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Predicting hypotension, syncope, and
fracture risk in patients indicated for
antihypertensive treatment: the
STRATIFY models

Constantinos Koshiaris 1,2 , Ariel Wang 1, Lucinda Archer3,4,
Richard D. Riley3,4, Kym IE Snell3,4, Richard J. Stevens 1, Amitava Banerjee 5,
Subhashisa Swain1, Andrew Clegg6, Christopher E. Clark 7, Rupert A. Payne 7,
FD Richard Hobbs 1, Margaret Ogden8, Richard J. McManus 1,9 &
James P. Sheppard 1 On behalf of the STRATIFY investigators*

Antihypertensives are associated with increased risk of syncope, hypotension,
and fractures, but the highest-risk individuals are unclear. This study aimed to
develop and validate three models to predict these outcomes in patients with
an indication for antihypertensive treatment. A cohort study was conducted
using data from Clinical Practice Research Datalink (CPRD). Patients aged 40+
with systolic blood pressure 130-179mmHg were included. Outcomes were
first hypotension, syncope, or fracture leading to hospitalization or death
within 10 years. Models were derived from CPRD GOLD data (n = 1,773,224)
and validated with CPRD Aurum data (n = 3,805,366). Each model had 31-37
predictors. Validation demonstrated strong discriminative ability (10-year C-
statistic: hypotension 0.824; syncope 0.819; fracture 0.790), with close
agreement between predicted and observed risks for the hypotension and
syncope models. Some underprediction was observed for the fracture model.
These models could be used to help reassure patients about the relatively low
risk of harm from antihypertensive treatment, or identify the small number of
individuals with a higher risk where additional monitoring may be indicated.

Hypertension is the leading risk factor for cardiovascular disease,
making it an important target for intervention in routine clinical
practice1. Blood pressure-lowering with antihypertensive treatment
has been shown to be very effective at reducing the risk of cardio-
vascular events across all age groups2. However, blood pressure

lowering is not without harm3. Previous studies have highlighted the
increased risk of adverse events such as hypotension, syncope, falls,
acute kidney injury, and electrolyte abnormalities, especially in older
patients and thosewith frailty4. For some individuals, where the risk of
harm is high, it may not be appropriate to prescribe antihypertensive
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treatment. In those already treated, interventions such as deprescrib-
ing may be considered5,6. To enable informed decision-making, clin-
icians need to understand an individual’s underlying risk of adverse
events, so that this can be weighed against a patient’s likelihood of
benefit from new or continued treatment.

In previous studies, clinical prediction models have been devel-
oped to estimate the risk of serious falls and acute kidney injury in
patients indicated for antihypertensive therapy7,8. Although most
patients in these studies with a high risk of acute kidney injury or falls
also had a high risk of cardiovascular disease (CVD) a small number
were shown to be at high risk of adverse events but low risk of cardi-
ovascular disease8. In these individuals, new or continued treatment
may not be appropriate. Using prediction models to understand an
individual’s risk of specific adverse events, treatment strategies can be
personalised to ensure antihypertensive treatment is only prescribed
to those with the most to gain.

In this study, we develop and externally validate three clinical
prediction models for adverse events commonly associated with
antihypertensive treatment—namely hypotension, syncope, and frac-
ture—using data from over five million patients in the Clinical Practice
Research Datalink. These models estimate baseline risk regardless of
treatment status and aredesigned to support personalised prescribing
decisions by identifying individuals at higher risk of adverseoutcomes.

Results
Study population characteristics
A total of 1,773,224 patients were included in the model development
cohort (CPRD GOLD) with a mean age of 59 years (SD 13 years) and a
mean systolic blood pressure at study inclusion of 144mmHg (SD
12mmHg) (Table 1, figure S1). The 10-year prevalence of hazardous
hypotension was 1.6% (n = 28,450), syncope was 2.2% (n = 39,898), and
fracture was 4.1% (n = 73,491). The median follow-up time across the
whole cohort was 6 years (IQR 2.6 to 10 years).

