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The spatial organization of proteins within eukaryotic cells underlies essential
biological processes and can be mapped by identifying nearby proteins using
proximity-dependent biotinylation approaches such as BiolD. When applied
systematically to hundreds of bait proteins, BiolD has localized thousands of
endogenous proteins in human cells, generating a comprehensive view of
subcellular organization. However, the need for large bait sets limits the
scalability of BiolD for context-dependent spatial profiling across different cell
types, states, or perturbations. To address this, we develop a benchmarking
framework with multiple complementary metrics to assess how well a given
bait subset recapitulates the structure and coverage of a reference BiolD
dataset. We also introduce GENBAIT, a genetic algorithm-based method that
identifies optimized bait subsets predicted to retain maximal spatial infor-
mation while reducing the total number of baits. Applied to three large BiolD
datasets, GENBAIT consistently selected subsets representing less than one-
third of the original baits while preserving high coverage and network integ-
rity. This flexible, data-driven approach enables intelligent bait selection for
targeted, context-specific studies, thereby expanding the accessibility of large-
scale subcellular proteome mapping.

Spatial partitioning is fundamental to biological systems, from organs
to cells and their subcellular compartments'*. Eukaryotic cells orga-
nize biochemical activities into distinct structures, enabling proteins
to function in specific environments. Disruptions in localization can
lead to disease, underscoring the importance of mapping protein
spatial organization across biological contexts®*.

Several strategies have been developed to chart protein localiza-
tion, including fluorescence microscopy?, biochemical fractionation
coupled with mass spectrometry (MS)*¢, cross-linking MS’, and com-
putational modeling®. While useful for studying most cellular compo-
nents, fluorescence-based imaging requires assessing the localization
of each protein individually, making proteome-wide, multi-condition

studies labor-intensive’. Biochemical fractionation coupled with MS is
more scalable and has delineated numerous cellular proteomes and
sub-proteomes***1°, but is less effective for structures that are difficult
to isolate, such as most membraneless organelles".
Proximity-dependent biotinylation (or proximity labeling, PL)
approaches, such as BiolD, APEX, and their derivatives, overcome
some of these limitations by capturing proteins in the immediate
molecular neighborhood of a protein of interest in living cells’. In
these methods, a labeling enzyme is genetically fused to a protein of
interest (known as the bait) and expressed in a relevant cellular con-
text. BiolD experiments typically involve exogenous expression of the
bait, which ensures sufficient expression even for proteins with low
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endogenous levels and allows targeted labeling using protein frag-
ments or subcellular localization signals®. Subsequent addition of the
substrate of the enzyme results in the covalent labeling of adjacent
proteins (known as preys) in living cells (Fig. 1a). In BiolD", an abortive
biotin ligase produces reactive biotinoyl-AMP that covalently modifies
the lysine e-amines of proteins within ~10 nm"®. The biotinylated pro-
teins are then purified using streptavidin and identified by MS. Protein
identifications are scored against negative controls (e.g., using sig-
nificance analysis of interactome (SAINT)*™) to identify high-
confidence proximal interactions and generate spatially resolved
proteomic data. BiolD has been widely used to characterize proximal
interactions for multiple individual baits, across cellular compart-
ments, cell types, and even organisms'>'’. Note, however, that labeling
efficiency can vary across cellular compartments®*?.

Beyond mapping individual bait-prey interactions, the richness of
large-scale BiolD datasets also enables prey-centric analyses. By ana-
lyzing prey co-occurrence patterns using methods such as correlation
analysis or non-negative matrix factorization (NMF)?, it is possible to
group proteins with similar proximity profiles, revealing likely co-
localization. These data can then be used to reconstruct cellular (or
subcellular) organization**. NMF is a linear dimensionality reduction
technique that decomposes a bait-prey matrix into a basis matrix and
a score matrix. It is well-suited for defining organellar composition
because it soft-assigns prey proteins into a pre-specified number of
components, simultaneously reflecting the cellular reality, in which
many proteins have no singly defined subcellular localization. While
the user is free to set the number of components, a heuristic in
g:Profiler* based on Gene Ontology Cellular Component (GO:CC)
analysis of the preys assigned to each component is commonly
used*?. Components identities are annotated following a guilt-by-
association principle, using GO terms or similar reference sets.

This workflow has produced BiolD-based maps of the human cell®,
cytosolic mRNA-associated granules and bodies®, nuclear bodies”,
mitochondria*, and centrosome-cilium interface”’. However, these
studies were generally performed in a single cell line under constant
growth conditions, primarily due to the labor and cost of profiling
large bait sets. Each large-scale BiolD map can require months to years
of work, substantial reagent costs, and extensive MS time, making
similar mapping across multiple conditions impractical.

A means to select bait subsets that can recapitulate the struc-
tures of these proximal interactomes with similar prey coverage
would enable subcellular protein localization mapping in different
contexts while reducing costs and experimental burden in direct
proportion to the reduction in bait numbers. From a machine
learning perspective, this can be framed as a feature selection
problem®, in which a subset of features (i.e., baits) is selected that
maintains the strong predictive capacity of the full set. While there
are a multitude of algorithms for feature selection that have been
extensively applied to problems in biological data analysis*~*°, none
have been evaluated for their ability to generate bait subsets for
scalable BiolD profiling studies using formalized metrics, and no
bespoke approaches have been proposed.

In this work, we develop GENBAIT, a genetic algorithm-based
strategy for BiolD bait subset selection and introduce a benchmarking
platform to quantify the quality of the BiolD bait subsets, which we use
to compare GENBAIT’s performance with that of 10 existing statistical
and machine learning-based feature selection algorithms. While all
selection methods performed markedly better than random subset
selection, GENBAIT outperformed the other methods across several
metrics. Additionally, we formalize a set of recommendations to help
researchers choose the optimal method to derive bait subsets from
existing BiolD datasets for scalable subcellular profiling. By reducing
the number of baits required for large-scale BiolD experiments, GEN-
BAIT will enable studies that would otherwise be infeasible due to cost
and time constraints. GENBAIT is not intended to replace highly

targeted approaches but rather to provide a systematic and data-
driven strategy for bait selection when a broad spatial proteomics map
is needed. A Python package implementing both GENBAIT and the 15
metrics for assessing bait subset quality is available at https://github.
com/camlab-bioml/genbait.

Results

A computational platform to design and evaluate BiolD bait
subsets

To evaluate the quality of bait subsets selected by feature selection
methods, we used three available BiolD datasets, all acquired in HEK-
293 Flp-In T-REx 293 cells but representing distinct biological contexts.
Dataset 1, the Human Cell Map V.1 (humancellmap.org), provides a
global reference for intracellular organization, featuring 192 baits and
4145 high-confidence preys, mapping major organelles, cytoskeletal
structures and some membraneless organelles. Dataset 2 focuses on
stress granules and P-bodies, along with other components of the RNA
synthesis, transport and degradation machineries, using 119 baits and
1792 preys. Dataset 3 maps nuclear bodies (including nucleolus,
nuclear speckles, paraspeckles), leveraging 140 baits and 1816 preys.
These datasets differ in terms of their coverage and resolution, with
varying numbers of baits and preys across cellular structures (Fig. 1a).
NMF optimization in the original publications defined 20, 14 and 19
components, respectively, for these datasets. We further developed a
benchmarking resource comprising 15 different evaluation metrics
that quantified how well a given subset of baits captures the localiza-
tions determined in the original dataset and applied this to all BiolD
datasets individually (Fig. 1b).

