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Earthquakes can severely disrupt healthcare access, especially in dense cities.
Here, we provide a comprehensive assessment of how a magnitude 7.25
earthquake on the Hayward Fault would impact access to acute care hospitals
in the San Francisco Bay Area. By integrating seismic hazard with hospital and
transportation infrastructure’s vulnerability and connectivity data, we analyze
76 hospitals (426 buildings with 16,639 beds) and 5163 bridges within a vast
network of ~1.5 million edges and ~0.5 million nodes. We leverage the rich data
to formulate a coupled risk-network model to quantify simultaneous failures
and cascading disruptions across the healthcare and transportation systems.
Our results revealed that hospital bed capacity could drop to 51%, with Ala-
meda County retaining only 20%. Widespread transportation failures further
restrict access, increasing regional travel times by 177% and exceeding 1000%
in parts of East Bay, potentially fully isolating a hospital and an entire urban
community. These findings underscore the urgent need for resilient health-
care and transportation infrastructure to mitigate life-threatening disruptions

following major earthquakes.

Earthquakes wield the power to severely disrupt healthcare systems,
placing vulnerable populations at significant risk. In the 2023 M 7.8
Tirkiye earthquake, more than 50 hospitals were damaged, leaving
tens of thousands without access to medical care’ In other major
earthquakes—such as 2005 Pakistan, 2010 Haiti, 2008 China, 2011
Japan, and 2023 Tiirkiye—thousands of injured individuals experienced
worsening conditions, sometimes leading to fatal outcomes, due to
delays in receiving medical attention®'°. Healthcare disruptions can
persist long after the disaster: following the 2003 Bam earthquake in
Iran, access to critical services like dialysis remained limited for up to
five years'%,

Transportation failures further compound these healthcare dis-
ruptions. The 2008 Wenchuan earthquake in China and the 2010 Haiti
earthquake demonstrated how disrupted transportation networks

delayed or prevented access to emergency medical care” ™. In the U.S.,
the 1989 M 6.9 Loma Prieta earthquake damaged 91 state highway
bridges and forced 13 closures, severely disrupting hospital access
across the Bay Area.

Even moderate earthquakes in the U.S. have led to critical
healthcare system failures, prompting major policy reforms. The 1971
M 6.6 San Fernando Earthquake caused the structural collapse of two
major hospitals in the San Fernando Valley—most notably the Veterans
Administration Hospital, where more than 40 people died, and Olive
View Medical Center—alongside damage to other medical buildings'.
This prompted the Alfred E. Alquist Hospital Seismic Safety Act of 1973,
mandating that hospitals remain functional after disasters—but
applying only to new construction. In 1994, the M 6.7 Northridge
Earthquake forced evacuations at eight acute care hospitals, and
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rendered twelve pre-Alquist hospital buildings unsafe” ™. Though
newer hospitals experienced less structural damage, non-structural
failures were still extensive. These events led to Senate Bill 1953,
requiring seismic retrofits of acute care hospitals by 2030%°”. Yet,
many hospitals face financial barriers to meeting these mandates *.

Past research has examined hospital seismic risk primarily at the
building scale. Studies have used structural engineering methods,
fault-tree analyses, and performance-based assessments to evaluate
damage in isolated facilities” . Others have used flow models and
discrete-event simulations to explore patient care delays and medical
bottlenecks in single-hospital scenarios”*°. While valuable, these
studies often overlook how failures can propagate across urban
systems.

In parallel, a growing body of work has started to model access to
hospital services at the regional scale. Studies in Lima, Peru®*, and
Butte County, California®, have shown that even small reductions in
overall healthcare capacity can significantly affect local access to care.
More recent efforts have begun to jointly consider disruptions to both
healthcare and transportation systems, e.g., in Istanbul, Tiirkiye*, and
in a synthetic medium-sized city in China®. We contribute to this
growing literature by modeling these compounding effects at scale
across the San Francisco Bay Area using detailed, real-world datasets
on hospital and bridge infrastructure.

Recent earthquakes in Chile, New Zealand, and Japan have also
underscored the importance of treating hospitals as part of broader
interdependent systems®***~°. Failures at one facility can cascade
across a regional network—overwhelming nearby hospitals, increasing
patient travel distances, and worsening health outcomes. To support
resilience planning across large metropolitan areas, there is a need for
region-wide models grounded in real exposure data that capture
operational interdependencies between healthcare and transportation
infrastructure*®*2, Developing such models remains challenging due
to limited data, computational demands, and regional variation in
infrastructure.

In this work, we evaluate post-earthquake healthcare access
across the entire San Francisco Bay Area by simulating joint disrup-
tions in healthcare and transportation systems. We integrate seismic
risk models with regional-scale network analysis using publicly avail-
able data on 426 hospital buildings and 5163 bridges across a trans-
portation network comprising approximately 1.5 million edges and 0.5
million nodes. Our study contributes to the growing field of integrated
disaster risk modeling by providing one of the most extensive simu-
lations to date of interdependent failures affecting healthcare access
after an earthquake. Although grounded in the San Francisco Bay Area,
our study highlights systemic barriers to accessing healthcare after
earthquakes under conditions common to many dense urban regions—
such as high seismic risk, aging infrastructure, complex emergency
response systems, and population disparities. These findings under-
score the need for integrated planning approaches that account for
infrastructure interdependencies and can inform resilience policy in
similarly exposed metropolitan areas.

Results

The Bay Area is home to more than 7M people in Northern California,
and as a major city, it has a large demand for healthcare. The region’s
76 acute care hospitals provide critical inpatient care and specialized
medical services for surgery, acute conditions, and injuries, making
them essential for disaster response.

Much of the Bay Area’s healthcare infrastructure faces significant
seismic risks due to proximity to major active faults. Most hospitals lie
near the San Andreas and the Hayward Fault, where major earthquakes
(>7.0) can occur (Fig.1). The Laguna Honda Hospital and Rehabilitation
Center and the University of California, San Francisco (UCSF) Medical
Center are the largest facilities, with 780 and 580 beds. Both are
located in San Francisco, less than 2 km from each other, highlighting

the concentration of critical medical resources in geographically small
areas. The three zip codes with the most beds are Palo Alto, San
Francisco (where the two largest hospitals are), and San Jose, with 1410,
1360, and 932 beds, respectively.

Acute Care Vulnerability in the San Francisco Bay

We found that a significant part of the acute care portfolio is seismi-
cally vulnerable due to structural or non-structural deficiencies (Fig. 1).
To quantify these vulnerabilities, we compiled information from 426
buildings belonging to the 76 acute care hospitals in the Bay Area,
including structural typologies, year of construction, number of stor-
ies, and seismic vulnerability ratings®****. Supplementary Note 1 and
Supplementary Fig. 1 describe and summarize the hospitals’ years of
construction, structural typologies, and the number of stories. The
Methods section establishes how to use this information to model
seismic vulnerability, as these building features indicate buildings’
dynamic properties, strength, and ductility. In this paper, we used the
Structural Performance Categories (SPC) and Non-structural Perfor-
mance Categories (NPC), established and reported by California’s
Department of Health Care Access and Information (HCAI), to char-
acterize structural and non-structural deficiencies®. Each hospital
building receives vulnerability ratings (SPC or NPC) ranging from1to 5,
from the most to the least vulnerable (see full descriptions in HCAI
documentation®).