In the validation cohort, 3,805,366 patients were included, with
63,019 (1.7%) experiencing a hazardous hypotensive event, 84,262
(2.2%) a syncope event and 151,630 (4.0%) a fracture event during 10-
year follow-up (table S3). Median follow-up time in the validation
cohort was 7.0 years (2.9 to 10). Ethnicity data were more complete in
the validation cohort compared to the development cohort (81% vs
44% complete data).

Model Development
A total of 31 predictorswere included in thefinal STRATIFY-Hypotension
model, after the exclusion of covariates with little or no association with
hypotension (Table 2). High social deprivation, current smoking status,
previous hypotension, chronic kidney disease, and Parkinson’s disease
were strong predictors of hypotension resulting in hospitalisation or
death. Prescription of all types of antihypertensive medication were
associated with an increased risk of hazardous hypotension, with ACE
inhibitors (SHR 1.41, 95% CI 1.37 to 1.45), angiotensin II receptor
antagonists (SHR 1.36, 95% CI 1.30 to 1.43) and alpha blockers (SHR 1.35,
95% CI 1.26 to 1.45) conferring the greatest risk.

A total of 31 predictors were included in the final STRATIFY-
Syncope model (Table 2). Covariates predictive of syncope were
similar to those predictive of hypotension, with the exception of South
Asian ethnicity, other ethnicity, dementia and heart failure which were
all associated with a reduced risk of syncope requiring hospitalisation
or leading to death, and antipsychotic medication prescription which
was associated with increased risk.

A total of 37 predictors were included in the final STRATIFY-
Fracture model (Table 2). Of these, 14 were unique predictors of
fracture that were not included in the STRATIFY-Hypotension and
STRATIFY-Syncope models. Strong predictors of fracture included
heavy drinking, female sex, chronic liver disease, previous fracture,
multiple sclerosis, epilepsy, osteoporosis and rheumatoid arthritis. All

antihypertensive medications had a weak or no association with the
risk of fracture. Other medications were associated with an increased
risk of fracture, with the exception of hormone replacement therapy
which conferred a lower risk of fracture (Table 2).

Age was not linearly related with any of the outcomes so trans-
formations were used. Miscalibration was observed across all models
at 5 and 10 years so they were recalibrated to the observed pseudo-
values in the development dataset (figure S2).

External validation
The distribution of the prognostic index for the derivation and exter-
nal validation datasets can be seen in the appendix (figure S3), and
model performance statistics are given in Table 3, S4 and S5 and Fig. 1.
The final STRATIFY-Hypotension model exhibited strong dis-
criminative ability at 10 years (C-statistic 0.824, 95% CI 0.823 to 0.826)
and close agreement betweenpredicted andobserved risks depending
on time horizon (Observed/Expected [O/E] at 10 years 0.983, 95% CI
0.961 to 1.005). The STRATIFY-Syncope model also showed strong
discriminative ability (C-statistic at 10 years 0.819, 95% CI 0.817 to
0.821) and close agreement between predicted and observed risks (O/
E ratio at 10 years 1.028, 95%CI 1.009 to 1.047). The STRATIFY-Fracture
model showed good discrimination (C-statistic at 10 years 0.790, 95%
CI 0.789 to 0.792) and close agreement between predicted and
observed risks butwith someunderprediction for lowprobabilities (O/
E ratio at 10 years 1.13, 95% CI 1.11 to 1.14). Model performance varied
more among smaller practices, with more consistent performance
seen as practice size increased (figures S4 to S6).

Using a threshold of 5% across all models 732,598 (41%) of the
patients were classified as high risk for at least one of the three adverse
events at 10 years. Amongst the patients who were classified as high
risk for at leastone adverse event, 280,326 (38%)were classified ashigh
risk for all three, 287,345 (39%) were classified high risk only for frac-
ture, 31,289 (4.3%) only for syncope and 2,829 (0.4%) only for hypo-
tension. ~24,195 (3.3%) were at high risk for both syncope and
hypotension (Fig. 2). Results were similar when using a 10% threshold
to define high risk patients in each model (figure S7).