Next, we developed a computational method to select bait sub-
sets across multiple BiolD experiments that can reproduce the inter-
action network of the full dataset, enabling scalable profiling. Given
their success at solving similar discrete optimization problems® >, we
adopted a genetic algorithm-based search strategy informed by the
typical BiolD data analysis workflow. Implementing this strategy
requires specifying a fitness function that quantifies how well a subset
conserved the subcellular localizations observed with the full bait set.
We developed a fitness function that mimics the iterative data analysis
process** to interpret subcellular colocalizations from BiolD data
(Fig. 1c). Specifically, for a proposed bait set, we applied NMF to the
bait-prey matrix, retaining only the proposed bait subsets with the
same number of components as the original NMF fit. We then used the
Hungarian algorithm®® to re-order the components to best match the
original and computed each component’s Pearson correlation
between the original and subset NMF components. Finally, a single
fitness score was computed by averaging the correlations of the best-
matched components between the original and subset, with a penalty
on low-value components to ensure comprehensive component cap-
ture (“Methods”).

Starting with an initial set of randomly generated bait subsets, the
algorithm iteratively applied crossover (swapping parts of two or more
bait subsets to create new ones), and mutation (randomly changing
baits in the bait subsets to introduce variability) operations® to gen-
erate new subsets, then evaluated each with a fitness function. The
subsets with the highest fitness scores were selected to generate
subsequent subsets, and the operations were repeated. Over succes-
sive generations, this process generated optimized bait subsets for
scalable BiolD profiling (Fig. 1d).

Contrasting bait subset selection by GENBAIT to random
selection

To compare the efficacy of a GENBAIT-determined bait subset to a
randomly selected subset of the same size, we selected ~1/3 of the baits
in each dataset (60, 40, and 45 for datasets 1, 2, and 3, respectively) asa
reasonable subset size, intended to approximate a moderate fraction
of the total bait set. We then recomputed their NMF representations
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Fig. 1| GENBAIT workflow and evaluation. a Proximity labeling data are acquired
by MS. Interaction scoring is performed to generate a matrix of baits and high-
confidence preys D. NMF is used to soft-assign preys into a predefined number of
components B based on GO:CC terms. b We compared GENBAIT’s performance to
10 feature selection methods and random selection (as a baseline) using 15 different
metrics. ¢ Schematic of the evaluation procedure (fitness function). Bait selection
generates a subset D’ of the original dataset D. NMF is used to soft assign the
subset’s preys into components B’, and the Hungarian algorithm is used to create a

matrix B*in which the components of B’ are aligned with those in the full dataset B.
Then, Pearson correlations between corresponding components are calculated.
The mean of the diagonal values is used as the fitness score in the genetic algorithm.
d Workflow of the genetic algorithm for optimizing BiolD bait subsets. Randomly
selected initial bait subsets undergo mutation and crossover operations, followed
by fitness evaluation. High-scoring subsets are used in the next generation to
iteratively define the optimal subset for scalable BiolD profiling.
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Fig. 2 | Comparing bait selection with GENBAIT against random selection.
a, b Correlation heatmaps between the original NMF results across all datasets and
randomly selected subsets of each. Diagonal values indicate correlations between

Number of generations
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corresponding components of the original and subset basis matrices.
¢ Comparison of mean NMF Pearson correlation scores over 1000 generations of
bait subsets using either GENBAIT or random selection or best random subset.

and measured their correlations with the NMF results of the full
datasets (Fig. 2a).

While these random subsets captured most components (as
shown by the high correlation coefficients on the heatmap diagonals),
they missed important components in all datasets. For dataset 1,
components related to the cytoskeleton, endoplasmic reticulum
membrane, and nucleus showed low correlation values. Similarly, for
dataset 2, components related to the endoplasmic reticulum mem-
brane, cytoskeleton, spliceosomal complex, and nucleoplasm had
lower correlations with the original dataset. In dataset 3, components
corresponding to the endoplasmic reticulum, cytoskeleton, micro-
tubule, and spliceosomal complex showed low correlation values,
indicating that these regions were not well preserved in random sub-
sets. Notably, when GENBAIT was used to generate optimized bait
subsets, all the components showed remarkably higher correlation

values (Fig. 2b). We also compared GENBAIT to a heuristic approach
that selects baits based on the number of preys they capture (Sup-
plementary Fig. 1). This method resulted in lower correlation values for
several components. GENBAIT, however, maintained higher correla-
tions across all datasets, further demonstrating its effectiveness in
optimizing bait selection for proximity proteomics.

Since GENBAIT iteratively generated 1000 bait subsets, we
investigated whether random selection could achieve a similarly high-
scoring subset given the same computational resources. We compared
mean NMF Pearson correlation scores of GENBAIT-selected subsets to
those of random subsets generated at each iteration, also tracking the
highest-scoring random subset across all iterations. GENBAIT quickly
reached a peak mean NMF Pearson correlation score (<100 genera-
tions), whereas random subsets, including the best-performing one,
failed to do so even after 1000 generations (Fig. 2c).
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Comprehensive benchmarking across multiple feature selection
methods and metrics

We next used our benchmarking pipeline to quantify the performances
of GENBAIT and 10 other feature selection methods (Fig. 1b and Sup-
plementary Table 1), including statistical tests of the associations
between baits and components (e.g., analysis of variance (ANOVA F),
mutual information and Chi-squared)®, variants of sparse regression
that select baits with non-zero coefficients for the subset (lasso, ridge,
and elasticnet)***°, and tests that measure the feature importance per
bait (random forest, gradient boosting machines (GBM)"** and
extreme gradient boosting (XGB)*?). Additionally, we incorporated a
neural network-based feature selection method, where a fully con-
nected feedforward network was trained on the dataset, and SHapley
Additive exPlanations (SHAP) values were used to determine the most
informative baits****. All methods were compared using subsets con-
taining 30-80 baits, across 10 random seeds.

We compared these methods using 15 metrics that assess how well
each bait subset aligned with the full dataset. These metrics were
grouped into categories reflecting statistical component similarity,
biological component similarity, overall biological preservation, and
clustering preservation (Supplementary Table 2). To ensure quantifi-
cation of both average and worst-case performance, we captured both
mean and minimum values for key metrics. This distinction is parti-
cularly important, as some compartments are inherently more difficult
to reconstruct, and strong average performance does not necessarily
mean all components are well preserved (Fig. 3a-j).