Structural vulnerabilities are pronounced across the portfolio.
(Fig. 1). Sixteen (4%) hospital buildings have an SPC of 1. All these
buildings, constructed before 1974, face a higher collapse risk due to
earthquakes than regular modern buildings (e.g., those designed for
life safety in 475-year return period events)*. None of these buildings
were supposed to provide acute care services by 2020. An additional
87 (20%) hospital buildings have an SPC of 2; of these, 65 were built
before 1974 and 20 between 1974 and 1994. SPC-2 buildings meet pre-
1973 standards for regular buildings but not those for hospitals,
requiring upgrading by 2030*. Only buildings rated SPC-3 or above
may operate as acute care facilities after this deadline. Only buildings
rated SPC-3 or above may operate as acute care facilities after this
deadline. Buildings with an SPC-5 rating—163 buildings (38%), pre-
dominantly constructed after 1994—meet essential-facility standards
under modern codes*’; thus, they can remain operational immediately
after 475-year return period events.

Non-structural vulnerabilities are even more widespread. Over
half of the buildings (220, 52%) have an NPC rating of 2 or lower, with
most constructed before 1994 (Fig. 1). NPC-2 buildings have anchorage
and bracing only for limited components, typically for basic building
access, and were mandated to be upgraded by 2002 to support acute
care services. Buildings rated NPC-4 (131 buildings, predominantly
built after 1994) have comprehensive anchorage and bracing for all
non-structural components, meeting the standard required for acute
care facilities after 2030. Only two buildings currently meet the strin-
gent NPC-5 criteria, requiring additional onsite provisions for con-
tinuous 72-hour acute care operations. Even facilities meeting modern
structural codes may not attain an NPC-5 rating due to the presence of
vulnerable external resources, such as water tanks, necessary for sus-
tained hospital operations during emergencies.

Earthquake Scenario and Projected Building Damage
We studied an earthquake scenario of M 7.25 on the Hayward Fault in
East Bay (Fig. 2), a fault that has accumulated energy for over more
than a century. Its last major earthquake (M 6.8, 1868) caused exten-
sive damage across the region. Our selected scenario magnitude is
based on an established reference case widely used in resilience policy-
making for the Bay Area*.

We modeled the rupture geometry (see Methods) and found that
10 acute care hospitals with 2167 beds (13% of the Bay’s total) are within
just 5 km of the projected rupture. Our shaking intensity estimates
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Fig. 1| Seismic hazard and hospital exposure and vulnerability in the San
Francisco Bay Area, California. The Bay Area’s county names are also included for
reference. a Acute care hospital inventory and all major active faults. Map data from
https://www.openstreetmap.org/copyrightOpenStreetMap ©contributors. b Bed
count per zip code and M 7.25 rupture scenario on the Hayward Fault. Map data
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from https://www.openstreetmap.org/copyrightOpenStreetMap ©contributors.

c Histogram of hospital buildings' structural performance category (SPC) and their
years of construction. d Histogram of hospital buildings' non-structural perfor-
mance category (NPC) and their years of construction.

indicate that many hospitals could experience levels of ground motion
not observed in recent earthquakes (See Methods). On average, our
analysis predicts 51 hospitals will experience peak ground accelera-
tions above 0.2g (Fig. 2). By comparison, the 1989 M 6.9 Loma Prieta
Earthquake—previously the strongest since the devastating 19906 M 7.9
San Francisco Earthquake—subjected only 14 hospitals to similar
shaking intensities (Fig. 2). Supplementary Fig. 2 further contextualizes
these findings, illustrating how recent events such as the 2014 Napa
Earthquake (M 6.0) exposed just three hospitals to significant shaking
(>0.2g). In contrast, the historic 1906 earthquake exposed nearly the
entire portfolio (72 out of 76 hospitals).

We then estimated structural and non-structural damage across
all 426 acute care hospital buildings, as both types of damage critically
disrupt continuous hospital operations. We employed damage
thresholds as tipping points to model potential service interruptions at
various levels of severity (see Methods). For simplicity, we refer to the
probability of exceeding these thresholds as the “probability of
damage” or “probability of failure.” Our findings reveal extensive
potential damage: 214 buildings (50%) have greater than a 25%
probability of structural damage, and 254 buildings (60%) exceed
this threshold for non-structural components. Notably, 71% and 94%
of these at-risk buildings lie within 20 km of the Hayward Fault
or have low SPC/NPC ratings (Supplementary Fig. 3, Supplemen-
tary Note 3).

Post-earthquake hospital capacity

Our risk analysis predicts a substantial loss of hospital capacity
throughout the Bay Area following the earthquake scenario (see
Methods). We estimate a loss of 8165 hospital beds, resulting in only
51% of total acute care beds remaining functional (standard deviation:
21%). This significant reduction in capacity is highly uneven across the
region (Fig. 3, Table 1). Our baseline predictions assume hospitals lose
functionality when structural or non-structural damage exceeds a
threshold of slight damage (see Methods). These damage conditions
are often shown to disrupt hospital services*****, See descriptions of
multiple damage levels in HAZUS Earthquake Model Technical
Manual*’. We also analyzed more optimistic scenarios with moderate
("favorable”) and extensive ("idealistic”) damage thresholds, resulting
in increased overall functionality of 79% and 93%, respectively (Fig. 3
and Supplementary Table 1). However, empirical evidence supports
our baseline assumption, as hospitals often lose operations at early
stages of damage "™,

Alameda County faces the most severe impacts due to its proxi-
mity to the Hayward Fault and the concentration of vulnerable hos-
pitals (Table 1). Bed functionality there would drop dramatically, from
3221 to only 651 functional beds (20%, standard deviation: 19%). As
Alameda houses 1.6 million residents—making it the Bay Area’s second
most populous county—this represents a critical healthcare disruption
for numerous communities. Marin County, situated northward near
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Fig. 2 | Earthquake ground motion simulations. a Median peak ground accel-
erations (PGAs) for the magnitude 7.25 Hayward Fault earthquake scenario ana-
lyzed in this study. Map data from https://www.openstreetmap.org/
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century-highlighting that current infrastructure has not experienced shaking
intensities projected for the Hayward scenario. Map data from https://www.
openstreetmap.org/copyrightOpenStreetMap ©contributors. We used 5000
Monte Carlo simulations to conduct the analysis.

the fault rupture, will be the second-most impacted, retaining only 45%
of its original capacity. However, with a significantly smaller popula-
tion (251,000 residents), Marin’s absolute impact is lower, further
highlighting Alameda’s critical vulnerability.

Hospitals within 20 km of the fault retain, on average, only 25%
functionality, compared to 51% at 20-40 km and 82% beyond 40 km
(Supplementary Fig. 4, Supplementary Note 4). Facilities with over
half their buildings rated structurally poor (SPC <2) have 14% lower
functionality (40% vs. 54%), and those with predominantly poor non-
structural ratings (NPC < 3) have 17% lower functionality (45% vs.
62%). Structural damage dominates near the fault, but non-
structural damage remains critical at greater distances (64% struc-
tural vs. 70% non-structural damage within 20 km; 30% vs. 38%
beyond 40 km).