Decision curve analysis indicated that all threemodels had clinical
utility across all three time points (Fig. 3). For example, using the
STRATIFY-Hypotension model with a 10-year time horizon to guide
decisions on prescribingwould result in a higher net benefit compared
to a “deprescribe/don’t treat anyone” strategy, and the same was true
for the STRATIFY-Syncope model and the STRATIFY-Fracture model.

Subgroup analyses of the 10-year risk models showed similar
performance in younger ( < 65 years) and older patients ( ≥ 65 years)
and in females andmales (figures S8, S10; tables S6 and S7). There was
some evidence of under-prediction of hypotension risk in patients of
white, black and South Asian ethnicity (figures S11, S12, table S8),
although net benefit was consistent across ethnic minority groups for
all three models (figure S13).

Comparison with CVD risk
When using a 10% risk threshold for both cardiovascular disease and
adverse events, no patients had a high risk of adverse events but low
risk of cardiovascular disease. At the 5% threshold, among those
patients with a low risk of cardiovascular disease at 10 years, 244
(0.01%) had a high risk of hypotension, 2656 (0.2%) had a high risk of
syncope and 17,040 (1%) had a high-risk fracture. Most patients had a
high risk of cardiovascular disease but low risk adverse events (Fig. 4).

Discussion
This study developed three clinical prediction models for adverse
events related to antihypertensive treatment, which estimate the
baseline risk of hypotension, syncope and fracture over the next 1, 5
and 10 years. The models demonstrated good discrimination and
suggested that individuals were most likely to be classified at high risk
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Table 1 | Baseline characteristics of patients in the development dataset (CPRD Gold)

Variable Total
(N = 1,773,224)

Hypotension
(n = 28,450)

Death from causes
other than hypo-
tension (compet-
ing risk) -
(n = 191,765)

Syncope
(n = 39,898)

Death from causes
other than Syn-
cope (competing
risk) (n = 191,434)

Fracture
(n = 73,491)

Death from causes
other than Fracture
(competing risk)
(n = 182,131)

Age, years –
mean (SD)

59.4 (13.2) 72 (12) 75 (12) 70 (13) 75 (12) 70.0 (14.0) 74.4 (12.0)

Systolic blood pres-
sure, mmHg –

mean (SD)

143.5 (12.0) 150 (13) 150 (13) 150 (13) 150 (13) 146.1 (12.7) 146.9 (12.8)

Diastolic blood pres-
sure, mmHg –

mean (SD)

83.8 (9.6) 82 (10) 82 (10) 83 (9.9) 82 (10) 82.4 (9.8) 81.7 (10.1)

Follow up, years
(p50, IQR)

6.2 (2.6-10) 4.8 (2.3–7.3) 3.8 (1.7–6.4) 4.2 (1.9–6.8) 3.7 (1.7–6.4) 3.9 (1.7–6.6) 3.7 (1.6–6.3)

Sex

Male 851,058 (48%) 14,002 (49.2%) 92,552 (48.3%) 19,620
(49.2%)

92,696 (48.4%) 24,131 (32.8%) 91,838 (50.4%)

Female 922,166 (52%) 14,448 (50.8%) 99,213 (51.7%) 20,278
(50.8%)

98,738 (51.6%) 49,360 (67.2%) 90,293 (49.6%)

Ethnicity

White 734,401 (41.4%) 26,858
(94.4%)

11,448 (59.7%) 37,519
(94.0%)

11,431431 (59.7%) 69,403 (94.4%) 105,826 (58.1%)

Black 10,802 (0.6%) 198 (0.7%) 843 (0.4%) 358 (0.9%) 838 (0.4%) 294 (0.4%) 865 (0.5%)

South Asian 14,805 (0.8%) 361 (1.3%) 998 (0.5%) 413 (1.0%) 1026 (0.5%) 548 (0.7%) 1021 (0.6%)

Other 15,737 (0.9%) 364 (1.3%) 1271 (0.7%) 469 (1.2%) 1306 (0.7%) 785 (1.1%) 1212 (0.7%)