We specifically quantified Pearson correlation, Cosine similarity
and Kullback-Leibler (KL) divergence each of which offers a distinct
statistical perspective on component similarity. Pearson correlation
quantifies the linear relationship between original and subset com-
ponents by measuring how their values co-vary*. Cosine similarity
evaluates the alignment of components as vectors in high-dimensional
space, making it particularly useful for comparing interaction patterns
regardless of magnitude*’. KL divergence assesses how well the subset
preserves the overall distributional structure of the original data by
measuring differences in probability distributions*®,

Beyond component similarity comparisons, we calculated the
Adjusted Rand Index (ARI), purity score, and Jaccard index of enriched
GO terms, all of which depend on clustering preys using the NMF
components. NMF ARI, and NMF purity score measure how well prey
clustering assignments are retained between the original and subset
datasets, while the GO Jaccard index evaluates the overlap in enriched
GO terms, reflecting how well biological information is preserved*’=",

As expected, all methods performed markedly better than random
subset selection across all datasets and all evaluation metrics. GENBAIT
consistently achieved the highest scores in most mean NMF metrics.
Interestingly, GENBAIT demonstrated significantly higher performance
on the set of minimum NMF metrics compared to other methods. This
indicates GENBAIT preserves all components without disproportionately
underrepresenting any localization. In contrast, while other methods
performed well on average, they consistently had at least one compo-
nent with notably low values, suggesting a tendency to miss certain
cellular compartments. This pattern was observed across all datasets.
Among the other selection methods, differences were relatively small,
though a general trend emerged. Machine learning-based approaches,
particularly random forest models, tended to perform best, followed by
linear regression-based models. Statistical tests ranked lowest. These
trends remained consistent across different component numbers and
were reflected in our comparative analyses (Supplementary Fig. 2).

To evaluate bait selection methods independently of NMF clus-
tering, we analyzed a set of NMF-independent metrics focusing on two
main aspects. First, we assessed the percentage of original preys that
remained assigned to baits after subset selection. Second, we quanti-
fied the percentage of retrieved GO terms, measuring how well bio-
logical annotations were preserved. As expected, all bait selection

methods outperformed random selection across these metrics.
Beyond direct prey retention and GO term similarity, we incorporated
three alternative clustering-based metrics to compare the structural
consistency of subset-derived maps with the full dataset. We first
constructed k-nearest neighbor (KNN) graphs®® and applied Leiden
clustering™, evaluating the preservation of the original clustering
structure using ARI. Additionally, we applied Gaussian Mixture Model
(GMM)** clustering in two forms: a hard clustering approach, assessed
via ARI, and a soft clustering approach, where we measured Pearson
correlations between corresponding components in the original and
subset maps (Fig. 4a-e). Since these NMF-independent metrics do not
rely on NMF clustering, prey localization assignments do not neces-
sarily align with the original study annotations. Given that most feature
selection methods are optimized for NMF components or localization
patterns derived from NMF, these alternative clustering and retrieval-
based metrics serve primarily as complementary validation rather than
as primary benchmarks for bait selection. Across these metrics, Ridge
regression achieved the highest prey retention and GO term retrieval
percentage. Random forest performed best for Leiden ARI, while
GENBAIT ranked highest in GMM ARI, demonstrating its ability to
retain prey grouping across independent clustering approaches. GBM
showed the highest correlation between original and subset structures
in GMM soft clustering. However, differences between methods in
these metrics were relatively minor, reinforcing their secondary role in
evaluating bait selection. These trends remained consistent across
different numbers of clusters (Supplementary Fig. 3).

Additionally, to evaluate whether bait selection methods impact
the global structure of prey-prey interaction networks, we compared
topological metrics, including average shortest path length,
betweenness centrality, degree distribution, and graph density,
between the subset and original networks. Most methods performed
comparably and preserved these properties well, while random
selection showed the greatest variability. GENBAIT best retained the
degree distribution and performed competitively across other metrics.
Overall, these results indicate that most bait selection methods suc-
cessfully preserve the topological structure of the original network
(Supplementary Fig. 4).

Comparison with heuristic bait selection approaches
To further evaluate GENBAIT’s effectiveness at bait subset selection, we
compared it to three heuristic bait selection strategies: a high-yield
method and two manual methods. In the high-yield approach, baits were
selected based on having the highest number of significant preys in the
full dataset, without regard to compartment. In the first manual method,
an expert manually selected well-established marker proteins for each
compartment based on relevant literature and published cell biology
studies. In the second manual approach, compartments were first sorted
alphabetically, and for each compartment, baits were ordered by
decreasing prey count. The expert then iteratively selected the top
bait(s) per compartment to balance spatial coverage and prey yield.
These strategies were evaluated using the Human Cell Map dataset with
bait subset sizes of 40, 60, and 80 (Supplementary Table 3).
Comparing these heuristic approaches to our established
machine learning and statistical methods, we found GENBAIT con-
sistently outperformed heuristic approaches, which ranked lowest
across all evaluation metrics (Supplementary Figs. 5 and 6). While
expert-curated and high-yield baits selections ensured the inclusion of
key compartment-specific baits, they failed to optimize for the overall
dataset structure, leading to weaker proximal interactome capture.
Notably, all data-driven feature selection methods, including statistical
and machine learning-based approaches, outperformed these heur-
istics. These findings emphasize the limitations of simple selection
strategies and highlight the need for optimization-driven approaches
like GENBAIT to generate representative and biologically meaningful
bait subsets.
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Assessing the applicability of selected baits across different
cell lines

To assess whether selected baits are ubiquitously expressed, we
extracted ProteomicsDB* expression data for the top baits selected by
GENBAIT from the Human Cell Map across an extended set of 11 cell

lines (see “Methods”). Of the 46 baits that could be analyzed, 71.7%
(33/46) were detectably expressed in all 11 cell lines, and 100% (46/46)
were expressed in at least half of them. This widespread expression
indicates that the selected baits are not overly optimized for a single
cell line (Supplementary Fig. 7). Additionally, to assess whether
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cluster numbers. Each method selected 30-80 baits over 10 random seeds. Box
plots show median values; hinges are the 25th and 75th percentiles; whiskers
indicate 1.5x the interquartile range (IQR). Highest average median values have
been shaded in gray.

GENBAIT-selected baits are influenced by cell cycle variation, we
examined their classification in the Human Protein Atlas (HPA)®. Of the
50 baits, 12 were not found in the HPA database. Among the remaining
38, only one (DCTN1) was annotated as cell cycle dependent.

To further evaluate bait selection beyond HEK-293, we simulated
prey-bait matrices based on prey-bait expression ratios between HEK-
293 and different cell lines (see “Methods”). This allowed us to model
how expression differences might impact reconstruction of proximity
interactome using HEK-293-derived baits. We then assessed the per-
formance of GENBAIT and other bait selection methods within these
simulated datasets using metrics we previously defined. Despite
expression variability, HEK-293-selected baits remained effective in
reconstructing proximity interactomes across different cell lines,
consistently achieving high scores across our evaluation metrics and
outperforming random selection (Supplementary Note 1). While some
compartments exhibited lower correlation values due to missing preys
or baits, the overall interactome structure was largely preserved. We
further confirmed that GENBAIT performance is not simply driven by
global prey expression similarity: mean NMF Pearson scores and
overall prey expression correlation with HEK-293 were not correlated

(r=-0.27, p=0.452; Supplementary Fig. 8). This suggests that HEK-
293-derived bait subsets provide a reliable foundation for spatial
proteomic mapping across diverse cellular environments.