Post-earthquake Bridge Functionality

Our risk analysis model predicts that 1469 bridges out of 5163 would
be damaged due to the earthquake scenario (see Methods). Conse-
quently, 3693 bridges (72%, standard deviation: 17%) are expected to
remain undamaged and fully operational (Fig. 3). Some damaged
bridges could continue operating, albeit at reduced capacities.
Under our “baseline scenario”, where only bridges with at most
slight damage remain operational, a total of 3964 bridges (77%,
standard deviation: 15%) would function. In a more optimistic
“favorable scenario”, where bridges with at most moderate damage
also remain partially operational, 4069 bridges (79%, standard
deviation: 14%) could provide service. In an idealistic scenario, which
assumes that bridges even with extensive damage retain emergency
functionality®®, 4527 bridges (88%, standard deviation: 11%) would
remain operational.

Similar to hospitals, Alameda County faces the most severe
transportation impacts (Fig. 3, Table 2). Under the baseline scenario,
Alameda retains only 44% functional bridges (from 642 down to 282).
Marin County is second most impacted, retaining 64% (from 195 to 125
bridges). Additionally, estimates of reductions in bridge travel
speeds™® (see Methods)—calculated from their damage probabilities—
highlight Alameda’s higher vulnerability due to proximity to the Hay-
ward Fault rupture (Fig. 3, Table 2).

Acute Care Accessibility

Our results show that the earthquake scenario will radically change
healthcare access in the Bay. We coupled the risk model for the hos-
pital and bridge portfolio with a network model to assess the cascading
effects of earthquakes on healthcare access across the Bay (see
Methods).

We evaluated accessibility based on travel times to functioning
hospitals. Across the Bay Area, average travel times to the nearest
operational acute care hospital increase from 6. minutes pre-
earthquake to 16.9 minutes post-earthquake—a 177% increase. How-
ever, this impact varies significantly by county. Alameda County, the
second most populous (1.6M residents), experiences the most drastic
increase of 407%, from 5.1 to 25.6 minutes (Table 3). Marin and Contra
Costa counties follow, with increases of 314% and 147%, respectively,
demonstrating widespread disruption to healthcare access.

Atamore detailed neighborhood scale, these disruptions are even
more pronounced (Fig. 4). We identified six densely populated zip
codes (each exceeding 15,000 residents, labeled #1 to #6 in Fig. 4)
facing substantial reductions in healthcare access. The most severely
impacted is Novato (#1, Marin County), where travel times increase
nearly 25-fold, from 7.3 to 185.5 minutes, affecting approximately
18,000 residents. Similarly, a Fremont zip code (#6, Alameda County)
with roughly 66,000 residents experiences an eightfold increase (from
8.4 to 42.2 minutes). Other significantly impacted zip codes in Rich-
mond (#4), Oakland (#2 and #5, Alameda County), and San Jose (#3,
Santa Clara County) face travel time increases of 10, 11, 9, and 11 times
their pre-earthquake levels, respectively. These results underscore the
dramatic reshaping of healthcare access throughout East Bay com-
munities along the earthquake rupture.

Finally, we explored the relative contributions of hospital and
transportation infrastructure disruptions through scenario analyses
(Fig. 4). We compared the baseline (None, no infrastructure disruptions)
against scenarios modeling probabilistic damage only to transportation
infrastructure (Transp., hospitals fully resilient), only to hospital infra-
structure (Hosp., transportation fully resilient), and simultaneous prob-
abilistic disruptions to both (Transp. & Hosp.). When considering
disruptions only to transportation infrastructure (Transp.), average Bay
Area travel times increase by 41% (from 6.1 to 8.6 minutes), notably less
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Fig. 3 | Post-earthquake functionality of hospitals and bridges across the

Bay Area. a Probability distribution of functional acute care beds under baseline
(slight), favorable (moderate), and idealistic (extensive) damage thresholds.

b Spatial distribution of acute care beds before and after an earthquake scenario
using the baseline (slight) damage threshold. The size of the circles indicates the
number of functional beds before and after the earthquake. Map data from https://

(b)

=== Rupture Scenario
@ Pre-EQ Beds
e Post-EQ Beds

122.5°W

(d)

=== Rupture Scenario
== Heavily Disrupted
—— Roads

123°W 122.5°W 122°W

www.openstreetmap.org/copyrightOpenStreetMap ©contributors. ¢ Probability
distribution of fully functional bridges under baseline (slight), favorable (moder-
ate), and idealistic (extensive) damage thresholds. d Spatial distribution high-
lighting bridges with post-earthquake travel capacities below 75%. Map data from
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generated from 5000 Monte Carlo simulations.

than the combined scenario (Transp. & Hosp., 177% increase). Con-
versely, modeling only hospital infrastructure disruptions (Hosp.) yields
a 79% increase (from 6.1 to 10.9 minutes), highlighting greater relative
fragility in hospital networks.

At localized urban scales, the compounding effects of simulta-
neous transportation and hospital infrastructure failures lead to dis-
proportionately severe impacts (Fig. 4). for example, as mentioned
earlier, in the most severely impacted zip code (novato, labeled #1 in
Fig. 4), travel times dramatically increase from 7.3 to 185.5 minutes
under combined disruptions (transp. & hosp.), compared to only
14.1 minutes when transportation disruptions are excluded (hosp.
only). similarly, for other highly affected zip codes (labeled #2 to #6 in
Fig. 4), travel-time ratios notably decrease—from 11, 11, 10, 9, and 8
under combined disruptions, to 6, 3, 6, 5, and 3 when transportation
disruptions are not considered—highlighting the critical influence of
compounding infrastructure failures on healthcare access.

Isolated Hospitals and Communities
To understand the drivers behind the sharp increases in travel times
observed earlier, we analyzed travel volumes to the closest acute care

hospitals before and after the earthquake. Fig. 5 shows pre-earthquake
road usage, with line thickness representing travel volume. Roads in
brown highlight those whose usage falls above the 90th percentile
based on pre-earthquake conditions, emphasizing the most critical
travel routes. As expected, the highest-usage roads prior to the
earthquake were located near hospitals, especially in densely popu-
lated areas with fewer hospitals. For instance, communities in Fremont
(#6 in Figs. 4 and 5) are served by only two hospitals, while Richmond
(#4) relies on just one.

Figure 5 also displays post-earthquake road usage, using the
same pre-earthquake 90th percentile threshold to highlight heavily
traveled roads. After the earthquake, patient travel patterns shift
significantly, with many communities forced to travel longer dis-
tances along major corridors. For example, residents in Oakland (#2
and #5 in Figs. 4 and 5), who previously relied on nearby hospitals,
will now have to travel west to the San Francisco Peninsula or east to
Walnut Creek due to simultaneous disruptions in both hospital and
transportation infrastructure. These shifts help explain the steep
increases in travel times observed in East Bay communities along the
rupture zone.
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Table 1| Predicted post-earthquake hospital bed capacities
across Bay Area counties under a threshold of slight damage
(baseline scenario)

County Pre-earthquake Beds Post-earthquake Beds
Mean Std. Dev.
Alameda 3221 651 (20%) 621 (19%)
Contra Costa 1749 878 (50%) 481 (28%)
Marin 627 280 (45%) 209 (33%)
Napa 351 248 (71%) 89 (25%)
San Francisco 3618 2284 (63%) 950 (26%)
San Mateo 1444 944 (65%) 367 (25%)
Santa Clara 4323 2277 (53%) 1069 (25%)
Solano 722 476 (66%) 179 (25%)
Sonoma 584 436 (75%) 124 (21%)
Total 16,639 8474 (51%) 3567 (21%)

Numbers in parentheses represent the percentage relative to pre-earthquake capacities. Sup-
plementary Table 1 presents results for thresholds of moderate (favorable scenario) and
extensive (idealistic scenario) damage.

