repeated setup required
for multi-night use often leads to reduced compliance and data relia-
bility. These challenges underscore the need for both: (1) equitable
access to sleep care and (2) advanced, non-intrusive monitoring
technologies that ensure scalability, usability, and data reliability.

With the growing adoption of telemedicine, digital health tech-
nologies are revolutionizing the delivery of healthcare. While tele-
monitoring has proven effective in chronic disease management16

(e.g., cardiovascular conditions), remote sleep health management
remains underdeveloped. Integrating artificial intelligence and the
internet of things (IoT) with novel sensing modalities holds great
potential to enhance sleep disorder screening, personalized interven-
tions, and long-termmonitoring, extending beyond traditional clinical
boundaries. Among emerging technologies, radar-based non-contact
sensing offers a promising solution. These systems accurately capture
thoracoabdominal movement signals during sleep without requiring
physical contact, thereby eliminating the discomfort and compliance
issues associated with wearable devices and PSG. Their penetrability
and anti-interference capabilities enable natural sleep while main-
taining signal fidelity. When integrated into remote health platforms,
such radar systems can support continuous, unobtrusive sleep mon-
itoring and real-time data transmission. This approach advances sleep
healthcare delivery toward greater accessibility and equity, particu-
larly benefiting populations with limited access to specialized facilities
or long-term care services.

Respiratory activity is tightly coupled with sleep
neurophysiology17,18. During non-rapid eye movement (NREM) sleep,
respiration slows and becomes more regular due to parasympathetic
dominance, whereas rapid eye movement (REM) sleep features irre-
gular breathing drivenby sympathetic surges19–21. These patterns result
from the shift from wakefulness-driven to chemoreflex-driven control
during sleep, reducing CO2/O2 responsiveness and ventilatory drive22.
Recent evidence also highlights bidirectional interactions between
breathing and brain oscillations23,24, including hippocampal coordina-
tion of respiration-locked rhythms with memory-related sleep
spindles25. These distinctive respiratory signatures–arising from stage-
specific autonomic and neural regulation–support the physiological

plausibility of inferring sleep stages from thoracoabdominal move-
ment. Recent studies have demonstrated that respiratory signals cor-
relate strongly with sleep architecture26–28.

Radar-based sleep monitoring methods typically fall into two
categories: (1) shallow-feature extraction followedby classicalmachine
learning models29,30, and (2) deep learning pipelines that directly infer
sleep states from radar signals31–33. However,most existing studies rely
on limited datasets (fewer than 100 nights), and radar-specific sleep
datasets remain scarce, which restricts model generalizability and
clinical utility. Another limitation lies in the insufficient exploration of
the physiological mapping between radar-sensed thoracoabdominal
motion and sleep stages. Since many public PSG datasets34 include
thoracoabdominal motion signals that are broadly analogous to the
respiratory motion captured by radar sensors, though signal char-
acteristics may vary due to sensor modality and posture-related fac-
tors, leveraging these large-scale resources could help overcome radar
data scarcity and enhance transferability. Furthermore, current
research often treats sleep staging and sleep-disordered breathing
(SDB) analysis as separate tasks, despite their physiological inter-
dependence. A unified modeling approach would enable more com-
prehensive and clinically relevant monitoring, but remains
underexplored in radar-based studies. In summary, challenges in data
availability, signal interpretation, and task integration continue to limit
the clinical translation of radar-based sleepmonitoring. Bridging these
gaps requires leveraging large-scale datasets, clarifying physiological
mappings, and developingmulti-task frameworks. Fully leveraging the
diversity and breadth of public sleep datasets while integrating multi-
dimensional evaluation methods provides a potential solution to
address these challenges.

In this study, we present a high-precision, generalizable non-
contact sleep monitoring framework leveraging large-scale thor-
acoabdominal respiratory signals and deep learning. Our model
enables accurate sleep staging and apnea-hypopnea index (AHI) esti-
mation, and has been validated across both public and multi-center
clinical datasets, including 1103 nights from younger populations. We
employ a multitask adversarial learning strategy for sleep staging and
AHI estimation, and apply transfer learning to extend the framework to
radar-derived signals for contactless sleep assessment. Robustness is
further confirmed through subgroup analyses across age, sex, apnea
severity, and comorbidities. We further introduce a self-supervised
learning approach for real-time sleep staging, enabling efficient
deployment without sleep labels. Finally, we integrate themodel into a
remote sleep healthmanagement platform, supporting accessible and
scalable solutions for sleep disorder detection, management, and
evaluation. The contributions of this work are reflected in three
aspects: (1) a large-scale respiratory data-driven deep learning model
for sleep staging andAHI estimation; (2) radar-basednon-contact sleep
monitoring via transfer learning; and (3) an integrated platform
enabling scalable remote detection and management of sleep dis-
orders. Together, our work demonstrates the feasibility of respiratory-
based sleep monitoring, offering essential theoretical support and a
practical foundation for promoting sleep health equity.

Results
Datasets and model training
In our study, four public datasets from the National Sleep Research
Resource (NSRR)34, namely the Sleep Heart Health Study (SHHS)35, the
Multi-Ethnic Study of Atherosclerosis (MESA)36, the MrOS Sleep Study
(MrOS)37, and the Study of Osteoporotic Fractures (SOF)38 were
employed. Table 1 provides a summary of these datasets, including the
number of nights, age groups, male proportions, AHI distribution, and
disease conditions. Detailed descriptions of each dataset are pre-
sented in the Supplementary Notes. Although these public datasets
encompass individuals with varying degrees of SDB severity and both
sexes, they underrepresent individuals under 45. Meanwhile, recent

Article https://doi.org/10.1038/s41467-025-64340-y

Nature Communications |         (2025) 16:9334 2

www.nature.com/naturecommunications


studies have revealed a growing prevalence of SDB among younger
and middle-aged populations (18–45)39–42, with strong associations
with cardiovascular andmetabolic comorbidities43,44. From a technical
perspective, this age imbalance may limit model generalization. To
develop a universally applicable sleep assessment model, we pro-
spectively collected a multi-center clinical dataset covering over 1000
nights from younger adults (under 45 years), including both respira-
tory belt-derived respiratory signals (ClinSuZhou and ClinHuaiAn) and
radar-derived respiratory signals (ClinRadar).

We developed a deep-learning model named ResSleepNet for
automatic sleep staging and AHI estimation. Figure 1 illustrates the
model’s framework and the adversarial learning process on the inter-
nal dataset. Figure 2 offers a more detailed explanation of the model
training and inference process used in this study. Phase I encompasses
the pre-training process, during which we train the model on the
internal dataset by minimizing the losses for sleep staging and AHI
estimation while maximizing the loss for the domain discriminator. In
phase II, the trained model weights are frozen, and performance eva-
luation is carried out on the external dataset. For details on data pre-
processing and model training, validation, and testing, refer to the
Methods section.

Sleep staging and AHI prediction
Table 2 presents the model’s performance across different datasets,
including overall accuracy in sleep staging, the sensitivity of predic-
tions for each sleep stage, and the accuracy of AHI estimation. In the
internal test datasets, the sleep staging task attained the highest
average accuracy of 83.53% and Kappa of 0.73 in MrOS. Performance
was somewhat attenuated yet remained acceptable in SHHS (80.34%,
0.70), MESA (83.09%, 0.73), SOF (78.57%, 0.68), and ClinSuZhou
(81.72%, 0.71). In the external datasets, the ClinHuaiAn dataset
achieved an average accuracy of 79.62% and Kappa of 0.67, while the
radar dataset showed a decrease with an accuracy of 75.81% andKappa
of 0.62. Owing to differences in sensing methods, radar-based thor-
acoabdominalmotion signals can slightly differ from respiratory belts,
particularly during sleep posture changes. Although the frequency
remains consistent, signal amplitude may vary, resulting in reduced
performance when transferring a respiratory belt-based pre-trained
model to radar data. Nevertheless, radar monitoring in this study still
achieves comparable performance.