Robustness of subcellular map reconstruction at different bait
subset sizes and random seeds

To assess the stability of bait subset selection methods, we evaluated
their performance across different bait subset sizes, ranging from 30
to 80 baits. For each method, we generated 10 independent subsets
per bait length to measure consistency across different random initi-
alizations. In GENBAIT, this randomness comes from the initial bait
subset, which is selected randomly. In other methods, the randomness
arises from the random train-test split of data, which differs with each
seed. We then computed the mean NMF Pearson correlation scores to
quantify how well each subset preserved the organization of the ori-
ginal dataset (Fig. 5a). Across all methods and datasets, the mean NMF
Pearson correlation score increased with the number of selected baits,
demonstrating that larger subsets generally retain more information
from the full dataset. GENBAIT consistently achieved the highest
scores across all bait lengths and exhibited a gradual, steady increase
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Fig. 5 | Impacts of varying the subset size and random initializing seed on the
performance of bait subset selection methods. a Mean NMF Pearson correlation
scores for each bait selection method across different bait subset sizes. Colored
lines indicate the mean across random seeds, and shaded regions represent +1
standard deviation. b Heatmap showing the correlation of individual NMF com-
ponents between the original dataset and subsets generated by different bait

selection methods across various bait subset sizes. Each column represents a
method at a specific bait length, while each row corresponds to an NMF compo-
nent. ¢ Runtime analysis of bait selection methods across different bait subset sizes.
Lines represent the mean runtime (log scale) over three independent runs, and
shaded regions indicate +1 standard deviation.

in performance, ultimately reaching a plateau. This smooth progres-
sion without major fluctuations suggests that GENBAIT optimizes bait
selection without being trapped in local optima. In contrast, other
methods displayed substantial fluctuations across different bait sizes,
and their performance did not stabilize as clearly as GENBAIT. This
inconsistency suggests that these methods may be more sensitive to
the initial random selection of baits, leading to variable results. Nota-
bly, GENBAIT exhibited minimal variance, demonstrating its robust-
ness to initialization effects. In contrast, all other methods showed
remarkably larger variations, highlighting their sensitivity to random
initialization and the potential instability of their selected subsets.
Together, these results emphasize that while all methods improve with

increasing bait numbers, GENBAIT not only outperforms other
approaches but also provides the most stable and reproducible bait
selection.

To determine whether certain NMF components consistently
require more baits for accurate reconstruction, we analyzed
component-wise Pearson correlation values across bait subset sizes.
This helped assess whether specific subcellular compartments are
inherently harder to capture due to biological complexity, spatial
organization, or technical constraints. Some components exhibited
persistently low correlation values across all methods, particularly at
smaller bait sizes (Fig. 5b). In dataset 1, these included the cytoskeleton
(component 8), centrosome (component 9), and cytoplasmic
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ribonucleoprotein granules (component 19). In dataset 2, cytoplasmic
ribonucleoprotein granules (component 1) and cytoplasmic stress
granules (component 12) were the most challenging, while in dataset 3,
splicing machinery (component 5), PML bodies (component 15), and
polycomb complexes (component 18) were the hardest to recapitu-
late. Notably, many of these difficult-to-reconstruct components cor-
respond to biologically complex compartments that encompass
diverse sets of interacting proteins. Our results suggest that the diffi-
culty in reconstructing these components is at least partly driven by
their size and heterogeneity, which demand broader bait coverage to
capture their full interactions. GENBAIT consistently improved corre-
lation values for these challenging components as bait number
increased, indicating that it effectively prioritizes baits critical for
preserving complex subcellular structures (Fig. 5b). In contrast, other
methods often showed uneven gains, with some components
improving at the cost of others. The ability of GENBAIT to progres-
sively recover low-correlation components without sacrificing the rest
of the proteome structure highlights its strength in maintaining spatial
organization across compartments of varying size and complexity.

Runtime analysis

To evaluate computational efficiency, we analyzed runtime at bait
subset sizes of 30, 60, and 90, repeating each run three times (Fig. 5¢).
Most methods exhibited a consistent runtime regardless of bait size, as
they primarily rely on ranking all baits. In contrast, GENBAIT’s runtime
increased with bait size due to its iterative optimization process.
Neural network-based selection took longer than other ML-based
methods but was still much faster than GENBAIT. Despite its higher
computational cost, GENBAIT remains feasible, requiring under two
hours to select 90 baits in a dataset of ~200 baits. While the most time-
intensive, a runtime of under two hours is minimal compared to the
duration of a typical proximity labeling experiment, which often spans
weeks to months.

Recommendations for bait subset selection for BiolD

To facilitate a comparison of GENBAIT and other feature selection
methods, we generated overall scores and ranked them (Fig. 6). To do
so, we computed average scores for each evaluation metric and scaled
them such that the minimum value was 0 and the maximum was 1,
ensuring consistency across different metrics. The overall scores for
each method were then determined by averaging these scaled scores
across all metrics, except for the primary metrics, which are the mean
and minimum NMF Pearson correlation score, that are directly opti-
mized by GENBAIT. Finally, these overall scores were also scaled to a
0-1 range for consistency.

GENBAIT ranked highest across all datasets, consistently out-
performing other methods. While some bait selection methods per-
formed well in specific datasets, their performance was inconsistent
across different datasets and metrics. This variability highlights the
limitations of purely statistical or machine learning-based approaches,
which may be biased toward the most dominant features rather than
ensuring the comprehensive retention of all subcellular components.
Notably, clustering-based metrics tended to favor methods that
prioritize identifying the most dominant localization of proteins.
However, our main objective is to preserve all localizations within the
subsets, which these approaches may not fully capture. GENBAIT, on
the other hand, performed best in NMF-dependent metrics, demon-
strating its ability to optimize bait selection for reconstructing sub-
cellular localization maps. It effectively retains information across
multiple localizations, making it a suitable choice for protein multi-
localization studies.

Overall, no single method was universally optimal, but feature
selection consistently outperformed random bait selection. Our
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recommendation framework (Fig. 7) provides guidance to allow users
to tailor choices based on specific requirements. When adequate sys-
tem memory (RAM) is available, GENBAIT is the clear choice for pre-
serving clustering structures and optimizing bait selection. For faster
alternatives, regression-based methods like lasso, ridge, or elastic net
offer a balance between speed and accuracy. When efficiency is a
priority, ensemble methods such as random forest, GBM, XGB, and
neural networks provide a practical option, performing well across
NMF-based and biological retrieval metrics.

Discussion

Our study demonstrates the potential of feature selection methods,
including a genetic algorithm-based approach, GENBAIT, in addressing
the challenge of selecting optimal bait subsets for BiolD experiments.
By developing and applying a comprehensive evaluation pipeline with
15 diverse metrics, we provide a robust framework for assessing and
comparing these methods in the context of proximity proteomics
research. Given the high cost and complexity of large-scale BiolD
experiments, optimizing bait selection is essential for balancing
experimental efficiency with biological coverage. To address this
challenge, we systematically evaluated feature selection methods to
determine their effectiveness in preserving spatial proteomic organi-
zation while minimizing the number of required baits.