Missing 997,479 (56.3%) 669 (2.4%) 74,167 (38.7%) 1139 (2.9%) 73,949 (38.6%) 2461 (3.3%) 73,207 (40.2%)

Deprivation Score

IMD 1 419,468 (23.7%) 5,558558
(19.55%)

37,448448 (19.6%) 7,861861
(19.77%)

37,503503
(19.66%)

15,576 (21.2%) 35,578 (19.5%)

IMD 2 406,916 (22.9%) 6097 (21.4%) 41,783 (21.8%) 8701 (21.8%) 41,691 (21.8%) 16,359 (22.3%) 39,687 (21.8%)

IMD 3 376,903 (21.3%) 6057 (21.3%) 41,451 (21.6%) 8277 (20.7%) 41,444 (21.6%) 15,703 (21.4%) 39,383 (21.6%)

IMD 4 313,707 (17.7%) 5585 (19.6%) 37,040 (19.3%) 733 (19.4%) 36,972 (19.3%) 13,827 (18.8%) 35,206(19.3%)

IMD 5 254,800 (14.4%) 5127 (18.0%) 33,856 (17.7%) 7280 (18.2%) 33,639 (17.6%) 11,972 (16.3%) 32,096 (17.6%)

Missing 1,430 (0.1%) 26 (0.09%) 187 (0.1%) 46 (0.12%) 185 (0.1%) 54 (0.1%) 181 (0.1%)

BMI

Underweight 20,635 (1.2%) 584 (2.1%) 5711 (3.0%) 746 (1.9%) 5695 (3.0%) 2065 (2.8%) 5085 (2.8%)

Normal 519,524 (29.3%) 8794 (30.9%) 57,136 (29.8%) 12,218
(30.6%)

56,967 (29.8%) 25,024 (34.0%) 53,391 (29.3%)

Overweight 586,531 (33.1%) 8905 (31.3%) 51,537 (26.9%) 12,707
(31.8%)

51,475 (26.9%) 20,888 (28.4%) 49,902 (27.4%)

Obese 340,357 (19.2%) 4788 (16.8%) 25,528 (13.3%) 6443 (16.1%) 25,747 (13.4%) 9945 (13.5%) 25,170 (13.8%)

Morbidly obese 39,853 (2.2%) 551 (1.9%) 2,728 (1.4%) 618 (1.5%) 2803 (1.5%) 881 (1.2%) 2,771 (1.5%)

Missing 266,324 (15%) 4828 (17.0%) 49,125 (25.6%) 7166 (18.0%) 48,747 (25.5%) 14,688 (20.0%) 45,812 (25.2%)

Smoking status

Non smoker 847,473 (47.8%) 12,107 (42.6%) 79,576 (41.5%) 18,843
(47.2%)

78,886 (41.2%) 35,461 (48.2%) 74,443 (40.9%)

Ex-smoker 471,193 (26.6%) 8,907 (31.3%) 53,345 (27.8%) 10,817 (27.1%) 53,716 (28.1%) 18,349 (25%) 51,665 (28.4%)

Smoker 363,579 (20.5%) 5537 (19.5%) 39,653 (20.7%) 7,236 (18.1%) 39,852 (20.8%) 13,514 (18.4%) 38,359 (21.1%)

Missing 90,979 (5.1%) 1899 (6.7%) 19,191 (10.0%) 3002 (7.5%) 18,980 (9.9%) 6167 (8.4%) 17,664 (9.7%)

Alcohol

Non drinker 289,581 (16.3%) 6339 (22.3%) 40,162 (20.9%) 8359 (21.0%) 40,074 (20.9%) 14,701 (20.0%) 37,764 (20.7%)

Trivial drinker 488,448 (27.5%) 7322 (25.7%) 44,664 (23.3%) 10,481
(26.3%)

44,620 (23.3%) 18,818 (25.6%) 42,610 (23.4%)

Light drinker 239,799 (13.5%) 3091 (10.9%) 19,539 (10.2%) 4,455 (11.2%) 19,572 (10.2%) 8396 (11.4%) 18,911 (10.4%)