We systematically compared the correspondence between the
sleep stages predicted by ResSleepNet and the actual sleep stages.
Figure 3 and Supplementary Fig. 1 display the confusion matrices of
sleep staging for each dataset, while Supplementary Table 1 further
analyzes the sensitivity and specificity (as defined in Supplementary
Table 2) distribution of predictions for different sleep stages across
datasets. In the internal datasets, ResSleepNet performed satisfactorily

in recognizing wake, REM, and light sleep. However, its accuracy in
detecting deep sleep was relatively lower, with frequent mis-
classifications of light sleep. The reasons are: (1) as shown in Supple-
mentary Table 3, deep sleep makes up less than 15% of natural sleep,
significantly lower than light sleep; (2) the similarity in cardio-
pulmonary features between deep and light sleep stagesmight further
increase the difficulty of classification. To enhance the interpretability
of the model, we visualized the intermediate decision-making process
of the sleep staging prediction model in Supplementary Fig. 4. The
results indicate that the model’s focus differs noticeably across wake,
REM, and light/deep stages, though confusion tends to occur between
light and deep stages, consistent with the analysis presented earlier.
Additionally, the sensitivity for detecting deep sleep varies among
different datasets. For instance, it reaches 68.97% in SHHS but only
46.09% in MrOS. As shown in Supplementary Table 3, the proportion
of deep sleep throughout the night is a crucial factor influencing
detection performance. In MrOS, the proportion of deep sleep is
merely 6.14%, significantly lower than the 11.93% in SHHS. Other
datasets also exhibit this trend, where the detection performance for
deep sleep correlates with its proportion in total sleep time. However,
in ClinRadar, the sensitivity for the wake and REM stages decreased
significantly. The confusion matrix in Fig. 3(i) reveals that 21.26% of
wake and 28.23%of REMstagesweremisclassified as Light sleep,which
is higher than in the internal test sets and ClinHuaiAn. Despite the
ClinRadar dataset comprising over 200 nights of data, it remains
relatively small compared to other datasets, contributing to the overall
decline in accuracy.

In the AHI estimation task, the overall ICC of the internal test set
was 0.90. With the exception of the SOF dataset, all other internal
subsets achieved an ICC of 0.90 or higher, with ClinSuZhou attaining
the highest value of 0.92. For the external datasets, the ICC valueswere
0.94 and 0.87, respectively. The middle two columns of Fig. 3 exhibit
scatter plots and Bland-Altman plots that compare the true and pre-
dicted AHI values, demonstrating high consistency between the esti-
mated and annotated AHI values. Supplementary Table 4 further
analyzes other metrics used to evaluate AHI prediction performance
and the results across different internal subsets. According to Amer-
ican Academyof SleepMedicine (AASM) standards, the severity of SDB
is classified based on AHI values into normal (AHI < 5), mild (5 ≤
AHI < 15),moderate (15≤AHI < 30), and severe (AHI≥30).The four-class
classification accuracies were 65.08% for the internal test set, 75.47%
for ClinHuaiAn, and 63.80% for ClinRadar. The rightmost column of
Fig. 3 presents the confusion matrix for the four severity categories.
The results indicate that our model performs optimally in detecting
severe SDB, achieving an accuracy of 91.14% in the ClinHuaiAn dataset.
However, performance declines when identifying individuals with
normal or moderate severity. The accuracy for detecting individuals

Table 1 | Characteristics of the datasets used in this study

Dataset Nights Age (%) Male (%) AHI (%) Hypertension (%) LD+ (%) PD (%)

< 45 [45, 55) [55, 65) > =65 < 5 [5, 15) [15, 30) > =30

SHHS1* 5736 5.9 17.6 30.6 45.9 47.8 17.3 38.3 27.3 17.1 30.7 42.7 /

SHHS2* 2638 0.1 11.6 28.9 59.4 46.2 17.4 37.1 27.0 18.5 44.2 6.7 0.5

MrOS1* 2848 0.0 0.0 0.0 100.0 100.0 9.3 33.6 32.1 25.0 49.8 5.1 1.1

MrOS2* 999 0.0 0.0 0.0 100.0 100.0 10.0 31.4 31.5 27.0 52.9 / 1.6

MESA* 2015 0.0 0.1 36.7 63.2 46.3 10.4 30.5 29.5 29.6 / / /

SOF* 446 0.0 0.0 0.0 100.0 0.0 18.6 38.6 28.5 14.3 59.9 12.1 /

ClinSuZhou* 458 55.5 17.5 12.9 13.8 80.3 27.1 17.2 16.8 38.9 24.7 0.4 11.1

ClinHuaiAn# 424 56.1 21.9 14.9 6.8 86.8 11.3 16.3 16.5 55.9 27.1 / /

ClinRadar# 221 62.0 19.5 11.8 6.3 81.4 24.9 19.0 18.6 37.6 21.3 0.9 6.3

*Internal Dataset, #External Dataset.
+LD Lung diseases, including COPD chronic bronchitis, asthma, and emphysema. PD Parkinson’s Disease.
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with mild severity is the lowest, falling below 50% and dropping to
under 40% in external datasets (as shown in the rightmost column of
Fig. 3). Since the SOF dataset mainly consists of individuals with mild
SDB (as shown in Table 1), the ICC for AHI estimation in SOF is only

0.77. Furthermore, we evaluated the tolerance accuracy, which allows
a predicted severity level to differ from the true classification by no
more than one category. In the internal dataset, 98.12% of patients
were either correctly classified or off by just one severity level. The
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Fig. 1 | Overall framework. IoT-Enabled remote sleep health management fra-
mework. a Deployment scenarios, including remote rural areas, community hos-
pitals, and city hospitals. b Data acquisition using mmWave radar and data
transmission to the cloud server. c User interfaces for patients and doctors to
access sleep reports and manage treatments. Large-scale Datasets and the Pro-
posed ResSleepNet Model: d Data sources used for model development. e Multi-
task adversarial learning framework for sleep staging and AHI prediction. f Sleep

status assessment results, including sleep staging and analysis of sleep-disordered
breathing. Public Sleep Health Significance: g predicting disease risks associated
with sleep disorders, h formulating personalized treatment plans tailored to indi-
vidual patient needs, i managing chronic diseases influenced by sleep problems,
and (j) discovering novel digital biomarkers to support evidence-based medicine
and precision healthcare.

Article https://doi.org/10.1038/s41467-025-64340-y

Nature Communications |         (2025) 16:9334 4

www.nature.com/naturecommunications


tolerance accuracy was 99.29% for ClinHuaiAn and 92.31% for Clin-
Radar (Supplementary Table 4). In the 3030 nights of the internal test
set, only 2 nights were misclassified between the normal and severe
categories (Fig. 3d), while no such misclassifications occurred in the
two external datasets (Fig. 3h, l). This single-breathing-pathway-based
model maintains reliable SDB monitoring accuracy while significantly
enhancing patient comfort during sleep assessment.

To contextualize ourmodel’s performance, we compare it against
representative state-of-the-art (SOTA) HSAT approaches. As shown in
Supplementary Table 6, our framework achieves competitive perfor-
mance, benefiting from a larger dataset scale, robust model design,
and enhanced portability for real-world applications.

Ablation study. To evaluate the contribution of transfer learning, we
compared the performance of a model trained directly on radar-
derived respiratory signals with a model pretrained on large-scale
thoracoabdominal motion signals and subsequently fine-tuned on
radar data. As shown in Supplementary Table 5, pretraining led to a
14.2% absolute improvement in accuracy (from 61.6% to 75.8%) and a
notable increase in Cohen’s Kappa (from 0.37 to 0.62) for sleep sta-
ging. For AHI estimation, the ICC improved from -0.13 to 0.87, while
the MAE was reduced by more than half (from 22.97 to 8.80
events/hour).

These improvements arise because large-scale respiratory belt
datasets provide richer and more diverse respiratory patterns,
enabling the model to learn robust low- and mid-level temporal fea-
tures that transfer effectively to radar signals.Without this pretraining,
the radar-only model struggles to capture such variability due to the
relatively small radar dataset size. This two-stage strategy mitigates
overfitting to the smaller radar dataset and significantly enhances
cross-modality generalization, particularly for challenging sleep stages
such as Deep and REM, and the AHI estimation task.