A key contribution of this work is demonstrating that established
feature selection methods can be effectively adapted for BiolD bait
selection, significantly outperforming random selection. Additionally,
our introduction of a set of benchmarking metrics provides a stan-
dardized approach for evaluating bait subsets, allowing researchers to
make data-driven decisions tailored to their specific research goals.
These metrics serve as practical tools for selecting baits that maintain
the structural and functional integrity of the original dataset, ensuring
that biologically relevant interactions are preserved. GENBAIT showed
strong performance across multiple metrics, particularly those derived
from NMF-based analyses. However, it did not universally outperform
all other methods across every metric, highlighting the importance of
selecting a feature selection strategy that aligns with the specific
objectives of a study rather than relying on a single approach. Machine
learning and statistical methods also performed well, particularly for
metrics that emphasize primary localization rather than multi-
localization. This underscores the need to consider both the method’s
strengths and the biological context when choosing an optimal bait
selection strategy. While not strictly statistically independent, the 15
metrics in our benchmarking framework are complementary as

evidenced by the fact no method consistently outperforms others.
Consequently, collapsing them into one overall rank can mask
important differences between methods. In practice, we advise users
to interpret the results hierarchically: NMF-based metrics quantify how
well structural information is preserved, while biological metrics
assess functional coverage. Depending on the study focus, these
metrics can be weighted differently.

While our study focuses on BiolD-based proximity proteomics,
the underlying framework of GENBAIT is not limited to a specific
labeling enzyme. Beyond BiolD, proximity labeling methods such as
APEX generate similar bait-prey interaction matrices, suggesting that
the same feature selection principles can be applied to optimize bait
selection across multiple proximity proteomics approaches.

Although GENBAIT was originally developed for large-scale
proximity proteomics studies, such as mapping organelles and spa-
tial interaction networks, it can also be useful to support more targeted
applications, using source data (e.g., the Human Cell Map dataset). For
example, if a researcher is interested in just a few compartments, they
can focus on that specific region of the proximity map and apply the
full GENBAIT workflow to select the most informative baits within that
subset. This makes GENBAIT a flexible tool that can support both
system-wide studies and more focused, targeted experiments.
Although GENBAIT requires an initial dataset, this upfront investment
can substantially reduce the number of subsequent experiments by
focusing efforts on the most informative baits. For smaller-scale pro-
jects, using the growing list of large reference maps minimizes the
need for extensive pre-screening while still providing the benefits of
reduced experimental costs and improved coverage.

Despite its advantages, GENBAIT has certain limitations. First,
although our computational approach provides valuable insights, we
did not experimentally validate the bait subsets generated by GENBAIT
or other methods. Additionally, while GENBAIT’s optimization-based
approach ensures high-quality bait selection, it is computationally
more demanding than other methods. Although runtime remains
feasible, it may be a limiting factor for researchers with constrained
computational resources. Future iterations of GENBAIT could focus on
improving efficiency through parallelization and algorithmic refine-
ments without sacrificing performance.

In conclusion, our study highlights the utility of feature selection
methods for BiolD bait subset selection and provides a comprehensive
framework for evaluating these methods. While GENBAIT offers a
highly competitive approach, particularly for studies focused on
multilocalization, it is not a one-size-fits-all solution. Researchers
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should carefully consider their specific research objectives, available
resources, and the trade-offs between accuracy and computational
efficiency when selecting a feature selection method. By providing a
structured framework for bait selection and formalizing benchmarking
metrics, this study lays the foundation for optimizing proximity
labeling experiments at scale.

Methods

Data preprocessing

The datasets were preprocessed using a custom pipeline to ensure
data quality and consistency. First, the average spectral counts for
each prey protein identified in the negative controls were subtracted
from its average spectral counts observed for a given bait, giving a
corrected average. Preys were then filtered to include only high-
confidence interactions (i.e., those with a Bayesian false discovery rate
(BFDR)* < 0.01 for datasets 1 and 3, and SaintScore > 0.95 for dataset
2). These data were pivoted to create a matrix with the baits in rows
and the preys in columns, which was filled with control-subtracted
average spectral count values. The MinMaxScaler was applied to scale
the data, ensuring that feature values were normalized
between 0 and 1.

Benchmarking methods

Data preparation. Each preprocessed dataset was randomly split into
80% for training and 20% for testing, ensuring reproducibility with a
fixed seed. To prevent data leakage, non-negative least squares
(NNLS)* fitting was applied during decomposition. NMF was first
applied on the full dataset to generate scores and basis matrices while
preserving the original number of components. The basis matrix was
then used to assign each prey to the component with its highest score,
forming the target variables for feature selection. NMF was separately
applied to the training subset to obtain its scores and basis matrices.
For the testing subset, the basis matrix was initialized with zeros and
computed using NNLS to maintain consistency with the training
decomposition. This ensured that information from the test set did not
influence the training process. The resulting matrices were combined
to create a complete set for training and testing, where transposed
data matrices served as input variables, and target labels were based
on the assigned NMF components.

Feature selection methods. We used multiple feature selection
methods to identify the most informative features:

* Chi-squared tests*” (chi2 in scikit-learn®® python package) were
used to assess the dependency between each feature and the
assigned class label, which was determined based on the
component with the highest value following NMF. The test
evaluates whether the distribution of a feature’s values differs
significantly across classes by comparing the observed values to
what would be expected if there were no relationship between the
feature and the class label. The chi-squared score measures how
strongly a feature is associated with a class label. A higher score
indicates that a feature varies significantly across different NMF
components, meaning it is more informative for classification. All
baits are ranked based on their chi-squared scores, and for each
desired bait length, the top-ranked features are selected.
ANOVA F tests® (f classif in scikit-learn python package) were
used to identify features that show significant differences across
the assigned class labels, which were determined based on the
highest NMF component values. This test evaluates whether the
mean values of a feature differ significantly between classes by
comparing the variance within each class to the variance between
classes. The F-score quantifies how much a feature’s values vary
across different NMF components. A higher F-score indicates that
a feature shows greater variation between classes than within
them, making it more informative for classification. All features

are ranked based on their F-scores, and for each desired bait
length, the top-ranked features are selected.

Mutual information® (mutual_info_classif in scikit-learn®® python
package) was used to measure the dependency between each
feature and the assigned class label, which was determined based
on the highest NMF component values. Unlike statistical tests that
assume a linear relationship, mutual information captures both
linear and nonlinear associations by quantifying how much
knowing the value of a feature reduces uncertainty about the
class label. A higher mutual information score indicates that a
feature provides more information about the assigned class,
making it more relevant for selection. All features are ranked
based on their mutual information scores, and for each desired
bait length, the top-ranked features are selected.

Lasso regression® (Logistic Regression in scikit-learn python
package) was used to perform feature selection by applying an L1
penalty to a logistic regression model with saga® solver. This
penalty encourages sparsity in the model by driving the
coefficients of less important features to exactly zero, effectively
removing them from consideration. After training the model, the
absolute values of the learned coefficients were examined.
Features with larger absolute coefficients were considered more
important, as they contributed more to distinguishing between
classes based on the NMF component assignments. All features
were ranked based on these absolute coefficient values, and for
each desired bait length, the top-ranked features were selected.
Ridge regression® (Logistic Regression in scikit-learn python
package) was used for feature selection by applying an L2 penalty
with saga solver, which discourages large coefficient values but
does not force them to zero. Unlike Lasso, which performs strict
feature selection by eliminating some coefficients, Ridge retains
all features while reducing the impact of less informative ones.
After training the model, the absolute values of the learned
coefficients were computed to rank all baits. Features with the
highest absolute coefficients were selected, ensuring that the
most important predictors were chosen for each desired bait
length.