Four major bridges connect the East and West Bay: the Richmond-
San Rafael, Oakland-San Francisco Bay, San Mateo-Hayward, and
Dumbarton bridges. Before the earthquake, no patients needed to
cross these bridges to reach their nearest acute care hospital (Fig. 5).
After the earthquake, however, these bridges become critical, with
travel volumes increasing to 3.6, 9.3, 6.3, and 13.6 times the pre-
earthquake 90th percentile values—reflecting the large-scale redis-
tribution of healthcare demand.

Our analysis also revealed a more complex post-disaster phe-
nomenon: micro-scale isolation of a hospital and a community due to
localized bridge failures. The hospital serving the most severely
impacted zip code in Novato (#1 in Figs. 4 and 5), which has 64 beds,
depends entirely on a single bridge for access. If this bridge fails, the
hospital becomes inaccessible, increasing travel times from 7.3 to
185.5 minutes for the surrounding population.

More concerning, we found that an urban neighborhood near
Fremont (#6) could become fully isolated (Fig. 5). In one area, failure of
three bridges would trap one part of the neighborhood; in another, a
different set of three bridge failures would isolate the remaining part.
This community would lose access not only to hospitals but also to
other essential services such as grocery stores and pharmacies—illus-
trating how cascading infrastructure failures can sever lifeline access in
disaster scenarios.

Discussion

We present a modeling framework that integrates probabilistic risk
analysis with network modeling to study disruptions to acute care
access after earthquakes. Using detailed data on 76 hospitals (426
buildings) and 5163 bridges, we assess infrastructure risks and inter-
dependencies across Bay Area communities (see Methods).

First, we find that hospital services will face significant disruption.
Nearly half of all acute care beds (49%) could be lost due to building
damage, reducing regional capacity from 16,639 to 8474 beds. In
Alameda County, that Fig. drops to just 20% of pre-earthquake capa-
city (from 3,221 to 651 beds). These results point to the urgent need for
preparedness. While structural damage may render many buildings
unusable, past earthquakes show that medical staff can adapt. For
instance, Christchurch Hospital in New Zealand moved triage to the
parking lot after the 2011 earthquake®. Similarly, during the 2023
Turkiye earthquake, personnel at Mustafa Kemal University Hospital
relocated operations from upper floors to the ground floor and later to
outdoor spaces™. If hospitals in vulnerable counties like Alameda
prepare in advance—e.g., securing water and power supply to exterior

areas—they could partially recover functionality in an emergency. This
rapid recovery can be lifesaving, especially for communities near the
rupture that may see high numbers of severely injured patients.

Second, our findings underscore the need to retrofit both struc-
tural and non-structural components. While most retrofitting efforts
have focused on structural safety, non-structural failures often drive
hospital outages. In 2011, Christchurch Hospital remained structurally
intact but lost ICU and radiology services due to generator damage’**".
Similarly, 80% of hospitals surveyed after the 2016 Kumamoto Earth-
quake reported water system failures that disrupted dialysis and
sterilization, despite minimal structural damage®*™®. California’s man-
date to retrofit hospitals with SPC < 2 and NPC < 3 by 2030 is ambitious
—and needed—but difficult to achieve. Currently, 24% of buildings fall
below the SPC threshold and 69% below the NPC threshold®. If the
2030 goal proves unrealistic, targeting retrofits for hospitals serving
large or vulnerable populations could offer a more strategic path to
resilience.

Third, access to acute care will become significantly more uneven.
On average, travel time to the nearest functional hospital increases by
177%, from 6.1 to 16.9 minutes. Alameda County will see the sharpest
increases—up 407% overall—with some zip codes experiencing 10 to 20
times longer travel times. These delays are critical. Patients with severe
fractures or crush syndrome—a common injury in collapsed buildings
—require immediate care, including x-rays, surgeries, or dialysis, all
typically found in acute care hospitals. For many in Alameda, these
services will be significantly harder to reach, which could have deadly
consequences.

Fourth, the earthquake will reveal the deep interdependence
between the hospital and transportation systems. Many communities
will be forced to cross major bridges—such as the Richmond-San
Rafael, Bay, San Mateo-Hayward, or Dumbarton—to access care,
despite having relied on local hospitals pre-earthquake. Our analysis
shows that hospital access hinges on the functionality of surrounding
bridges. These critical connectors should be retrofitted to the same
seismic standards as hospitals. In some cases, bridge failures could
fully isolate neighborhoods—cutting off access not only to hospitals
but also to basic services like food. While our model focuses on
structural failures, additional disruptions—such as debris-blocked
roads, fuel shortages, and emergency closures—could further exacer-
bate access losses. These findings highlight the need for a system-level
approach to infrastructure planning—one that prioritizes inter-
dependencies and regional importance rather than treating assets in
isolation. Retrofitting the most critical bridges could greatly reduce
the cascading effects of an earthquake on healthcare access.

Methods

Risk Formulation: From single to multiple infrastructure units
We utilize an extension of the performance-based earthquake engi-
neering (PBEE) framework, initially established to assess earthquake
consequences in an infrastructure unit, and analyze multiple hospital
buildings™*. Under Markovian (conditional independency) assump-
tions described in canonical PBEE formulations®**, we find the prob-
ability distribution of an earthquake consequence, e.g., economic
losses or fatalities, as

Ppy, ps,m(dv, ds, im) = Ppy,ns(d|dS)P g p (dS|im)P y, (im), @

where P() is a probability distribution (or mass) function, and DVis
a random variable representing an earthquake consequence (also
called a decision variable). For example, DV can track repair costs in
buildings. In this case, DV will be a positive number with an upper
bound of dv,, i.e., the total replacement cost of the building. In other
applications, DV has a different variable space, e.g., DV € Z for the
number of injured people in a building®'®. DS is an ordinal random
variable that evaluates structural damage in an infrastructure unit, and
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Table 2 | Predicted post-earthquake functionality of bridges across Bay Area counties under the baseline scenario (bridges

with at most slight damage remain functional)

County Pre-earthquake Bridges Post-earthquake Bridges Post-earthquake Capacity
Mean Std. Dev. Mean Std. Dev.

Alameda 642 282 (44%) 147 (23%) 52% 23%
Contra Costa 604 407 (67%) 114 (19%) 73% 17%

Marin 195 125 (64%) 46 (23%) 71% 22%
Napa 158 135 (86%) 27 (17%) 89% 14%
San Francisco 126 102 (81%) 21 (17%) 84% 15%
San Mateo 346 280 (81%) 64 (19%) 85% 16%
Santa Clara 946 648 (69%) 215 (23%) 75% 20%
Solano 360 319 (89%) 49 (14%) 91% 1%

Sonoma 590 531 (90%) 74 (13%) 92% 10%

The expected capacity represents the average ratio of post-earthquake to pre-earthquake maximum speeds across all bridges in each county.

Table 3 | Travel times (in minutes) to reach the closest functional acute care hospital before and after the earthquake for

different Bay Area counties

County Pre-earthquake Post-earthquake Population (thousands)
Mean Std. Dev.