Sleep parameters and clinical correlation analysis
Sleep parameters. We performed a difference analysis on key sleep
parameters, including total sleep time (TST), sleep efficiency (SE),
sleeponset latency (SOL),wake after sleeponset (WASO), aswell as the
proportions of light sleep, deep sleep, and REM sleep. Detailed defi-
nitions of these parameters are provided in Supplementary Table 2.
Figure 4a–g shows the violin plots of the differences in sleep para-
meters calculated from the true and predicted sleep labels. Each point
in these plots represents the monitoring result of one night. The text
above each violin plot indicates the correlation and P-value between
the true and predicted sleep parameters. For all sleep parameters, the
P-values are less than 0.0001, indicating strong statistical significance.
The actual and predicted values for TST, SE, SOL, WASO, and REM
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extractor FE( ⋅ ) first processes the input sleep signals, which extracts relevant
features. These features are then fed into two predictors: the AHI predictor FA( ⋅ ) to
assess the severity of sleep apnea, and the Sleep stage predictor FS( ⋅ ) to predict
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data sources, enhancing the model’s generalization capability. In Phase 2, the pre-
trained network (including the feature extractor, the AHI predictor, and the Sleep

stage predictor) is applied with frozen weights to respiratory belt-derived
respiratory signals (ClinHuaiAn) and fine-tuned for radar-derived respiratory sig-
nals (ClinRadar). In Phase 3, the model is employed for real-time sleep staging. The
input signals are divided into overnight signals and 5-minute segments. The over-
night signals are processed by the feature extractor and the sleep stage predictor
with frozen weights to generate pseudo-labels. These pseudo-labels, together with
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simplified sleep stage predictor is then used for real-time sleep stage prediction.
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sleep duration are highly consistent, with the corresponding error
density plots concentrated around zero. In contrast, there is a slight
deviation in the duration of light and deep sleep, and the error density
plots have a broader distribution. The larger range in the density plots
suggests misclassification between light and deep sleep stages, which
leads to reduced accuracy in parameter estimation.

In addition to traditional sleep parameters, we also evaluated the
model’s capability to assess sleep fragmentation. Figure 4h shows the
Kaplan-Meier survival curve of the actual average continuous sleep
duration in the internal dataset. Different colors represent specific SDB
severity levels. Each curve indicates the proportion of subjects within a
category who maintain continuous sleep beyond a certain duration.
The results show significant differences in survival curves across SDB
severity levels, with more severe SDB leading to increased sleep frag-
mentation. The predicted results in Fig. 4i closely follow this trend and
exhibit good consistency with the actual results in Fig. 4h. However,
due to the limited data volume, the Kaplan-Meier survival curves for
actual average continuous sleep duration in the two external datasets
show some deviation compared to those in the internal test set.

General clinical correlation analysis. To further illustrate the adapt-
ability of our method to different groups, we analyzed the correlation
between sleep staging accuracy and various general clinical informa-
tion, including sex, age, body habitus (BMI), and the severity of
sleep apnea.

Sex. We analyzed the relationship between single-night sleep staging
performance and sex. As shown in Supplementary Fig. 5a, d, in the
internal test set, which has the largest sample size and a relatively
balancedmale-to-female ratio, themodel’s performance formales and
females shows no significant difference, with similar performance
distributions. In ClinHuaiAn (86.8% male) and ClinRadar (82.0%male),
the performance distribution between males and females remains
close, with slight differences attributable to the sex imbalance. Overall,
the results indicate that the model’s performance does not differ
between males and females.

Age. As shown in Table 1, we divided the subjects into four age groups:
under 45, 45–55, 55–65, and over 65. Supplementary Fig. 6a, d show
that in the internal test set, the accuracy and Kappa values are higher
and more stable for participants under 45. As age increases, the
median accuracy and Kappa gradually decrease, and the range of their
distribution widens, indicating greater variability among older parti-
cipants. A similar but more pronounced trend is observed in the
external datasets (Supplementary Fig. 6b, e, c, f), with larger fluctua-
tions, particularly in the older age groups (above 55). This suggests
that the external datasets introduce additional variability, possibly due
to differences in population characteristics or data collection envir-
onments. Overall, the model’s performance declines in older partici-
pants, likely due to changes in sleep architecture and the presence of
comorbidities in older individuals, making accurate staging more
challenging.

Body habitus. To assess the model’s robustness against inter-
individual differences in body composition, we stratified participants
by body mass index (BMI) into four conventional categories: under-
weight (UW, BMI < 18.5), normal weight (NW, 18.5≤BMI < 25), over-
weight (OW, 25≤BMI < 30), and obese (OB, BMI≥30). As shown in
Supplementary Fig. 7 and Supplementary Fig. 8, themodel maintained
stable performance across all BMI categories and both sexes. Notably,
despite potential concerns that excess adipose tissue in individuals
with obesity could attenuate thoracoabdominal motion
signals–especially in radar-based sensing–the staging accuracy in the
obese group did not show significant degradation. These findings
suggest that our preprocessing strategies (e.g., signal normalization)Ta
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and model design contribute to mitigating variations introduced by
bodyhabitus, supporting reliable performance even in individualswith
elevated BMI.

Sleep Apnea. We categorized the subjects into four groups based on
their clinical AHI values: normal, mild, moderate, and severe SDB (as
shown in Table 1). Supplementary Fig. 9 presents the distribution of
sleep staging accuracy and Kappa across different datasets, indicating
no significant differences in model performance between healthy
subjects and patients with varying degrees of SDB. In reality, frequent
abnormal events such as sleep apnea can lead to repeated micro-
arousals and abnormal sleep structures. As the severity of SDB
increases, sleep fragmentation worsens (as shown in Fig. 4i), making
accurate sleep staging more challenging and placing higher demands
on model performance. Previous studies15,45 have also confirmed this.
However, our model’s performance did not decline with increasing
SDB severity. This can be attributed to the following reasons: Firstly,
we used a more extensive dataset, with a larger number of individuals
with SDB included in themodel training compared to previous studies;
Additionally, the introduction of the auxiliary task enhanced the
model’s ability to recognize sleep stages in patients with SDB.

Chronic comorbidities correlation analysis. Sleep is closely asso-
ciatedwith chronic cardiovascular diseases46, respiratorydiseases, and
PD. These conditions can have an impact on sleep quality and alter
respiratory signals,making accurate sleep stagingmore challenging. In

this study, we evaluated the model’s performance in the context of
three representative comorbidities involving the heart (hypertension),
lungs (lung diseases), and brain (PD).

The results in Supplementary Fig. 10 show that the model per-
forms similarly in subjects with and without hypertension. While
hypertension may not directly alter respiratory characteristics, recent
studies suggest that respiratory effort during sleep, commonly ele-
vated in obstructive sleep apnea (OSA), may serve as an essential
predictor of prevalent hypertension, potentially offering a novel bio-
marker for cardiovascular risk assessment. In contrast, the model’s
performance is lower in subjects with lung diseases (Supplementary
Fig. 11) than in healthy individuals. Lung diseases are expected to
influence respiratory signals through changes in pulmonarymechanics
and respiratory patterns, although the extent to which these changes
reshape sleep architecture remains to be fully investigated. From
another perspective, respiratory signals can serve as potential bio-
markers for identifying lung diseases, suggesting the possibility of
using respiratory signals for lung disease detection in future studies.
Supplementary Fig. 12 illustrates the impact of PD on the model’s
performance. The results indicate a significant decline in performance
among PD subjects. However, due to the severe imbalance in the
dataset’s ratio of PD to non-PD subjects, further in-depth research
focusing specifically on individuals with PD is needed to accurately
assess themodel’s performance in this population. Additionally, in the
external datasets, there is an issue of missing information regarding
the discussed disease categories. In the future, it will be necessary to

Fig. 3 | Performance evaluation of Four-class Sleep Staging, AHI estimation,
and SDB severity classification using respiratory belt-derived signals (Internal
Testset, ClinHuaiAn) and radar-derived signals (ClinRadar). a, e, i Sleep stage
confusion matrix, where the percentages indicate the proportion of correctly and
incorrectly classified instances for each stage, and thenumbers represent the actual

counts of these classifications. b, f, j AHI scatter plot with the middle line repre-
senting the equation y = x. c, g, kBland-Altmanplot for AHI with horizontal lines for
themean difference and the 95% limits of agreement. d, h, l SDB severity confusion
matrix. Source data are provided as a Source Data file.
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supplement the relevant data to further explore the relationship
between sleep and comorbidities.