Elastic net regression®® (Logistic Regression in scikit-learn python
package) was used for feature selection by combining both L1 and
L2 penalties, balancing sparsity and regularization. This method
benefits from Lasso’s ability to shrink some coefficients to zero
while leveraging Ridge’s stability in handling correlated features.
After training the model, the absolute values of the learned
coefficients were computed to rank all baits. Features with the
highest absolute coefficients were selected for each desired bait
length.

Random forest®* (RandomForestClassifier in scikit-learn python
package) selects important features by measuring how much they
help separate different classes in decision trees. Each tree in the
model is trained on a random part of the data, and at each split,
the algorithm picks the feature that best groups similar samples
together. Features that consistently improve grouping are
considered more important. The importance scores from all trees
are averaged, and features are ranked based on these scores. For
each bait length, the top-ranked features are selected.

GBM® (GradientBoostingClassifier in scikit-learn python package)
build a series of decision trees, where each tree focuses on
correcting the mistakes of the previous one. The importance of
each feature is determined by how much it improves the model’s
predictions at each split. Features that contribute more to
reducing errors are assigned higher importance scores. After
training, features are ranked based on these scores, and the top-
ranked features are selected for each bait length.

XGB® (XGBClassifier in XGBoost*> python package)is an opti-
mized version of gradient boosting that uses efficient techniques
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like regularization and handling missing values to improve per-
formance. It measures feature importance based on how often a
feature is used in tree splits and how much it helps reduce errors.
Features with higher scores are ranked higher, and for each bait
length, the top-ranked features are selected.

Neural network-based feature selection was performed using a
fully connected feedforward neural network trained with PyTorch
Lightning®’. The model consisted of an input layer, a hidden layer
with ReLU activation, and an output layer corresponding to the
number of components. The network was optimized using the
Adam optimizer®® and trained with cross-entropy loss. Once
trained, SHAP values were computed to estimate the contribution
of each feature to the network’s predictions. The SHAP values
were averaged across all samples, and the features with the
highest SHAP importance scores were selected for each bait
length.

Bait subset selection with GENBAIT

Algorithm initialization. An initial population of solutions was gen-
erated, with each individual represented as a binary vector. The
length of the vector corresponded to the number of baits in
the dataset, with each element indicating the presence (1) or
absence (0) of a particular bait. A predetermined random seed was
used to initialize the population, ensuring the reproducibility of the
results.

Fitness function. The fitness of each individual was determined
using a custom fitness function, evalSubsetCorrelation, which
assessed the subset’s representativeness of the original dataset
based on the correlations between their corresponding NMF com-
ponents. Subsets outside the pre-specified size range were heavily
penalized to enforce size constraints. For valid subsets, NMF was
applied to extract basis matrices, followed by alignment using the
Hungarian algorithm®® to ensure that the components were ordered
as in the original dataset. The fitness score was calculated using
the correlation matrix diagonal values, with penalties for negative
correlations to discourage unrepresentative feature combinations.

The fitness function, f(/), for an individual / in the genetic algo-
rithm is defined as follows:

0 if|S(/)|¢subset range
fin= { mean (diag(Corr(B, B))) — Penalty(/) otherwise @

Where:
IS(N| is the size of the feature subset represented by the indivi-
dual /.

Subset range is the allowable size range for the feature subset.

B is the basis matrix from NMF applied to the original dataset.
B*is the reordered basis matrix from NMF applied to the subset of
data corresponding to /.

Corr(B, B*) calculates the correlation matrix between column of
matrices B and B*.

diag(X) extracts the diagonal elements of matrix X.

Penalty(/) is a function that applies a penalty based on the number
of negative values in the diagonal of the correlation matrix, cal-
culated as:

Penalty(/) = Penalty factor

2
x (number of negative values in diag(Corr(B, B¥))) @

* Penalty factor is a predefined constant.

Genetic operators. Crossover and mutation were implemented to
generate new solutions®’. Crossover was performed using a two-point
crossover method (cxTwoPoint) with a specified probability. Mutation
(mutFlipBit) involved flipping bits in the individual's binary repre-
sentation with a mutation probability. Individuals were selected for the
next generation based on fitness, using a tournament selection
method (selTournament).

Algorithm execution. GENBAIT ran for a defined number of genera-
tions (n_generations), each involving selection, crossover, and muta-
tion. The algorithm’s progress and population dynamics were tracked
using a logbook, and the best-performing individuals were recorded in
a hall-of-fame.

Computational environment and resources. The GENBAIT algorithm
was implemented in Python, using the DEAP”°, NumPy”, Pandas’
libraries for evolutionary computations, numerical operations, and
data processing, respectively. NMF decomposition was performed
using the scikit-learn library. Nonnegative Double Singular Value
Decomposition was used for NMF initialization, and the regularization
parameter (l1_ratio) was set to 1. The Hungarian algorithm was applied
through the SciPy” library’s linear_sum_assignment function.

Algorithm parameters. Specific parameters used in GENBAIT,
including population sizes, crossover and mutation probabilities, and
the number of generations, were chosen based on preliminary
experiments to balance computational efficiency and the quality of the
feature selection process (see Supplementary Table 4).

Random bait subset selection

To establish a baseline for comparison, we generated 1000 random
subsets of features by randomly selecting a set of indices from the
original dataset, with the subset size falling within a specified range
between 30 and 80. We then evaluated their utility as a reference point
against which the performance of more systematic feature selection
methods could be assessed, based on corresponding NMF compo-
nents correlations.

Validation metrics

Mean and minimum NMF Cosine similarity. To assess how well bait
subsets retained the structure of the full dataset, we computed the
mean and minimum Cosine similarity after aligning the NMF basis
matrices. Subsets generated by random selection, GENBAIT, and other
methods were subjected to NMF, and their basis matrices were aligned
with the original dataset using the Hungarian algorithm by minimizing
the overall dissimilarity. After reordering the subset components,
Cosine similarity was calculated. Mean Cosine similarity measured
overall similarity between the full and subset datasets, reflecting global
structural consistency. Minimum Cosine similarity captured the
weakest-matching component, identifying cases where certain sub-
cellular localizations were not well preserved.

Mean and maximum NMF Kullback-Leibler (KL) divergence. To
assess how well the selected bait subsets preserved the probabilistic
distribution of prey assignments within each NMF component, we
computed the mean and maximum KL divergence. Unlike Cosine
similarity, which measures structural alignment, KL divergence quan-
tifies how much the probability distribution of the subset deviates
from the original dataset. After performing NMF on both the full and
subset datasets, we aligned the subset basis matrix with the original
using the Hungarian algorithm. To ensure valid probability distribu-
tions, each basis matrix was normalized by summing component
values to one, with a small epsilon added to prevent division errors. KL
divergence was then calculated between corresponding components,
measuring the relative information loss in prey distributions. Mean KL
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divergence provided an overall measure of how much, on average, the
subset components deviated from the original distributions. A lower
mean value indicated that the subset retained the overall localization
structure well. Maximum KL divergence highlighted the most diver-
gent component, identifying cases where a specific subcellular locali-
zation was poorly preserved.