Moderate drinker 179,162 (10.1%) 2078 (7.3%) 13,196 (6.9%) 2988 (7.5%) 13,247 (6.9%) 5282 (7.2%) 12,950 (7.1%)

Heavy drinker 22,772 (1.3%) 417 (1.5%) 2,414 (1.3%) 589 (1.5%) 2440 (1.3%) 1074 (1.5%) 2356 (1.3%)

Unknown amount 291,767 (16.5%) 4439 (15.6%) 27,649 (14.4%) 6261 (15.7%) 27,585 (14.4%) 11,548 (15.7%) 26,232 (14.4%)

Missing 261,695 (14.8%) 4764 (16.7%) 44,141 (23.0%) 6765 (17.0%) 43,896 (22.9%) 13,672 (18.6%) 41,308 (22.7%)
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of a fracture, followed by syncope and hypotension. Calibration
showed close agreement between predicted and observed risks for all
models across all timehorizons,with the exception of the hypotension
model at 1 year, which tends to underestimate the risk. Some minor
underprediction was also observed for the fracture model at 10 years
for lowpredictedprobabilities. Given this,wewould suggest caution in
using the 1-year hypotension model at this stage.

When compared to risk of cardiovascular disease, only a very
small proportion of patients ( < 1%) were found to be at high risk of
adverse events and low risk of cardiovascular disease. A large pro-
portion of patients (39-56%) were identified to have high risk of car-
diovascular disease and low risk of adverse events. This suggests that
for the majority of people, the potential benefits of treatment will
outweigh the risk of hypotension, syncope or fracture. The informa-
tion from these models may therefore be useful in helping patients
make informed decisions about their treatment options, potentially
reducing unnecessary worry or apprehension.

As part of the clinical utility assessment, the predicted risks from
each model were compared with the risk of cardiovascular disease,
generated by the QRisk2 algorithm for specific thresholds9. This latter
model was recommended by NICE during the study period and esti-
mates the risk of cardiovascular disease in patients aged 35-84 years
over a 10-year period, but does not consider the competing risk of
death10. This can lead to overestimation of cardiovascular risk, parti-
cularly over shorter timeframes and in older patients with multiple
health conditionswhere the competing risk of death fromother causes
is higher11. As a result, analyses showing that the risk of cardiovascular
disease outweighs the risk of adverse events should be interpreted
with caution, particularly over shorter timeframes.

Of the adverse events examined in the present study, fracture has
most commonly been studied in previous risk prediction modelling
studies12. Common examples include the FRAX score, Garvan Fracture
Risk Calculator and theQFracture tool13–15. These typically focus on hip
and osteoporotic fracture (FRAX and QFracture) and display varying
performance upon external validation due to differences in underlying
population and input variables12,14,15. However, unlike the present
STRATIFY models, none of these previous models takes into account
the competing risk of death and this has been shown to lead to sig-
nificant over-prediction of fracture risk in older patients with multi-
morbidity16. This is important when considering adverse event risk in
particular, where one treatment strategy for high risk patients might
include deprescribing, or not starting therapy which still carries ben-
efit. Few studies have examined the risk of hypotension or syncope,
but these tend to focus on risk prediction during emergency depart-
ment admission and inpatient stays in hospital17–20. One study exam-
ined the risk of postural hypotension in the community and found

moderate discrimination, but this model was not externally validated
and calibration was not assessed21.

Clinical guidelines for the management of hypertension are
increasingly recommending consideration of deprescribing anti-
hypertensive therapy in specific circumstances, where the benefits of
treatment may be outweighed by the harms22. In the UK, the National
Institute for Health and Care Excellence currently advises that clinicians
should use clinical judgement in blood pressure lowering treatment
decisions in the presence of multimorbidity10. The purpose of develop-
ing these risk prediction models was to help clinicians estimate the
baseline risk of adverse reactions. The models can be applied to both
patients that are on antihypertensive treatment or patients for which
treatment is being considered. Clinicians can then combine the esti-
mated baseline risk with relative treatment effects obtained from well
conducted randomised clinical trials or observational studies to esti-
mate how the risk gets modified by starting, changing or altering the
dosage of amedication3,4. Based on this updated risk different treatment
strategies can be considered depending on the outcome of interest. For
example, in patients at high risk of hypotension and fracture, mod-
ification of antihypertensive treatment may be considered, whereas in
patients at risk of fracture alone, other prevention strategies may be
more appropriate. These tools should be used alongside CVD risk esti-
mation tools to get a more complete picture of the harm/benefit profile
of the patient. This can enable better informed decisions regarding
when to prescribe, continue or deprescribe antihypertensive treatment.
To this end, these algorithms could easily be integrated into electronic
health records systems to work alongside existing risk stratification
tools such as QRisk9.