Real-time sleep staging
To extend the utility of our framework to online applications, we fur-
ther evaluated its performance in real-time sleep staging via a self-
supervised learning strategy (Fig. 2, Phase 3). In our study, “real-time”
refers to the model’s ability to provide sleep stage predictions epoch-
by-epoch, meaning that each 30-second segment is analyzed imme-
diately after its completion, without access to future data. This real-
timecapability enables the early detection of potential sleepdisorders,
such as insomnia, and provides a foundation for timely and precise
medical interventions.

We evaluated real-time sleep staging performance across differ-
ent Historical Label Mapping Length (HLML) settings (1–5 minutes).
Table 3 presents the results from the ClinHuaiAn and ClinRadar data-
sets, displaying statistical data such as accuracy by organizing all
individuals’ predictions. From the perspective of model complexity,
the model’s MFLOPs exhibit an approximately linear increase with the
length of the input segments, which also leads to an increase in overall
training time. In terms of sleep staging accuracy, the detection accu-
racy for 3, 4, and 5-minute input segments in the ClinHuaiAn dataset is
higher than that for 1 or 2-minute segments. When the input length is
extended from 1 minute to 5 minutes, the sleep staging accuracy
improves by 1.29%, and the Kappa increases by 0.02. However, there is
no significant performance difference between input lengths from 1 to
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Fig. 4 | Performance evaluation of sleep parameters estimation.
a–g Comparison of sleep parameters (TST, SE, SOL, WASO, and proportions of
Light sleep, Deep sleep, and REM sleep) between the actual and predicted values
across the internal dataset (n = 3030 nights), ClinHuaiAn dataset (n = 424 nights),
andClinRadar dataset (n = 221 nights). Each violin plot shows the distribution of the
differences (prediction error) between the true and predicted values. The contour
of each violin plot indicates the kernel density of these differences, while the
horizontal line inside represents the median, the box bounds indicate the 25th and
75th percentiles, and the whiskers extend to the minimum and maximum values
within 1.5 times the interquartile range (IQR). The numerical values above each plot
represent the Pearson correlation coefficients between the actual and predicted

parameters, and the significance of the correlations is assessed using a two-tailed
Pearson correlation test with exact p-values. All n values refer to independent
nights of sleep recordings. Source data are provided as a Source Data file.
h–m Kaplan-Meier plots of the true and predicted average continuous sleep times
in the internal dataset (h, i), the ClinHuaiAndataset (j, k), and the ClinRadar dataset
(l, m). The vertical axis indicates the survival probability (proportion of subjects
with an average continuous sleep time greater than the duration shown on the
horizontal axis). Different colored curves represent subjects indistinct sleep apnea-
hypopnea severity categories (No OSA, Mild, Moderate, Severe). The shaded areas
surrounding each curve denote the 95% confidence intervals of the survival prob-
ability estimates.

Table 3 | Real-time sleep staging performance across different input segment durations

Dataset Segment Accuracy F1-score Kappa Sensitivity (%) Inference Time* MFLOPs* Training Time*

(%) Wake Light Deep REM / Sleep Period / Night

ClinHuaiAn 1 min 78.44 0.7423 0.6585 87.75 82.10 51.85 71.22 60.70ms 286.49 25.34s

2 min 78.97 0.7475 0.6666 87.62 82.67 50.54 73.97 61.51ms 545.46 30.54s

3 min 79.72 0.7584 0.6790 88.96 82.95 53.54 73.92 62.01ms 806.26 37.14s

4 min 79.75 0.7586 0.6792 88.79 83.06 53.51 73.99 62.36ms 1065.23 45.85s

5 min 79.73 0.7584 0.6789 88.72 83.06 53.51 73.99 62.46ms 1329.70 54.89s

ClinRadar ClinRadar 1 min 76.09 0.7164 0.6227 71.96 85.53 46.36 72.19 60.70ms 286.49 25.34s

2 min 76.30 0.7198 0.6263 72.50 85.45 47.39 72.21 61.51ms 545.46 30.54s

3 min 76.27 0.7196 0.6256 72.35 85.44 47.42 72.25 62.01ms 806.26 37.14s

4 min 76.26 0.7194 0.6251 72.13 85.49 47.44 72.28 62.36ms 1065.23 45.85s

5 min 76.19 0.7189 0.6240 72.09 85.34 47.49 72.29 62.46ms 1329.70 54.89s

Results are reported for respiratory belt-derived respiratory signals (ClinHuaiAn) and radar-derived respiratory signals (ClinRadar).
*Inference Time: The model inference time for a single sleep epoch (30 seconds).
*MFLOPsMillion Floating Point Operations, a measure of the computational complexity of a neural network.
*Training Time: Training duration of a single epoch when the model takes a whole night as input.
The model was trained on: GPU – A800-80GB, CPU – 14 vCPU Intel Xeon Gold 6348 @ 2.60GHz.
Inference time calculations were performed on: GPU – RTX 4090, CPU – 16 vCPU Intel Xeon Gold 6430.
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5 minutes, with an even smaller improvement observed in the Clin-
Radar dataset. These results indicate that the model performs con-
sistently across different input segment lengths, and this self-
supervised framework can achieve accurate real-time sleep stage
prediction with data as short as 1 minute.

To further illustrate the temporal performance, Supplementary
Fig. 13 compares the real-time sleep staging results with different input
durations, pseudo-labels generated from full-night signal input, and
PSG sleep labels. All of these methods effectively reflect the overall
sleep trend throughout the night. When more surrounding sleep
cycles are considered, the predictions from full-night input show
smoother results with fewer frequent transitions. In contrast, the real-
time results exhibit more frequent transitions due to the limitations of
input information, relying only on data up to the current state. Con-
sequently, balancing model complexity and detection accuracy is
essential in practical applications, requiring an appropriate input
segment length based on hardware capabilities. From the perspective
of showcasing optimal results, and given the sufficient hardware cap-
abilities in this study, we opted for 5 minutes as the input length for
real-time sleep staging. To demonstrate the performance of real-time
sleep staging, a representative example in a clinical environment is
provided in Supplementary Movie 2.

Remote sleep management
Framework overview. We developed a remote sleep management
platform, which facilitates efficient data transmission and user inter-
action, accommodating both historical analysis and real-time mon-
itoring. As shown in Fig. 5, the system initiates with a radar sensor
equipped with a Wi-Fi module that captures respiratory signals. These
data are transmitted to a Message Queuing Telemetry Transport
(MQTT) broker via the MQTT protocol, which serves as an inter-
mediary, forwarding the data to a cloud server for further processing
and storage. The cloud server, equipped with computational and sto-
rage capabilities, enables remote sleep healthmanagement. To ensure
flexible access, the platform supports dual communication protocols.
For accessing historical sleep data and analysis results, both clinician-
facing and patient-facing applications communicate with the cloud
server via Hypertext Transfer Protocol (HTTP) connections, allowing
users to request and retrieve stored information. For real-time mon-
itoring, the system establishes aWebSocket connectionwith the cloud
server, enabling continuous updates and low-latency data transmis-
sion to clinicians and patient-facing interfaces.

Model deployment. Our deployment process integrates TensorFlow-
basedmodels into the cloud server to support key analytical tasks such
as sleep staging, AHI estimation, and real-time sleep staging. These
models are containerized using Docker, enabling seamless deploy-
ment and scalability within the cloud environment. The deployed
models subscribe to incoming data streams from the MQTT broker,
process the data in real-time, and store the results in the server’s
database. To address the challenge of high concurrency, a load bal-
ancer is employed to distribute incoming requests across multiple
server instances. This approach supports horizontal scaling, allowing
the system to handle increased traffic by dynamically adding more
server instances as needed, ensuring stability and efficiency during
peak loads. This deployment strategy ensures efficient, accurate, and
continuous operation, enabling the platform to deliver timely and
reliable sleep health insights while allowing for easy updates and
optimizations to the models.

Representative case studies. In this part, we demonstrated the plat-
form’s capability to effectively detect,manage, and evaluate treatment
outcomes through representative case studies.