Alameda 5.1 25.6 (507%) 34.8 (688%) 1682
Contra Costa 7.9 19.6 (247%) 27.7 (350%) 1166
Marin 8.1 33.6 (414%) 47.7 (588%) 251
Napa 7.9 17.9 (228%) 27.8 (354%) 138
San Francisco 2.8 6.0 (215%) 24.0 (857%) 874
San Mateo 5.6 10.9 (195%) 25.6 (461%) 764
Santa Clara 6.1 13.8 (226%) 27.1 (442%) 1936
Solano 7.3 13.9 (191%) 29.2 (401%) 453
Sonoma 9.5 15.5 (162%) 221 (231%) 489
Total 6.1 16.9 (277%) 23.9 (391%) 7753

Post-earthquake values include the mean and standard deviation, expressed as a percentage of pre-earthquake travel times (in parentheses).

typically DS € {None, Slight, Moderate, Extensive, Complete}. Finally,
IM s arandom variable representing an intensity measure of shaking at
the building site, and generally, /M € R,,. Note that earthquake
shaking on the Earth’s crust has a physical upper bound; however, this
bound is not generally modeled, as large shaking cannot produce a DS
greater than Complete, thereby having a minimal impact on seismic
risk analysis. Frequently, DS and /M are marginalized from
Ppy.psnddv, ds, im) (e.g., through summation and integration) to find
Py V(du)syss.

Lee and Kiredmjian*® first formalized the extension of the PBEE
formulation to multiple infrastructure units’*°%¢°, focusing on
transportation infrastructure. After finding marginal distributions of
damage in single units, they formulate joint distributions of damage
for all units by defining spatial correlations and their decay for distant
sites. However, in the last two decades, empirical studies have better
characterized spatial correlation on shaking (i.e., /M) rather than
building damage®**. To account for it, Ceferino et al’. first formulated
an extension of regional PBEE incorporating earthquake shaking’s
spatial correlation, defining fully the set of conditional independencies
in state-of-the-art regional risk models and applications® %, Ceferino
et al’. defined the regional model for earthquake casualties in the
residential building portfolio, and here we apply it to hospital and
transportation infrastructure portfolios in a region.

We first formulate the model for hospital infrastructure. We
redefine the traditional PBEE notation to keep the equations concise in
the extension to a regional analysis with many buildings. We denote a
random variable X’s probability distribution Px(x) = m(x). Similarly, for a

multi-variate vector X, we denote its probability distribution
Px(x) = m(x), where x is a specific realization of X. Using this notation,
we define the damage ordinal variable D, instead of DS, and call Dy and
D7 the structural and non-structural damage of building k. Thus, we are
interested in the damage vector D={D;, DY, ...,D;,, D}, where m is
the total number of buildings in the region. We also define the shaking
variable /, instead of /M, and call [}, and I}, the shaking measure affecting
structural and non-structural damage of building k. We use the more
concise notation / rather than /M to improve the readability of
expressions in high-dimensional regional models, where large sets of
correlated variables are simulated. For example, /; can be the peak
ground acceleration or spectral acceleration affecting the structural
components of buildings, and /}, is the peak floor acceleration affecting
acceleration-sensitive non-structural components, e.g., ceilings. Thus,
we are interested in the shaking intensity vector I={, I, ..., [, I%},
where m is the total number of buildings in the region. We extend the
Markovian (or conditional independence) assumptions from single
buildings®*** to multiple buildings’ to estimate the joint probability
distribution of damage and intensity vectors as

m(d, i)=m(d|)r(i) (2a)

n(dli) =[] imd;Iip), (2b)

where d={d;,d}, ..., d;, dy) and i={{,i, ..., &, %) are specific

realizations of D and I, respectively. Eq. (2b) assumes damage is
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Fig. 4 | Access to functional acute care hospitals in the Bay Area after the
earthquake. a Post-earthquake (Post-EQ) increases in travel time at the zip-code
level compared to pre-earthquake (Pre-EQ) conditions, highlighting densely
populated areas that are most severely impacted. b Ratios of post- to pre-
earthquake travel times to the closest acute care hospitals. Map data from https://
www.openstreetmap.org/copyrightOpenStreetMap ©contributors. ¢ Distribution
of travel times per zip code under four scenarios: None (no infrastructure
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disruptions), Transp. (only transportation infrastructure is vulnerable), Hosp. (only
hospital infrastructure is vulnerable), and Transp. & Hosp. (both transportation and
hospital infrastructures are vulnerable). d Ratios of post- to pre-earthquake travel
times when only hospital infrastructure (Hosp.) is vulnerable. Map data from
https://www.openstreetmap.org/copyrightOpenStreetMap ©contributors. Results
generated from 5000 Monte Carlo simulations.

independent at different buildings conditioned on their respective
shaking intensities; thus m(d|i) can be estimated as the product of
probability distributions of damage in each building. However,
unconditional damages will be correlated through the joint probability
distribution of shaking in the region, m(i). This formulation follows the
chain rule of probability, where Eq. (2a) represents the joint distribu-
tion of damage and intensity. Eq. (2b) assumes that, conditional on
shaking intensity, the damage at each building is independent—an
assumption that simplifies regional modeling. This allows the condi-
tional joint distribution m(d|i) to be expressed as the product of per-
building fragility functions. While this assumes no direct interaction
between buildings once shaking is known, the spatial correlation of
ground motion in m({) introduces dependence across damage
outcomes.

Similarly, we assume that structural and non-structural damage
(Dy, and DY) within a building k are conditionally independent given
their respective shaking intensities (/; and /7). Yet, these two random
variables of damage will be correlated since these shaking intensities in
the building are also correlated, e.g., peak ground acceleration and

peak floor acceleration. Supplementary Fig. 5 illustrates and sum-
marizes all conditional dependencies through a probabilistic graphical
model for the hospital buildings.

Although non-structural damage may not be conditionally inde-
pendent of structural damage—given that structural damage can alter
the dynamic properties of a building and, in turn, affect demands on
acceleration-sensitive non-structural components—we consider the
independence assumption to be reasonable within the failure space of
hospitals. Specifically, our model assumes that hospital functionality is
lost once early damage thresholds (e.g., slight damage) are exceeded;
at this stage, structural degradation is unlikely to significantly modify
the system’s dynamic characteristics. While we are not aware of
empirical studies explicitly validating this hypothesis, the assumption
allows us to simplify the model without compromising its ability to
capture key failure mechanisms relevant to hospital functionality.