All threemodels suggested net clinical benefit when compared to
usual care (with the exception of the 1-year hypotensionmodel), which
typically would not involve modifying treatment to account for
adverse event risk. However, very few patients whowere at high risk of
serious hypotension or syncopewere also observed to be at low risk of
cardiovascular disease (between 0.01% and 1%), thus implementing
interventions which withhold or deprescribe treatment due to the risk
of hypotension or syncope alone is only likely to be considered for a
very small number of patients.

Slightlymore individuals were at high risk of fracture and low risk
of cardiovascular disease (1%) when using a fracture and cardiovas-
cular risk threshold of 5%, however, the direct association between
antihypertensive treatment and fractures is disputed and is likely to be
small3,4,23,24. Therefore enthusiasm for intervening in such patients
should be tempered by a likely small effect from withholding or
deprescribing treatment. For most patients, these models should be
employed to provide reassurance that the risk of adverse events is low
for the vast majority of the population even after taking into

Table 1 (continued) | Baseline characteristics of patients in the development dataset (CPRD Gold)

Variable Total
(N = 1,773,224)

Hypotension
(n = 28,450)

Death from causes
other than hypo-
tension (compet-
ing risk) -
(n = 191,765)

Syncope
(n = 39,898)

Death from causes
other than Syn-
cope (competing
risk) (n = 191,434)

Fracture
(n = 73,491)

Death from causes
other than Fracture
(competing risk)
(n = 182,131)

Antihypertensive drugs

ACE inhibitors 219,588 (12.4%) 7101 (25.0%) 39,687 (20.7%) 8217 (20.6%) 40,034 (20.9%) 11,667 (15.9%) 38,554 (21.2%)

Angiotensin II recep-
tor antagonists

59,103 (3.3%) 1788 (6.3%) 8055 (4.2%) 1951 (4.9%) 8136 (4.3%) 2920 (4.0%) 7797 (4.3%)

Alpha blockers 34,349 (1.9%) 1405 (4.9%) 7054 (3.7%) 1635 (4.1%) 7075 (3.7%) 1985 (2.7%) 6889 (3.8%)

Beta blockers 216,202 (12.2%) 6361 (22.4%) 32,595 (17.0%) 7765 (19.5%) 32,758 (17.1%) 11,141 (15.2%) 31,573 (17.3%)

Calcium channel
blockers

193,221 (10.9%) 6091 (21.4%) 37,703 (19.7%) 7729 (19.4%) 37,548 (19.6%) 11,614 (15.8%) 35,965 (19.7%)

Diuretics 180,115 (10.2%) 5000 (17.6%) 31,576 (16.5%) 6900 (17.3%) 31,372 (16.4%) 11,638 (15.8%) 29,687 (16.3%)

Other
antihypertensives

10,884 (0.6%) 730 (2.6%) 4860 (2.5%) 751 (1.9%) 4934 (2.6%) 1262 (1.7%) 4685 (2.6%)
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consideration treatment effects from other studies. This information
can be useful for clinicians and patients in helping them to make
informed decisions about their treatment options, potentially redu-
cing unnecessary apprehension about starting treatment. Where
patients are considered at high risk of adverse events such as fracture,
other strategies besidesmodifying antihypertensive treatmentmay be
more appropriate such asmonitoring or addressing some of the other
risk factors that might be increasing the risk.