Case of insomnia. A female patient with a primary complaint of poor
sleep quality during the night is investigated in this case. Initial mon-
itoring by our platform on February 17, 2023, (Fig. 6a) confirmed sig-
nificant insomnia symptoms, characterized by fragmented sleep
patterns and reduced deep sleep and REM sleep. Based on the mon-
itoring results, the platform recommended that the patient seek
medical consultation. Following her visit to the hospital, the physician
prescribed medication. Subsequent monitoring on February 21, 2023,
revealed noticeable improvement, with reduced wakefulness and
increased deep sleep and REM stages. After continuing the treatment,
monitoring on April 06, 2023, showed significant improvement, with a
more consolidated sleep structure. In light of this progress, the phy-
sician recommended reducing the medication dosage. The summary
chart in Fig. 6a highlights the statistical changes across these stages,
confirming the effectiveness of the treatment in improving sleep
quality. These results underscore theplatform’s ability to identify sleep
issues and provide continuous feedback on treatment effectiveness,
enabling personalized adjustments to the patient’s treatment plan.

Case of severe sleep apnea. In another demonstration, our platform
effectively identifies and manages severe sleep disorders, as
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Fig. 5 | The architecture of the remote sleep management platform. The dia-
gram illustrates the end-to-end architecture of the platform, encompassing data
collection, processing, and distribution. It highlights the key components, includ-
ing radar sensors for non-contact data acquisition, the MQTT broker for efficient

data transmission, the cloud server for computation and storage, and the user
interfaces (clinician-facing and patient-facing) for accessing real-time and historical
sleep health insights.
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demonstrated by the case of a male patient from a remote area
(Fig. 6b). Using our deployed non-contact radar device, the system
detected severe sleep apnea symptoms and highly irregular sleep
rhythms on October 30, 2024, with an initial AHI of 56.73, indicating a
significant sleep disorder. Based on the monitoring data, the platform
recommended immediate medical attention. The patient traveled to
the sleep center of a Grade-A tertiary hospital in the city, where he was
diagnosed with severe SDB. Physicians prescribed continuous positive
airway pressure (CPAP) therapy. After CPAP treatment at home, the
patient’s sleep quality improved dramatically. Monitoring on Novem-
ber 19, 2024, revealed a markedly reduced AHI of 7.38 and significant
improvement in sleep architecture, including increaseddeep sleep and
REM stages. This case highlights the platform’s ability to detect severe
sleep disorders early, enabling timely intervention and supporting
effective treatment outcomes through continuous monitoring.

These case studies highlight the platform’s capability for precise
detection, personalized management, and comprehensive evaluation
of treatment outcomes. In the future, the platform aims to further
expand its functionality in the management of other sleep-related
chronic diseases while enhancing its real-time analysis capabilities.
Ultimately, with this platform, we aim to realize improving sleep health

for the general population and reduce disparities in global sleep
healthcare equity.

Discussion
This study focuses on the increasingly severe burden of sleep dis-
orders and the pressing demand for convenient, efficient, and accurate
sleep monitoring technologies in the context of limited medical
resources and a shortage of specialized professionals. Current sleep
medicine research primarily relies on specialized sleep centers and
equipment, with diagnostic procedures that are time-consuming and
labor-intensive, making it challenging to extend coverage to remote
and underdeveloped areas. This limitation objectively exacerbates
sleep health inequities. To address these challenges, we propose
ResSleepNet, a high-precision, high-comfort, and generalizable sleep
monitoring model based on large-scale thoracoabdominal motion
signals. This model is designed to enable non-contact, real-time, and
remotely accessible sleep management across a wider range of appli-
cation scenarios.

At the data level, we collectedover 1000nights of real-world sleep
data from multiple sleep centers, while integrating more than 10,000
nights of data from several public sleep datasets. Using the
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Fig. 6 | Sleep monitoring results demonstrating the platform’s capabilities in
detection, management, and treatment evaluation for sleep disorders. a A
patient with insomnia: Sleep stage predictions and parameters (TST, SE, WASO,
Deep sleep duration, and REM sleep duration) change for an insomnia patient at
three time points: before treatment, during treatment, and after treatment,

showing progressive improvements. Sourcedata are providedas a SourceDatafile.
b A patient with severe sleep apnea: Sleep stage predictions and AHI changes for a
severe sleep apnea patient before and during CPAP treatment, demonstrating
significant improvements in sleep structure and respiratory events.

Article https://doi.org/10.1038/s41467-025-64340-y

Nature Communications |         (2025) 16:9334 10

www.nature.com/naturecommunications


thoracoabdominal motion signal from radar and the respiratory belt,
we constructed a feature-rich, large-scale sleep dataset. At the tech-
nical level, we proposed an end-to-end, thoracoabdominal motion-
based universal sleep monitoring framework for sleep quality assess-
ment, encompassing full-night sleep staging and sleep parameter
estimation, and AHI estimation. Notably, we developed a real-time
sleep staging model based on self-supervised learning, achieving effi-
cient and accurate real-time sleep stage prediction using thor-
acoabdominalmotion signal segments as short as 1minutewithout the
need for labeled data. This approach not only overcomes the tradi-
tional reliance on post-processing of full-night data but also provides
feasibility for real-time sleep monitoring across diverse scenarios. At
the application level, we further enhanced the model’s adaptability to
radar-derived respiratory signals, providing a fully non-contact sleep
monitoring solution.

Additionally, we developed a remote sleepmanagement platform
capable of identifying and tracking various sleep disorders, such as
insomnia and obstructive sleep apnea, while also evaluating treatment
efficacy. Compared to portable ECG devices or smartwatches, the
proposed method offers enhanced comfort and enables continuous
monitoring in both professional sleep centers and daily home envir-
onments, providing a scalable technological foundation for improving
sleep health equity. Multidimensional evaluation results demonstrate
that the proposedmethod exhibits robust performance across diverse
populations, including individuals of different age groups, sexes, sleep
apnea severity levels, and comorbidities such as hypertension. Its high
concordance with expert-annotated PSG results further validates its
clinical applicability.

Our method is not intended to replace in-lab PSG fully, but rather
to serve as a complementary, low-cost, and scalable alternative for
home-based sleep testing and remote health monitoring. It is parti-
cularly suited for initial triage, longitudinal monitoring, and settings
with limited PSG access, where multi-night data and high-frequency
screening are clinically valuable. Through subgroup analysis, we also
demonstrated the robustness of our model across diverse popula-
tions, including individuals with obesity or chronic respiratory dis-
eases (e.g., hypertension, COPD), where respiratory mechanics may
differ. Together, these findings underscore the method’s real-world
utility in supporting sleep-related risk stratification and long-term
sleep health management. In support of broader clinical adoption,
growing evidence from randomized controlled trials (RCTs) has shown
that simplified home-based approaches–such as HSAT–can match or
even outperform traditional PSG in the diagnosis of OSA47,48, while
significantly reducing diagnostic delays and improving patient
adherence49. Moreover, early intervention based on suchmethods has
been linked to reduced cardiovascular risks and improved quality of
life50,51. Complementing these findings, our method’s high accuracy,
non-contact nature, and scalability make it well-suited for large-scale
deployment in primary care and under-resourced settings. From a
health economics perspective, prior studies have demonstrated that
HSAT-based screening can reduce costs by 40−60% relative to in-lab
PSG47,48,52. Our approach goes a step further by eliminating consum-
ables, reducing labor andmaintenance burdens, and enabling remote,
continuous monitoring. These features contribute to an economically
sustainable model of sleep care delivery that aligns with public health
priorities and promotes equitable access to diagnostic andmonitoring
resources.

Our study has several limitations. First, the model is developed
based solely on thoracoabdominal motion and does not incorporate
EEGor EMGsignals,which are essential forfine-grained sleep staging in
conventional PSG. As a result, classification performance in certain
transitional stages, such as deep sleep, may be suboptimal. None-
theless, the overall performance remains competitive with, and in
some cases surpasses, existing SOTA HSAT methods. Second, the
model is designed for risk-oriented AHI estimation rather than direct

classification of individual respiratory event subtypes (e.g., hypopnea
vs. apnea). Given the low inter-scorer agreement in manual subtype
annotations, this strategy avoids label ambiguity and enhances model
generalizability. Third, our validation was conducted under single-
subject PSG settings, which are standard in clinical practice; however,
model performance under multi-person or interference-prone envir-
onments has not been evaluated. Although prior radar-based studies
have demonstrated technical feasibility for multi-subject monitoring,
we emphasize that accurate and clinically applicable sleep assessment
benefits fromcontrolled, interference-free single-subject settings. This
aligns with PSG practice and supports our focus on precise individual-
level evaluation.