We assess the building functionality vector F = {f, ..., F,,}, where
F,, is a Bernoulli random variable that assesses whether the hospital
building k will work (Fy = 1) after the earthquake. We model Fy as a
deterministic function of the structural and non-structural damage of
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Fig. 5 | Mobility to reach the closest functional acute care hospital in the San
Francisco Bay Area. a Pre-earthquake travel volumes to the closest acute care
hospitals. Numbers 1 to 6 indicate the hospitals serving the dense zip codes with the
highest post-earthquake increases in travel time. Map data from https://www.
openstreetmap.org/copyrightOpenStreetMap ©contributors. b Projected travel
volumes after the earthquake, showing major shifts in patient mobility. The red-
shaded corridor illustrates how Oakland residents (#2 and #5) must travel west to the
Peninsula or east to Walnut Creek due to hospital and transportation disruptions.
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Map data from https://www.openstreetmap.org/copyrightOpenStreetMap ©con-
tributors. ¢ The hospital serving zip code #1 (Novato) relies entirely on a single
bridge; if the bridge fails, all access to its 64 beds is lost. Map data from https://www.
openstreetmap.org/copyrightOpenStreetMap ©contributors. d Community near zip
code #6 (Fremont), where the southern and northern sections become fully isolated
if three different bridges fail in each area. Map data from https://www.
openstreetmap.org/copyrightOpenStreetMap ©contributors. Results are based on
5000 Monte Carlo simulations of post-earthquake patient mobility.

the building as an input. Thus, under a change of variables, Eq. 2
becomes

n(f, h=n(flom() 3

where f= {f}, ..., fn} is a specific realization of F. Supplementary
Fig. 6 illustrates and summarizes all conditional dependencies through
a probabilistic graphical model. Note that a probabilistic formulation
that links damage to functionality could also be incorporated, intro-
ducing an additional term to Eq. (3), similar to Eq. (1). Thus, our
approach admits such extensions.

Hospitals can rapidly lose functionality at early stages of struc-
tural and non-structural damage, as observed in the 2023 M 7.8 Kah-
ramanmaras Earthquake in Turkey®, 2011 M 6.1 Christchurch
Earthquake in New Zealand*, and 2010 M 8.8 Maule Earthquake in
Chile®. We consider that damage thresholds, ¢ and d", for the struc-
tural and non-structural components trigger the disruption of hospital
functionality, i.e., if either fails, the hospital loses functionality. We can
estimate the probabilities of not exceeding these thresholds as
p, =n(Dy <d°|ly, = i) and p? = (D} <d"|I} = if), respectively, which can

be evaluated with earthquake fragility functions. Thus, we can model
functionality as the intersection of both random events, i.e., the
structural and non-structural components work after the earthquake.
Since D; and Df are conditionally independent, the F is a Bernoulli
random variable with probability p; p{. Accordingly,

n(fid)=Tr., ook 1 - pipy) " )

The functionality of the hospital relies on the structural and non-
structural components as described in Eq. (4). This formulation
reflects our focus on estimating hospital functionality during the initial
post-earthquake period, where service disruption is most directly tied
to structural and non-structural damage. Rather than modeling the full
trajectory of hospital recovery’’—which depends on permitting,
logistics, and staffing—we assess whether each building is likely to
remain operational immediately after the event. To enable this analysis
across hundreds of facilities and correlated scenarios, we use Bernoulli
random variables derived from fragility-based exceedance prob-
abilities, accounting for spatial dependencies in seismic intensity and
building response (Supplementary Fig. 6).
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The hospital portfolio has various levels of SPC and NPC that
control the final functionality of the hospital.

We are also interested in the probability distribution of the total
number of functional beds B, in the region, which can be estimated as

B,=> BiFy )
k=1

where B is the number of beds (all functional before the earth-
quake) at the hospital building k. We are also interested in estimating
the distributions of the total number of functional beds By, in hospital A
as each hospital can have multiple buildings with beds. Let kj, be the set
containing all indexes of the buildings belonging to the hospital A.
Thus,

B,= Z BiFy (6)

kekp,

In addition, we want to evaluate the contributions of structural
and non-structural damage in buildings to the loss of functionality on
the hospital campus. We can model the expected number of buildings
with structural damage in a hospital campus given that the hospital
only has a portion ¢ of functional beds as

m(Dy>d* N By <@ yex, Br)
By < P> ke, Br)

E<21{0i>ds}

kekpy

Bh<¢zﬁk>: 3

kekpy, keky

@)

Similarly, we can evaluate the number of buildings with non-
structural damage in a hospital campus given that the hospital only has
a portion ¢ of functional beds as

m(Df>d" N By <@ xex, Br)
(B, <@ ker, Br)

Bh<¢Zﬁk> =)

kekpy keky

E(Zl{Dz>d”}

kekpy

®

We formulate the model for damage to the bridge infrastructure
and its post-earthquake functionality following the state of the art in
previous implementations”™. As with buildings, we use fragility func-
tions to estimate structural damage to bridges. Post-earthquake
functionality is represented in terms of reduced maximum free-flow
travel speed. We adopt deterministic relationships between damage
levels and speed reductions based on previous research, as fully
described later below.

Approaches for numerical solutions

Regional seismic risk analysis is a high-dimensional problem. While the
joint distribution m(f, i) in Eq. (3) can be analytically evaluated due to
closed-form expressions for m(fli) and m(i)°***’?, computing the mar-
ginal distribution m(f) is not analytically tractable. This is because it
involves integrating over a set of correlated random variables in i, for
which no closed-form marginalization exists. Numerical integration
methods (e.g., Riemann integration) quickly become computationally
infeasible, even for a modest number of buildings’. To address this,
several approaches have been proposed to efficiently approximate r(f)
in large-scale settings. For example, Ceferino et al’’°. demonstrated—
both theoretically and empirically—that under certain conditions,
Central Limit Theorem (CLT)-based approximations can accurately
and efficiently estimate m(f). More recently, Heresi and Miranda®
showed that similar approximations remain valid even under mild
correlation structures in seismic risk models. However, in situations
where the CLT does not apply, modern risk models often rely on
Monte Carlo methods to estimate r(f). In our case, we seek to estimate

the distribution of b,, the total number of functional beds across
hospital buildings, where functionality follows the distribution m(f).
Since the number of hospital buildings varies widely—from a few to
many—CLT approximations are not generally applicable. Therefore, we
use Monte Carlo simulation to evaluate m(b;). We implemented this
using the NHERI SimCenter’s R2D Tool”””, which enables scalable
regional risk assessments. Specifically, we used R2D to generate 5000
realizations of i and d for both hospitals and bridges, which form the
basis for evaluating Eq. 2.

Earthquake rupture and shaking modeling
We study an M 7.25 earthquake scenario on the Hayward Fault. Similar
scenarios have been extensively studied to inform resilience policy-
making in the Bay Area*. The rupture geometry was obtained from the
Uniform California Earthquake Rupture Forecast (UCERF) 27°. The
earthquake ruptures the Hayward South and North sections over a
total length of ~110 km.

Estimates of shallow shear wave velocities (averages at the top 30
m of soil) are utilized over the entire Bay Area”’. With this information,
we built the joint probability distribution of shaking intensities (i) in
R2D. We utilized a ground motion model” for shallow crustal earth-
quakes to estimate medians and logarithm standard deviations of i. i's
uncertainty is divided into two components’. The first component
captures between-event uncertainty and affects the entire region
equally, but it varies per intensity measure type, e.g., peak ground
acceleration versus spectral acceleration. The first component cap-
tures correlation across different intensity measures®®. The second
component captures within-event uncertainty and affects the entire
region and intensity measure types differently. This component cap-
tures spatial correlation and correlation across different intensity
measure types. We use a computationally efficient method to account
for the second component®*®, As stated earlier, we sampled 5000
realizations of i and show expected values E(i) for the entire region
(Fig. 1). Notice that for illustration purposes, we show E(i) for the
entire Bay Area (+10,000 locations), but for the hospital network’s risk
analysis, we only need to quantify i at the 426 building locations and
5163 bridge locations.