NMF ARI and min NMF purity score. To evaluate how well the selected
bait subsets preserved the clustering assignment of the original data-
set, we computed NMF ARI and the minimum NMF purity score. Sub-
sets generated by different methods were subjected to NMF, and their
basis matrices were aligned with the original dataset using the Hun-
garian algorithm. ARI quantifies the agreement between component
assignments of preys in the original and subset datasets while cor-
recting for chance. A value of 1 indicates perfect clustering retention,
whereas O represents random clustering. To calculate ARI, preys were
assigned to the component with the highest value in both the original
and subset basis matrices, and clustering similarity was measured.
Minimum NMF purity score evaluates how well individual components
retained their original composition. It measures the fraction of preys
within each component that remained consistently assigned to the
same cluster after subset selection. A high purity score indicates that
most preys in a component were preserved, while a low score suggests
that some compartments were misclassified. While ARI provides a
global measure of clustering similarity, the minimum purity score
ensures that no single component is significantly disrupted.

Mean and minimum NMF GO Jaccard index. To evaluate how well
each bait subset preserved the biological relevance of the original
dataset, we computed the mean and minimum GO Jaccard index. Bait
subsets generated through feature selection methods underwent
NMF, and their basis matrices were aligned with the original dataset
using the Hungarian algorithm. The GO Jaccard index quantifies the
overlap between GO terms enriched in the NMF components of the
original and subset datasets. It is calculated as the size of the inter-
section divided by the union of GO terms for each component, with
higher values indicating greater biological consistency. GO term
enrichment was performed using g:Profiler, retrieving the most sig-
nificant GO:CC terms associated with each NMF component in both
the original and subset datasets. The mean GO Jaccard index repre-
sents the overall functional similarity across all components, providing
a general measure of how well the subset retains biological annota-
tions from the full dataset. The minimum GO Jaccard index, in contrast,
highlights the weakest-matching component, identifying cases where
specific subcellular localizations or functional groups are dis-
proportionately affected.

Leiden clustering. To evaluate how well the selected bait subsets
preserved the neighborhood structure of the original dataset, we
performed Leiden clustering using leidenalg>”* python package on
KNN graphs constructed from the original and subset datasets and
computed the ARI between their cluster memberships. In more
details, we constructed a KNN graph using igraph” python package,
where vertices represented preys and edges indicated neighbor
relationships. The number of neighbors (k) was set to 20, and
connectivity-based graphing was used. The resulting graph was then
converted into a network representation for clustering analysis.
Leiden clustering was applied to the KNN graph using a community
detection algorithm optimized for modularity. The clustering was
performed at different resolution parameters (0.5, 1, 1.5) to explore
the robustness of cluster structures. Each bait was assigned to a
cluster based on its neighborhood relationships, and cluster mem-
berships were recorded. Clustering was performed separately for
the original dataset and for all generated subsets. For each subset, a
new KNN graph was constructed and clustered using the same

parameters as for the original data. The similarity between the
cluster memberships in the original and subset datasets was quan-
tified using the ARI, providing a measure of cluster preservation. The
entire process was repeated across 10 random seeds to assess
consistency.

GMM hard clustering. We applied GMM clustering using scikit-learn
python package to both the original and subset datasets and quan-
tified the similarity of their cluster assignments using ARI, to eval-
uate how well the selected bait subsets preserved the prey cluster
structure of the original dataset. For each bait subset, GMM was
applied to assign preys to clusters, with models trained using 15, 20,
25, and 30 clusters for datasets 1 and 3, and 5, 10, 15, and 20 clusters
for dataset 2. Only preys present in both the original and subset
datasets were considered in the evaluation. The bait subset was
clustered separately, and its assignments were aligned with those
from the full dataset. ARI was computed to quantify the similarity
between the original and subset cluster assignments, ensuring that
the subset preserved the structural organization of the full dataset.
The entire process was repeated across 10 random seeds to assess
consistency.

GMM soft clustering. To evaluate how well the selected bait subsets
preserved the probabilistic prey cluster structure of the original
dataset, we applied soft GMM clustering to both the original and
subset datasets and quantified the similarity of their cluster probability
distributions using mean diagonal correlation. GMM soft clustering
was applied using 15, 20, 25, and 30 clusters for datasets 1 and 3, and 5,
10, 15, and 20 clusters for dataset 2. Instead of assigning each prey to a
single cluster, this approach estimated the probability of each prey
belonging to multiple clusters. For reference, the original dataset was
first clustered, and the probability distributions of preys across clus-
ters were stored. The same clustering procedure was then applied to
each bait subset, generating probability distributions that were com-
pared to those from the full dataset. The alignment between original
and subset clusters was optimized using the Hungarian algorithm, and
the correlation between corresponding cluster probability distribu-
tions was computed as a measure of similarity. The mean diagonal
correlation of the reordered probability matrix was used to quantify
how well the subset preserved the probabilistic structure of the ori-
ginal dataset. Higher values indicated greater retention of prey loca-
lization patterns, while lower values suggested a loss of structural
information. The entire process was repeated across 10 random seeds
to assess consistency.

Remaining preys percentage. We next quantified how well different
feature selection methods preserved relevant biological information in
the original datasets by calculating remaining preys percentage. For
each subset generated, we calculated the proportion of non-zero
preys, which means preys that have at least one interaction with one of
the selected baits, to assess the retention of significant preys.

GO retrieval percentage. We then analyzed how well bait subsets
retain biological annotations by measuring the percentage of GO
terms retrieved from the original dataset. The analysis began by
loading the gene annotation file (GAF)’®”” data into a structured for-
mat. Each entry in the GAF file, adhering to the GAF 2.1 specification,
was parsed to extract required information, including the database
identifier, object symbol, and GO ID.

Each subset’s genes were mapped to GO:CC terms, with a focus on
identifying and retaining terms within a specified maximum term size
(=1000) to mitigate the influence of broader terms focusing on a
certain level of specificity. We then quantified the overlap in GO terms
between the original dataset and the subsets. This was achieved by
calculating the percentage of common GO terms, providing a measure
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of preservation of biological relevance across different feature selec-
tion methods.

Statistical analysis. We assessed the statistical significance of differ-
ences between feature selection methods using two-sided
Mann-Whitney U test, a non-parametric test that compares the dis-
tributions of scores between methods. Pairwise comparisons were
performed across all methods, and p values were adjusted for multiple
testing using the Benjamini-Hochberg correction to control the false
discovery rate.

Benchmarking the methods using different metrics and calculating
overall scores. To compare GENBAIT’s performance with that of other
feature selection methods, we calculated average scores for each
evaluation metric, which were normalized to 0-1 to ensure the com-
parability of different metrics. Overall scores for each method were
calculated by averaging the normalized scores across all metrics,
excluding the main metrics (mean and minimum NMF Pearson corre-
lation scores). This approach allowed us to objectively assess and rank
the performance of each method across multiple evaluation criteria.

Network topology analysis. To evaluate how different feature selec-
tion methods affect the structural properties of prey-prey interaction
networks, we computed network topology metrics for each method’s
selected subset. A prey-prey adjacency matrix was constructed, gen-
erating an undirected graph representation of the dataset using
networkx’® Python package. We then calculated multiple graph topo-
logical properties to assess how well each method preserved the net-
work structure.