In the future, we plan to collect data from diverse regions and
populations, incorporating comprehensive symptom records and
comorbidity information to investigate inter-population differences
and the mechanisms underlying sleep-related comorbidities in depth.
Meanwhile, we plan to incorporate more non-contact sensors to
enhance the robustness and generalizability of the model across
diverse environments and populations. Moreover, the developed real-
time sleep staging capability could enable future applications in
closed-loop sleep modulation and personalized intervention, such as
providing auditory or light stimulation during slow-wave sleep defi-
ciency, or delivering early-stage feedback for abnormal sleep patterns.
These potential applications could further expand the clinical and
home-based utility of remote sleep monitoring systems. Long-term
continuous monitoring is also a key focus for the next phase, as it will
provide a solid foundation for a deeper understanding of the rela-
tionship between sleep patterns and chronic diseases, potentially
paving the way for early warning systems and improved chronic dis-
ease management. To support real-world deployment, we plan to
initiate prospective clinical trials and pursue regulatory approval (e.g.,
FDA 510(k), CE certification), with the goal of registering the proposed
framework as a certifiedmedical device. These efforts will help ensure
compliance with medical standards for safety and efficacy, facilitate
integration with existing hospital and home-based workflows, and
broaden clinical adoption. Finally, we aim to develop personalized
algorithms for “precision sleep management" tailored to individual
health conditions, advancing the integratedmanagement of sleep and
overall health. This endeavor aspires to contribute to the provision of
accessible and high-quality sleep healthcare services on a
broader scale.

Methods
Datasets and scoring rules
Demographic information, including age and sex, was harmonized by
the NSRR team to align with TOPMed and BioDataCatalyst standards,
with sex information derived from self-reported data or clinical
records in the original cohorts. For the clinical datasets, sex was
recorded in medical records at the time of PSG acquisition.

ClinHuaiAn & ClinSuZhou. The ClinHuaiAn dataset comprises PSG
records of 458 individuals aged 11 to 88. Meanwhile, the ClinSuZhou
dataset includes PSG records of 424 individuals aged 12 to 78. These
PSGs were recorded between 2021 and 2023 using a type I PSG. The
data were collected in the sleep laboratory at The Second Affiliated
Hospital of Soochow University in Jiangsu, China, and The Affiliated
HuaianNo.1 People’s Hospital of NanjingMedical University in Jiangsu,
China. The thoracic and abdominal signals were sampled at a fre-
quency of 32 or 128 Hz.

ClinRadar. The dataset consists of data from 221 individuals. These
data were collected in the sleep laboratory at The Second Affiliated
Hospital of Soochow University in Jiangsu, China, between 2022 and
2023.Wireless radar sensorswereplaced above the bed’s headboard in
patient rooms for sleepmonitoring. At the same time, individuals were
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monitoredusing aType I PSG. Thewireless radar sensors employed are
frequency-modulated continuous-wave (FMCW) radar sensor
BGT24MTR11 from Infineon Technologies AG. The key parameters of
the FMCW radar are as follows: it has an antenna configuration of one
transmitter and one receiver with a 4 × 2 patch, providing an antenna
gain of 12 dBi. It features anopening angleof 20∘by42∘, ensuring awide
field of view. The chirp signal starts at a frequency of 24.025 GHz and
stops at 24.225GHz, resulting in a bandwidth of 200MHz. Each chirp is
sampled 256 timeswithin 1.5ms. The radar operateswith one chirpper
frame and a frame interval of 25ms.

Scoring rules. The definitions of apnea and hypopnea events and the
computation of the reference AHI are homogeneous across datasets.
The AHI is defined as: (Apneas with no oxygen desaturation threshold
used and with or without arousal + hypopneas with > 30% flow
reduction and >= 3% oxygen desaturation or with arousal) / hour of
sleep fromPSG, consistentwith theAASM12 recommended rule. These
AHI variables are available on the NSRR website. We used the
ahi_a0h3a variable in SHHS, MESA, and SOF, and the poahi3a variable
in MrOS. Sleep staging annotations were based on 30-second epochs.
Specifically, SHHS used the Rechtschaffen and Kales (R&K) criteria53,
with stage labels including Wake, S1, S2, S3, S4, and REM. The MESA
applied the 2007 AASM rules54 with labels including Wake, N1, N2, N3,
N4, and REM. For MrOS and SOF datasets, while the exact scoring
guideline version was not explicitly specified, official scoring docu-
ments were provided, with stage labels corresponding to S1, S2, S3, S4,
and REM. All self-collected datasets (ClinSuZhou, ClinHuaiAn, and
ClinRadar) were scored using AASM Version 2.6 criteria55. Given the
heterogeneity in staging systems across datasets, we unified the labels
into four categories for model training and evaluation: 0 = Wake, 1 =
Light sleep (N1/S1 + N2/S2), 2 = Deep sleep (N3/S3 + N4/S4),
and 3 = REM.

Statistics & reproducibility
This study is solely focused on thoracoabdominal motion signals
across all datasets. Data from different sources exhibit varying sam-
pling frequencies. To facilitate the neural network training process, the
data from each night were standardized to the same length. Data
records were excluded if they met any of the following criteria: (1) the
full-night sleep labels contained undefined sleep stages; (2) sleep
period time (SPT) was less than 4 hours, which is defined as the
duration from the first sleep stage to the last sleep stage (see Sup-
plementary Table 2); (3) no clearAHI referencevaluewas available; and
(4) the absence of data from either the thoracic or abdominal motion
channels. Data from 15,140 nights from the SHHS, MESA, MrOS, SOF,
and ClinSuZhou datasets were combined to form one internal dataset.
Each subset was first split individually according to a ratio of 7:1:2
(training, validation, and testing), and the resulting splits were com-
bined to form the overall internal training, validation, and testing sets.
Data splitting was performed at the level of nights, ensuring that no
data from the same night appeared in both the training and
testing sets.

Duringmodel development, the internal test set was withheld and
only the training and validation sets were used for model training and
optimization. Additionally, the ClinHuaiAn dataset was retained as an
independent external test set and was not accessed during the model
development process. For the ClinRadar dataset, 4-fold cross-valida-
tion was performed, where each fold served as a held-out test set while
the remaining foldswereused forfine-tuning and validation,with strict
isolation of test folds to prevent information leakage. To ensure
unbiased evaluation, all test sets (internal test set, ClinHuaiAn, and the
held-out folds of ClinRadar) remained inaccessible to the researchers
until the model, hyperparameters, and thresholds were finalized. Sta-
tistical analyses, including Pearson correlation, ICC calculation, and
Bland-Altman plots, were conducted using Python (SciPy and

statsmodels packages). All tests were two-sided, and exact P values,
confidence intervals, and effect sizes are reported in the Supplemen-
tary Data.

Respiratory signal processing
Respiratory signal from radar. The radar-receiving antenna cap-
tures the wireless signal and is downconverted to quadrature In-
phase/Quadrature (I/Q) signals that are pre-processed by the
intermediate frequency (IF) amplifier before digitization. In prac-
tice, the baseband I/Q signal with direct current (DC) bias is:

IðtÞ= cos½θ+4πxðtÞ=λ+Δφ�+DCI

QðtÞ= sin½θ+4πxðtÞ=λ+Δφ�+DCQ
ð1Þ

where θ is the phase shift caused by the electromagnetic signal pro-
pagation distance, Δφ is the residual phase noise, x(t) is the motion
information of the target to be detected, λ is the wavelength of the
radar carrier wave, and DCI and DCQ are the DC offsets.