Hospital vulnerability modeling

This paper utilized building-level lognormal fragility functions to
determine damage to structural and non-structural components. For
example, to determine the likelihood of reaching or exceeding a
structural damage threshold ¢ in building k as a function of the
shaking intensity measure, we use fragility functions like

"(Dizdslli=ii)=®<’0g("k)‘w) o)

where @ is the standard normal cumulative distribution
function®’. The parameters a and B define the fragility function and
vary according to the damage threshold @° and the building’s structural
type and vulnerability (e.g., SPC rating) for building k. a equals the
shaking intensity (e.g., PGA) that exposes the building to a 50% prob-
ability of damage of at least &. B is a normalizing factor that defines the
width of the transition range between shaking with low and high
damage probability, and it is a measure of aleatory uncertainty in the
vulnerability analysis. In the limit, when § > 0, Eq. (9) becomes
equivalent to a deterministic assessment, where the building would fail
after a fixed shaking threshold. An analogous equation is used for non-
structural damage.

We assessed structural damage across a variety of structural sys-
tem types and five levels of structural vulnerability (Fig. 1 and Sup-
plementary Fig. 1). To represent this range, we used and adapted
structural fragility functions from HAZUS*, also available through the
R2D tool®’. Based on the definitions of SPC ratings, we mapped SPC 1
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and 2 buildings to the HAZUS pre-code and moderate-code fragility
functions, respectively, using the corresponding a and 8 parameters in
Eq. (9). This mapping reflects the fact that SPC 1 and 2 buildings do not
comply with the structural provisions of the Alquist Hospital Facilities
Seismic Safety Act and are known to be older and more vulnerable
structures. While no empirical fragility curves directly link SPC ratings
to seismic performance, post-earthquake damage reports from events
such as the 1971 San Fernando and 1994 Northridge earthquakes show
that hospitals with older structural systems experienced significant
damage. Although these observations are not sufficient to derive fra-
gility functions, they support the alignment of SPC 1 and 2 facilities
with more vulnerable construction classes, consistent with HAZUS
classifications. In contrast, SPC 3, 4, and 5 comply with the Alquist Act.
Fragility functions for SPC 5 buildings are obtained by increasing all the
a values for high-code structures by 50% higher PGAs. These adjust-
ments were made to represent that hospitals designed to meet the
Alquist Act (SPC 5) according to the ASCE7-16 building code are
designed to withstand 50% higher seismic loads than regular buildings,
i.e., an importance factor of 1.5%*. SPC 3 buildings are steel structures
that comply with the Alquist Act but are pre-Northridge. We used
regular building fragility functions to represent the vulnerability of
SPC buildings as pre-Northridge’s non-ductile connections as it takes
~30% less seismic demands to make them reach moderate and exten-
sive levels of damage®, i.e., 0.7 x 1.5a = -~ a. Finally, we modeled SPC 4
buildings with 1.25a to represent that these buildings have lower per-
formance than SPC 5 buildings (1.5a). SPC 4 buildings comply with the
Alquist Act but can have some structural conditions that make them
more prone to damage, e.g., lack of weak beam/strong column, pre-
sence of short captive columns®.

We followed a similar approach for the fragility functions of
buildings’ non-structural components. We mapped NPC 1, 2, and 3 to
pre-code, moderate-code, and high-code fragility functions for
acceleration-sensitive non-structural components from HAZUS®. For
NPC 4 and 5, we adjusted the fragility functions of high-code fragility
functions by increasing the median peak floor acceleration (PFA) to
reach different damage states by 25% and 50%, respectively. Unlike
structural components, we defined the same fragility functions for all
building types because hospitals have similar non-structural compo-
nents, e.g., equipment for acute care. However, as stated earlier, the
input PFA for each hospital building differs and depends on the
structural type.

After defining these fragility functions for the portfolio of hospital
buildings, we computed realizations of building damage utilizing R2D%,
As mentioned, we generated 5000 samples of the buildings’ structural
and non-structural damage for each ground-shaking simulation. As
stated earlier, we initially tested multiple thresholds of damage, & and d"
(e.g., slight, moderate, extensive damage) to evaluate hospital disrup-
tions (Fig. 3). However, we used the slight damage threshold for most of
the analysis later in the study since most hospitals lose functionality at
quite early stages of damage. The damage state definitions adopted in
this paper for building structural components and non-structural com-
ponents are consistent with the damage states defined by HAZUS®.

At each building k, we used the Peak Ground Acceleration (PGA) as
the shaking intensity random variable /; to estimate structural
damage. While spectral accelerations can also be used to improve
damage predictability through the inclusion of structural properties,
such as period of vibration', we did not follow this approach here
since fragility spectral acceleration-based fragility functions are not
available for the diversity of building typologies in the San Francisco
Bay Area.

We used PFA as the shaking intensity random variable /} to esti-
mate non-structural damage at building k. Our focus on PFA stems
from the fact that acceleration-sensitive non-structural components—
such as ceilings, shelves, and mechanical or medical equipment—tend
to fail at lower shaking levels than drift-sensitive components like

partition walls. Furthermore, in hospitals, acceleration-sensitive com-
ponents (e.g., x-ray machines) often play a more critical role in main-
taining functionality after an earthquake.

PFA varies with height within a building, and total non-structural
damage depends on how acceleration-sensitive components are dis-
tributed across floors. However, detailed data on the floor-by-floor
distribution of non-structural elements are rarely available in regional-
scale analyses. To address this limitation, we used a simplified proxy to
approximate the variation of PFA with building height while incor-
porating key building characteristics. Specifically, we assumed a linear
distribution of floor accelerations, with the base acceleration set equal
to the peak ground acceleration (PGA) and the acceleration at the
effective height equal to the spectral acceleration corresponding to
the building’s dynamic period. The effective height is estimated for
each structural type based on period and height values from the
HAZUS exposure model*’. We then compute the average PFA across
the building height from this linear profile and use an average value
across height in our non-structural damage analysis. Further studies
can enhance the fidelity of this analysis if higher-resolution informa-
tion for non-structural components is available, e.g., on each floor.

Bridge vulnerability modeling

This paper assesses highway bridge damage due to both ground
shaking and soil liquefaction. To estimate shaking-induced damage, we
adopt the methodology developed in HAZUS*, which defines 28
representative bridge archetypes. Each archetype is assigned a fragility
function of the form in Eq. (9), using spectral acceleration at a 1-second
period as the intensity measure (denoted as i). To account for varia-
tions among individual bridges within each archetype, modification
factors are applied to the fragility parameter a. These include a three-
dimensional modification to capture deck arching effects in multi-span
bridges and a skew factor to reflect reduced capacity at skewed deck-
pier connections. Additionally, for estimating slight damage, a spectral
shape modification converts the intensity measure to an equivalent
0.3-second spectral acceleration, acknowledging that bridges are
typically elastic and sensitive to short-period ground motions.

To assess damage from ground failure, HAZUS®*® defines fragility
curves that use permanent ground deformation (PGD) as the intensity
measure. Given the high liquefaction susceptibility in the Bay Area, we
adopt the HAZUS-recommended geologic modelHAZUS®* to estimate
liquefaction-induced PGD at each bridge location. This model first uses
empirical correlations between soil types (e.g., intertidal mud, Holo-
cene and Pleistocene alluvium, rock) and liquefaction susceptibility.
Liquefaction probability is then estimated based on peak ground
acceleration (PGA), earthquake magnitude (to capture shaking dura-
tion), and groundwater depth (to reflect pore pressure effects). PGD is
subsequently estimated using empirical relationships with the calcu-
lated liquefaction probability. We utilize the California statewide
geologic map®® and a global groundwater depth model(2010)* for this
analysis. Once PGD is estimated, ground failure-induced bridge
damage is determined using HAZUS fragility curves through the R2D
software platform.