Average shortest path length is the average number of steps
required to travel between two nodes. A shorter path length suggests
that the network remains well-connected, while longer paths indicate
that interactions have become more dispersed due to bait selection.
Betweenness centrality quantifies the extent to which a node acts as a
bridge in the network by measuring the number of shortest paths that
pass through it. High betweenness values indicate proteins that facil-
itate communication between different regions of the network. If a
subset network has significantly lower betweenness values, it suggests
that some key bridging interactions may have been lost. Degree dis-
tribution measures the average number of connections per prey. A
high degree suggests that certain proteins serve as key interaction
hubs, while a lower degree indicates a more fragmented network.
Comparing the degree distributions of the subset and original net-
works helps determine whether bait selection disproportionately
removes highly connected preys. Network density represents the
proportion of possible edges that are present in the network. A high
density means that preys are highly interconnected, while a lower
density indicates sparser interactions. This metric helps evaluate
whether the selected baits lead to a network that remains as inter-
connected as the original.

To compare the networks derived from different bait selection
methods, we calculated the ratio of each metric between the subset
and the original network. A ratio close to 1 suggests that the method
effectively maintains the original network’s structural properties, while
deviations indicate changes in connectivity patterns. The metrics were
evaluated across bait lengths ranging from 30 to 80 and 10 random
seeds to ensure robustness.

Heuristic bait selection

We implemented three heuristic bait selection strategies for compar-
ison with GENBAIT and other computational methods. In the first
approach, baits were selected solely based on the highest number of
significant preys (SAINT BFDR < 0.01) in the full dataset, regardless of
their subcellular localization. In the second approach, an expert
manually reviewed all compartments using Human Cell Map

annotations and identified well-established marker proteins for each
compartment based on relevant literature and published cell biology
studies. For each compartment, the overlap between these known
markers and the available baits in the Human Cell Map was deter-
mined, and matching baits were selected. In the third approach, an
expert curated bait panels by iterating through all compartments
(based on Human Cell Map annotations), sorted alphabetically and by
decreasing prey count, and then selecting the top-ranking baits per
compartment to balance biological diversity and prey coverage. Multi-
localized baits were expanded across compartments where applicable,
and rounding adjustments were applied to ensure the bait panel
matched the desired size. All three strategies were used to generate
bait subsets of size 40, 60, and 80 for benchmarking.

Bait expression across cell lines

To evaluate whether GENBAIT-selected baits maintain consistent
expression across diverse cellular contexts, we analyzed protein
expression profiles using publicly available data from ProteomicsDB.
Because missing values in these datasets typically indicate non-
detection rather than confirmed absence, we selected the 10 human
cell lines with the greatest overlap in detected proteins with the HEK-
293 prey/bait list. This strategy ensured sufficient coverage to enable
meaningful comparison of expression levels across cell types, while
minimizing the confounding effects of missing data. For each bait,
expression levels were retrieved from normalized expression profiles
provided by ProteomicsDB. Expression values were extracted for all 11
cell lines (HEK-293 plus 10 others), and a heatmap was generated to
visualize the expression of all selected baits across cell lines. To
quantify expression consistency, we excluded four baits—CALR3,
CYP2C1_sigseq, HISTIH2BG, and SV40_NLS—from the statistical ana-
lysis. These baits were excluded because they are either not endo-
genously expressed in human cell lines (CALR3), correspond to non-
human constructs (CYP2CL_sigseq and HIST1IH2BG, which are derived
from rabbit and mouse, respectively), or represent synthetic elements
(SV40_NLS). Among the remaining 46 baits, we calculated the number
of cell lines in which each bait was expressed (non-zero value). We then
determined the percentage of baits expressed in all cell lines and the
percentage expressed in at least half.

Simulation analysis and adjusted prey-bait matrices

To assess how bait selection methods perform in different cellular
contexts, we simulated prey-bait interaction matrices for multiple cell
lines using expression data from ProteomicsDB. Since protein abun-
dance varies across cell lines, we adjusted the prey-bait interaction
values based on expression ratios between HEK-293 and each target
cell line. This adjustment accounted for differences in protein avail-
ability, allowing us to model how interactome structures might change
across cellular environments.

For each cell line, we generated an adjusted prey-bait matrix by
scaling interactions according to the relative expression levels of both
the bait and the prey. If a bait or prey was missing in a given cell line, its
interactions were excluded to ensure biological relevance. In more
detail, the adjusted prey-bait interaction matrix for each cell line is
computed using the relative expression ratios of baits and preys
between HEK-293 and the target cell line. The formula for adjusting
interaction values is:

E target, i

A/ij :Aij % < ) % Etarget,j
13 HEK—293,i E HEK—293, j
Where:

* Ay is the original prey-bait interaction value in HEK-293.

* A’ is the adjusted interaction value for the target cell line.

* Enek203,i and Egargeri are the expression levels of bait i in HEK-293
and the target cell line, respectively.
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* Enek203 and Egargeqj are the expression levels of prey j in HEK-293
and the target cell line, respectively.

To evaluate how well bait selection strategies generalize across
cell lines, bait panels selected in HEK-293 by GENBAIT and 10 other
methods were applied to the simulated prey-bait matrices of other
cell lines, alongside a random baseline. Bait subset sizes ranged from
30 to 80, with 10 random seeds for each. The effectiveness of
selection strategies was assessed using defined metrics (Supple-
mentary Note 1).

Correlation between GNEBAIT performance and prey expres-
sion similarity

To test whether GENBAIT performance is influenced by overall simi-
larity in expression profiles, we also calculated the Pearson correlation
between each cell line’s normalized prey expression profile and that of
HEK-293. These correlations were then compared to GENBAIT’s mean
NMF Pearson scores per cell line, which were computed by averaging
the NMF-based component similarity scores across bait subset sizes of
30-80, and across 10 random seeds. The resulting correlation plot
allowed us to assess whether GENBAIT’s effectiveness is associated
with prey expression similarity between cell lines.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The SAINT files used in this study are available from the following
sources: dataset 1 (Supplementary Table 2 of [https://static-content.
springer.com/esm/art%3A10.1038%2Fs41586-021-03592-2/
MediaObjects/41586_2021 3592 MOESM2_ESM.zip]), dataset 2 ([https://
www.cell.com/cms/10.1016/j.molcel.2017.12.020/attachment/a4771708-
1145-4272-86¢0-aa2a0ba0e278/mmc2.xIsx]), and dataset 3 ([https://
massive.ucsd.edu/ProteoSAFe/DownloadResultFile?file=f.
MSV000090684%2Fother%2FDyakov_Table_3.xIsx&forceDownload=
true]). Gene Ontology annotations were obtained from the GO Anno-
tation File (GAF) format ([https://geneontology.org/docs/go-annotation-
file-gaf-format-2.1/]). The source data underlying all main and Supple-
mentary Figures are provided as a Source data file available at [https://
doi.org/10.5281/zenodo.16580130]1”.

Code availability

The GENBAIT Python package is available at Github [https://github.
com/camlab-bioml/genbait] and permanently archived at Zenodo
[https://doi.org/10.5281/zenodo.165794451%° All code required to
reproduce the analyses and figures in this study are available at https://
github.com/camlab-bioml/genbait_reproducibility and permanently
archived at Zenodo: https://doi.org/10.5281/zenodo.16580131 *.,
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