For extracting respiratory signals using radar, Constant False
Alarm Rate (CFAR) detection is performed on the product of the I/Q
signals in Equation (1) to identify the positionswhere bodymovements
occur. Subsequently, the stable data segments between the periods of
bodymovement are subjected to least-squares circle fitting to remove
the trend components from the I/Q signals. The detrended I/Q signals
are then demodulated using the arctangent function to obtain the
most primitive respiratory signal RadarRespi. To enhance signal quality,
we further apply signal-level fusion using maximal-ratio combining,
the principal component analysis (MRC-PCA)56, resulting in a denoised
and stable respiration waveform. The radar signal is subsequently fil-
tered, resampled, and standardized using the same pipeline described
below for the PSG-based signal. The full radar signal demodulation and
pre-processing workflow is illustrated in Fig. 7(a). To illustrate the
consistency between respiratory signals derived from the radar sensor
and those from the reference respiration belt, a representative
recording is provided in Supplementary Movie 1. Supplementary
Movie 3 further demonstrates the radar’s capability to capture
abnormal respiratory events in a home environment.

Respiratory belt signal from PSG. In PSG sleep studies, the respira-
tory signal Waverespi is obtained by directly superimposing the chest
belt signal with the abdominal belt signal and then filtering and
downsampling the respiratory signal. This summation follows the
classical dual-compartment model of respiratory inductance plethys-
mography (RIP)57, which demonstrates that the combined thor-
acoabdominal movements approximate respiratory effort.
Uncalibrated RIPsum has been widely adopted in sleep monitoring
applications58,59, in accordance with AASM guidelines. Low-pass filter-
ing is employed to remove high-frequency noise and prevent aliasing
during downsampling. The filter utilized is a zero-phase 8th-order low-
passChebyshev Type II, with a cutoff frequencyof 8Hz and a stopband
attenuation of 40 decibels. The filtered respiratory signal is subse-
quently downsampled to approximately 34.13 Hz using linear inter-
polation, reducing the computational and storage demands for deep
learning. We chose a sampling rate of 34.13̃ Hz because this results in
1024 samples per 30-second sleep window. By using a 2n number, we
can maintain full temporal alignment of data with the sleep-window
during pooling operations15. The signal is cleaned by truncating values
to three standard deviations and then normalized by subtracting the
mean and dividing by the standard deviation to obtain the final
respiratory signal. The complete respiratory signal pre-processing
pipeline, including radar and PSG inputs, is summarized in Fig. 7b.

Model based on MTAL
Overall architecture. As depicted in Supplementary Fig. 3, the model
first employs a feature extractor FE, which is composed of
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convolutional networks, to convert the overnight respiratory signal S
into a continuous feature vector X. This feature vector is then fed into
three parallel structures: the sleep stage predictor FS, the AHI esti-
mator FA, and the domain discriminator FD. These components
respectively predict the subject’s sleep stages, AHI values, and the
dataset ID from which the subject’s data originated.

Featureextracter. The FE extracts information F L
E fromeach individual

Sl, translating the high-dimensionality inputs into a lower-dimensional
space called an embedding Xl such that FE(S) ↦ X. It comprises two
parallel Convolutional Neural Network (CNN) branches: a long-range
branch and a short-range branch. The entire network takes respiratory
signals as input, which are initially fed into the two parallel CNN bran-
ches. The long-range branch consists of multiple one-dimensional
convolutional and pooling layers, with a kernel size of 9. It is primarily
used to extract long-range signal features. A Leaky ReLU activation
function and amax-pooling layer follow each convolutional layer. After
multi-level extraction, the output features are fixed. The short-range
branch first reshapes the data into different windows with a length of
30 seconds. The rest of the structure is similar to the long-range branch,
but with a kernel size of 3. The output features from the two branches
are fused by element-wise addition and then fed into a fully connected
layer for further processing and classification. This structural design
aims to combine long-range and short-range features, enhancing the
model’s ability to perceive features at different time scales, thereby
improving the overall model performance and accuracy.

Sleep stage predictor. The sleep stage predictor is composed of two
dilated convolution blocks and two Transformer encoders, which are
arranged alternately. The dilated convolution block contains six one-
dimensional dilated convolution layers with a kernel size of 7 and 128

channels. Each convolution layer has a different dilation rate: 1, 2, 4, 8,
16, and 32. Dilated convolutions can capture a broader temporal
context without increasing computational complexity. A Leaky ReLU
activation function follows each convolutional layer, and L2 regular-
ization is applied to prevent overfitting. Finally, this module includes a
Dropout layer for further regularization and uses residual connections
(Add) to sum the output with the input, thereby preserving the input
features. The Transformer encoder module is utilized to model long-
termdependencies in the signal. Each encoder comprises amulti-head
self-attentionmechanismand a feed-forwardneural network.Here, the
input dimension of the encoder is 1200, the output dimension is 128,
and it includes 4 attention heads. This module effectively captures
complex temporal correlation information. After being processed
through the two dilated convolution blocks and the Transformer
encoder modules, the features are sent to a one-dimensional con-
volutional layerwith a kernel size of 1 and4 channels, corresponding to
the predicted sleep stage categories. Finally, a Softmax activation
function generates the probability distribution for each sleep stage.
This architecture is designed to fully utilize the characteristics of
dilated convolutions to extract multi-scale temporal features, while
also leveraging the capabilities of the Transformer encoder to capture
long-termdependencies. This combination enhances the accuracy and
robustness of sleep stage predictions. Cross-entropy loss is employed
tomeasure thedifferencebetween thepredicted sleep stage labels and
the true labels. The cross-entropy loss function is defined as:

Lsleep = �
XN
i = 1

yS
i log ŷSi

� �
ð2Þ

where ySi is the true sleep label, ŷSi is the predicted sleep probability,
and N is the number of samples.
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Fig. 7 | Radar signal demodulation and respiratory signal pre-processing
workflow for sleep analysis. This figure illustrates the complete signal processing
pipeline prior to model input. a Radar Signal Demodulation: Raw radar recordings
undergo motion detection via CFAR to identify stable breathing segments. These
are demodulated using least-squares circle fitting and arctangent transformation,
followed by signal-level enhancement through MRC-PCA fusion to yield clean

respiratory waveforms. b Respiratory Signal Pre-processing: Both radar- and belt-
derived signals are processed using a shared pipeline that includes truncation to a
fixed duration, artifact removal, low-pass filtering, uniform resampling (34.13̃ Hz),
and z-score normalization. Sample outputs at key stages demonstrate signal
refinement and alignment with annotated sleep stages for downstream analysis.
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AHI estimator. The architecture of the AHI predictor consists of con-
volutional blocks and fully connected blocks. The convolutional block
includes four stacked dilated convolution blocks (StackedConv), each
using different dilation rates (1, 2, 3, 4) with the same convolution
kernel size of 9. Each dilated convolution block is composed of three
dilated convolution layers, a Batch Normalization layer, a MaxPooling
layer, and a Dropout layer. These convolutional blocks progressively
extract features and reduce the size of the feature maps. Finally, a
Flatten layer flattens the features into a one-dimensional vector, fol-
lowed by a Dense layer to extract high-level features. The fully con-
nected block comprises three fully connected layers, each followed by
a Batch Normalization layer, a Leaky ReLU activation function, and a
Dropout layer. The network gradually compresses the feature dimen-
sions through these three layers and ultimately outputs a single esti-
mated AHI value. Mean squared error (MSE) loss is applied tomeasure
the difference between the predicted AHI values and the true values.
The mean squared error loss function is defined as:

LAHI =
1
N

XN
i = 1

ŷ A
i � yA

i

� �2
ð3Þ

where yAi is the true value, ŷAi is the predicted value, and N is the
number of samples.

Domain discriminator. To improve generalization across diverse
datasets, we incorporate a domain discriminator into themodel as part
of an adversarial training framework. The domain discriminator is not
designed to infer data source identities (e.g., device type, demographic
origin) directly from raw signals, which are typically available through
metadata. Instead, its purpose is to reduce the influence of domain-
specific biases embedded in the physiological signal patterns them-
selves. This model architecture extracts deep features from the input
signals through multiple convolutional and pooling layers. The initial
convolution block utilizes 64 filters, with the number of filters pro-
gressively decreasing to 32, 16, and 8 in subsequent layers. This
reduction in filter count helps decrease computational complexity
while focusing on extracting essential information. Each convolutional
layer is followed by batch normalization and pooling operations to
ensure stability and reduce the size of the feature maps. After flat-
tening, the feature vector is fed into fully connected layers, sequen-
tially passing through layers with 128 and 64 units. The output layer
uses a Softmax activation function tomap the features to four domain
labels. This design enables themodel to performdomain classification
based on the characteristics of the input data and serve as a domain
classifier component in adversarial learning to minimize distribution
differences between domains. Cross-entropy loss is utilized to mea-
sure the difference between the predicted domain labels and the true
labels. The cross-entropy loss function is defined as:

Ldomain = �
XN
i = 1

yDi log ŷDi
� �

ð4Þ

where yDi is the true domain label, ŷDi is the predicted domain prob-
ability, and N is the number of samples.