These fragility curves yield the probability of each bridge reaching
damage states—slight, moderate, extensive, or complete—under a
given ground motion realization. HAZUS defines the physical char-
acteristics associated with each state (e.g., slight damage involves
minor cracking at abutments, while complete damage corresponds to
column collapse or loss of bearing support). To estimate post-
earthquake traffic performance, we adopt the damage-capacity
model from Guo et al. (2017)*°, which relates bridge damage to resi-
dual free-flow speed. Travel time is computed as road length divided
by this speed under the assumption that emergency vehicles receive
priority and travel at free-flow speed. More realistic travel times could
incorporate background traffic using volume-delay relationships
such as the Bureau of Public Roads (1964) curve®, though this requires
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Fig. 6 | Shortest paths from patient vertices (p € p) to hospital vertices (h € h)
before the earthquake in the San Francisco county. The transportation network
is shown in brown lines, the shortest paths in green lines, hospital vertices in blue
dots, and patient vertices in red dots. Map data from https://www.openstreetmap.
org/copyright OpenStreetMap ©contributors.

post-disaster traffic data, which remains a key challenge in traffic
simulations after major events.

Network model: acute care accessibility modeling

We denote G = (v, e) a graph, where v is the set of |v] vertices and e the
set of |e| edges. This graph will represent the infrastructure system of
hospitals and roads supporting healthcare access in the Bay Area. Let
p € p be a vertex representing the location of a patient needing acute
care and p be the set of all patient vertices. Also, let 4 € h be a vertex
representing the location of an acute care hospital and h be the set of
all hospital nodes. In this case, p C v, and h Cv.e={(u, v)|u, v € v} is the
set of |v| edges representing different roads connecting different
locations (vertices) in the region. We denote 7(u,v) € R, the travel
time between vertices u and v.

To analyze healthcare access, we evaluate the shortest travel
times for a patient in node p to reach any hospital vertex in the set h.
We modeled hospital A as a source vertex and found the shortest paths
to all vertices p € p simultaneously, resulting in a shortest-path tree
problem. This approach is faster than computing multiple shortest for
each pair h and p, separately. Thus, for each vertex h, we find the
shortest time to reach the patient:

£ (hy=ming, e > T(u, v)x(u,v) (10a)

s.t. > xwv)- > x@wu=b, Vuewv (10b)
v, D)ce (v, Wee

b,=|p| for u=h (10c¢)

b,=—-1 for uep (10d)

b,=0 for wuzhp (10e)

x(u,v) € {0,1},Y(v,u)c e (10f)

This optimization problem seeks to find the minimum travel time
from vertex h to all vertices in p simultaneously. This optimization
problem can also be interpreted as a special network flow problem
where we seek to find a directed path with minimum cost from a
source node h to multiple destinations. 7(u, v) can be interpreted as
edge flow cost, and the shortest path problem can be seen as sending a
flow unit to each destination p € p. We solve Eq. 10 to find the shortest
travel time £(h) from each node p € p to each (hospital) vertex h
(Fig. 6). We can use multiple algorithms to solve Eq. 10, including
Dijkstra and Bellman-Ford®”. For reference, the computational com-
plexity of the classical Dijkstra’s algorithm is O(jv|?) and Bellman-Ford
is O(|v||e]). Note that these algorithms will find the shortest paths to all
vertices in v, and not just on p, at once.

After finding £ (h) from all h € h, we compute the minimum travel
time £(h) to any hospital by comparing the different options each
patient p has. Thus,

T'=min,,t (h) an

In the post-earthquake scenario, all hospitals will be functional.
Then, Eq. (11) finds the shortest time to reach an acute care hospital
p (Fig. 6).

In an earthquake, we adjust Eq. (11) to

T =min, _zt'(h) 12)
where h= {h|B,>0.50, Vh € h} to account for the reduction in
hospital capacity. Thus, h is a set with a random selection of elements,
i.e., hospital vertices. This means that in this model, the tipping for
receiving new patients in hospitals is to have at least 50% of their beds
(By) functional. Studies on hospital disaster resilience during earth-
quakes suggest that a significant reduction in functional bed avail-
ability can severely strain hospital operations, particularly in
accommodating new patients in the emergency department®®®*,

We also further adjust the edge capacity and the network
topology to solve Eq. 10. As mentioned earlier, the free-flow travel
times 7 are adjusted to post-earthquake conditions 7 according to the
bridge damage level. Thus, we use T instead of t to find £(h) in Eq. 10.
While in practice, fully collapsed bridges would have travel time
T = o, we found it was more computationally efficient to remove
these edges the network. Thus, we also used a slightly different edge
e={(u,v)[T(u,v)<oco Y(u,v) c e} for each simulation. Thus, T (p) is a
random variable. We solve Eq. (12) 5000 times using the 5000 Monte
Carlo simulations obtained before.

Bay Area’s Transportation System
We study the entire San Francisco Bay, where the transportation net-
work is massive, with |v| = 0.5 million vertices and |e| = 1.5 million edges.
The edges in the graph represent the roads in the transportation sys-
tem, whose information was obtained from the San Francisco Region
Roadways” and OpenStreetMap (OSM)’. We incorporated directional
and travel time data into the network models using OSM’s OSMnx
library”’. We couple the transportation network data to the hospital
and the patient data. The 76 hospitals are embedded in the network
models by identifying the network’s vertices closest to the hospital
locations, forming the set A. In addition, we obtained population data
at 1613 zip codes, and we assumed that the number of patients is
proportional to the population.

Our goal was to quantify hospital accessibility losses beyond the
immediate emergency period, recognizing that hospitals often take
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months or even years to be repaired. Because people are typically
injured within damaged buildings, patient surges after earthquakes
generally last only a few days—except in rare cases such as the 2023
Tirkiye Earthquake. To focus on long-term access rather than short-
term emergency response, we did not model injury locations directly.
Instead, we assumed that patient demand is proportional to popula-
tion distribution and modeled accessibility accordingly. For the Bay
Area, we based our analysis on population-weighted access loss and
identified the network’s vertices closest to the centroids of census
tracts to define the set p (Fig. 6).

Data availability

The hospital data are publicly available in the California Department of
Health Care Access and Information’s Portal: https://hcai.ca.gov/
facilities/building-safety/facility-detail/. The transportation data are
publicly available in the San Francisco’s Metropolitan Transportation
Commission’s Portal https://opendata.mtc.ca.gov/. In addition, we
made the hospital disruption simulations and the pre-processed net-
work data accessible in the following NSF’s DesignSafe repository:
https://doi.org/10.17603/ds2-pc7z-7227. Notice that files can be
downloaded individually. Source data are provided with this paper.

Code availability

The risk model was run with NHERI SimCenter’s R2D software, open
and publicly available: https://simcenter.designsafe-ci.org/research-
tools/r2dtool/. Also, we made the code to run the network model
coupled to the risk model publicly available in the following NSF’s
DesignSafe repository: https://doi.org/10.17603/ds2-pc7z-7227. Notice
that scripts can be downloaded individually.
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