Multi-task learning. During adversarial training, the feature extractor
and the domain discriminator are optimized via an adversarial learning
mechanism. The goal of the feature extractor is to generate features
that are not easily distinguishable by the domain discriminator.
Meanwhile, the domain discriminator attempts to distinguish features
from different datasets. This adversarial training helps the feature
extractor learn more generalizable features, thereby enhancing the
generalization performance of the sleep stage predictor and AHI
estimator across different datasets. Specifically, the optimization goal

of the model is to minimize the overall objective function V, which
includes maximizing the loss of the domain discriminator, while
minimizing the sleep staging loss and the AHI loss, i.e.,

minfFE , FS , FAgmaxfFDgV = Lsleep + η1LAHI � η2Ldomain ð5Þ

where η1 = 0.001 and η2 = 1 are the balancing factors, which have been
selected empirically in our experiments. In summary, this multitask
adversarial learning framework extracts features from the overnight
respiratory signal. It performs normal training with the sleep stage
predictor and AHI estimator. Additionally, it optimizes the domain
discriminator through adversarial training to reduce inter-dataset
variability. This ultimately leads to accurate sleep stage classification
and AHI estimation.

Performance measures. We adopted four metrics to evaluate the
performance of our method. These metrics can be defined as follows:
1. Accuracy: Calculated as the number of correctly classified sam-

ples divided by the total number of samples.

Accuracy =
PK

i = 1TPi

N
ð6Þ

where TPi denotes the number of correctly classified positive
examples of class i, N is the number of samples, K is the number
of classes.

2. Cohen’s Kappa: Measures the consistency of predictions and the
annotated labels to evaluate classification performance.

κ =
Accuracy� Pe

1� Pe
ð7Þ

where Pe =
PK

n= 1 Pn+ P +n, Pn+ is the proportion of category n
predicted by the model, while P+n is the proportion of category
n in the annotated label.

3. Sensitivity: Refers to the model’s ability to recognize positive
examples.

Sensitivityi =
TPi

TPi +FNi
ð8Þ

where FNi denotes the number of incorrectly classified negative
examples of class i.

4. Specificity: Refers to the model’s ability to recognize negative
examples.

Specificityi =
TNi

TNi +FPi
ð9Þ

where TNi denotes the number of correctly classified negative
examples of class i, where FPidenotes the number of incorrectly
classified positive examples of class i.

5. F1-score: Measures the overall balance between precision and
sensitivity, calculated as the macro-averaged F1 across all classes.

F1 =
1
K

XK
i = 1

F1i ð10Þ

where K is the number of classes.
6. Class-wise F1-score: Represents the harmonic mean of precision

and sensitivity for each class i.

F1i =
2 � TPi

2 � TPi +FPi +FNi
ð11Þ
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where TPi, FPi, and FNi denote the true positive, false positive,
and false negative counts for class i, respectively.

We also adopted six metrics to evaluate the performance of AHI
estimation.
1. Intraclass Correlation Coefficient (ICC):Measures the reliability of

measurements across observers.

ICC=
MSI �MSE

MSI + ðO� 1ÞMSE +O× MS0�MSE
n

ð12Þ

where O is the number of observers (two, in this case, the real
and predicted AHI), MSI is the instance mean square, MSE is the
mean square error, and MSO is the observer mean square.

2. Confidence intervals (CI): Provide a range for the truemean of the
population.

CI =M±Z ×ST ð13Þ

whereM is the average value of samples, Z is the corresponding
value found in the standard normal distribution table based on
the chosen confidence level, and ST is the standard deviation of
samples.

3. Mean Absolute Error (MAE): Quantifies the average difference
between predicted and actual values.

MAE=
1
N

XN
i = 1

∣ui � vi∣ ð14Þ

where N is the number of samples, ui is the real AHI value of the
ith sample, and vi is the predicted AHI value of the ith sample.

4. Root Mean Square Error (RMSE): Evaluates the square root of the
average squared differences between predicted and actual values.

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i = 1

ui � vi
� �2

vuut ð15Þ

where N is the number of samples, ui is the real AHI value of the
ith sample, and vi is the predicted AHI value of the ith sample.

5. Pearson correlation: Assesses the linear relationship between
predicted and actual values.

Pearson correlation =

PN
i= 1 ui � �u

� �
vi � �v
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1 ui � �u

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i= 1 vi � �v

� �2q ð16Þ

where N is the number of samples, ui is the real AHI value of the
ith sample, �u is the average of all real AHI values, vi is the pre-
dicted AHI value of the ith sample, and �v is the average of all
predicted AHI values.

6. R2: Indicates the proportion of variance in actual values explained
by predicted values.

R2 = 1�
PN

i = 1 ui � vi
� �2

PN
i = 1 ui � �u

� �2 ð17Þ

where N is the number of samples, ui is the real AHI value of the
ith sample, and vi is the predicted AHI value of the ith sample.

Real-time sleep staging architecture
Overviewof real-time sleep staging framework. The architecture for
real-time sleep staging is shown in Fig. 2 (Phase 3). During training, the
full-night respiratory signals are first passed through a pretrained and
fixed feature extractor and sleep stage predictor to generate pseudo-

labels. These pseudo-labels, together with short-segment respiratory
inputs, are then used to fine-tune a lightweight sleep stage predictor
(Supplementary Fig. 3b) for real-time inference.

Context window design. To support real-time predictions, only pre-
ceding segments are used for each epoch prediction, defined as HLML.
Following previous literature60–63, HLML values ranging from 1 to
5 minutes were explored to assess the trade-off between context
window length and model performance. The model’s computational
complexity (MFLOPs) grows approximately linearly with input
duration.

Training Strategy. In the training process, we minimized the cross-
entropy loss between the predicted sleep stage probabilities and the
generated pseudo-labels over the dataset. This strategy enabled the
real-time sleep stage predictor to efficiently learn classification cap-
abilities without relying on manually labeled data.

Ethics statement
This study complies with all relevant ethical regulations and was
approved by the Institutional Review Board of Xiangya Hospital,
Central South University (IRB No. 201909818). All participants pro-
vided written informed consent prior to data collection. All partici-
pants volunteered for the project and did not receive any additional
compensation. Detailed information on ethical approval and consent
procedures is provided in the Supplementary Notes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The SHHS, MrOS, MESA, and SOF datasets used in this study are
publicly available from the National Sleep Research Resource: SHHS,
MrOS (https://sleepdata.org/datasets/mros), MESA, and SOF. The
ClinSuZhou, ClinHuaiAn, and ClinRadar datasets contain sensitive
clinical information and are available under restricted access due to
institutional regulations and patient privacy considerations. To pro-
mote reproducibility, a small de-identified sample of clinical data is
available in our GitHub repository (https://github.com/zhuangzx1127/
ResSleepNet) for demonstration purposes. Access to the full Clin-
SuZhou, ClinHuaiAn, or ClinRadar datasets can be requested for non-
commercial academic research by contacting the corresponding
author. Requests will be subject to institutional and ethical review, and
approved users must sign a data use agreement. Access is granted to
qualified researchers and is typically processed within 60 days. Source
data supporting the plots and statistical analyses in the main figures
are provided in the Source Data file accompanying this paper. Source
data are provided with this paper.

Code availability
The source code and pre-trained model weights for ResSleepNet are
publicly available at our GitHub repository: https://github.com/
zhuangzx1127/ResSleepNet. The repository includes the model archi-
tecture, inference pipeline, and testing scripts, enabling direct repro-
duction of the reported results. The training code and additional
utilities are available for non-commercial academic use upon request,
subject to a formal code usage agreement and compliance with insti-
tutional data governance policies. All released code is distributed
under the MIT License.
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