This analysis has several strengths, including the robust analytical
approach with both internal and external validation across multiple
practices, which demonstrate each of the models’ reliability and

Table 2 | STRATIFY prediction models for Hypotension, Syn-
cope and Fracture. Values represent sub-distribution hazard
ratios and 95% confidence intervals

Variable STRATIFY-
Hypotension
model

STRATIFY-
Syncope model

STRATIFY-
Fracture model

Age 31.06
(29.39–32.81)*

23.54
(22.48–24.65)*

1.03 (1.03–1.03)*

Sex (Female) 0.79 (0.77–0.81) 0.77 (0.75–0.79) 1.59 (1.57–1.62)

Systolic blood
pressure

1.53 (1.30–1.80)* - 1.00 (1.00–1.00)

Ethnicity (ref. White)

Black - 0.98 (0.79–1.23) 0.44 (0.35–0.56)

South Asian - 0.74
(0.64–0.85)

0.62 (0.55–0.69)

Other - 0.84 (0.72–0.97) 0.76 (0.68–0.86)

Deprivation Score (ref. IMD 1)

IMD 2 1.06 (1.02–1.1) 1.1 (1.06–1.13) 1.05 (1.03–1.07)

IMD 3 1.11 (1.07–1.15) 1.11 (1.08–1.15) 1.08 (1.05–1.11)

IMD 4 1.21 (1.17–1.25) 1.25 (1.21–1.29) 1.17 (1.14–1.19)

IMD 5 (High) 1.32 (1.27–1.37) 1.43 (1.39–1.47) 1.24 (1.21–1.27)

BMI (ref. Normal)

Underweight - - 1.25 (1.19–1.31)

Overweight - - 0.84 (0.83–0.86)

Obese - - 0.75 (0.73–0.77)

Morbidly obese - - 0.66 (0.62–0.70)

Smoking status (ref. Non smoker)

Ex-smoker 1.24 (1.2 – 1.27) - 1.01 (0.99 – 1.03)

Smoker 1.42 (1.37 – 1.47) - 1.16 (1.13 – 1.18)

Alcohol (ref. Non
drinker)

Trivial drinker 0.89
(0.86–0.92)

0.91
(0.88–0.94)

0.97 (0.95–0.99)

Light drinker 0.84 (0.81–0.88) 0.86 (0.83–0.9) 1.02 (0.99–1.05)

Moderate drinker 0.84
(0.80–0.88)

0.86
(0.82–0.89)

1.13 (1.10–1.17)

Heavy drinker 1.29 (1.17–1.43) 1.32 (1.2–1.45) 1.79 (1.68–1.92)

Unknown
amount

0.9 (0.86–0.93) 0.92
(0.89–0.95)

1.01 (0.98–1.03)

Risk Factors

Dizziness 1.15 (1.11–1.19) 1.15 (1.12–1.18) -

Dementia - 0.72 (0.67–0.78) 0.74 (0.71–0.78)

Multiple sclerosis - - 1.41 (1.29–1.55)

Hypotension 1.94 (1.83–2.07) 1.32 (1.24–1.42) -

Syncope 1.4 (1.32–1.49) 2.21 (2.13–2.3) -

Previous Falls 1.11 (1.07–1.16) 1.18 (1.15–1.21) 1.22 (1.19–1.25)

Previous Fracture - - 1.57 (1.54–1.60)

Stroke 1.06 (1.01–1.11) 1.28 (1.23–1.33) 1.06 (1.02–1.10)

Heart failure - 0.88
(0.83–0.92)

-

Chronic kidney
disease

1.46 (1.38–1.55) - 0.93 (0.89–0.97)

Diabetes 1.27 (1.22–1.31) 1.25 (1.22–1.29) 1.22 (1.18–1.25)

Parkinson’s
disease

1.72 (1.62–1.81) 1.17 (1.09–1.26) 1.29 (1.22–1.36)

Spinal cord injury - - -

Ischaemic heart
disease

1.21 (1.17–1.24) 1.26 (1.23–1.29) -

Atrial fibrillation 1.15 (1.1–1.21) 1.06 (1.02–1.11)

Anaemia 1.12 (1.08–1.17) -

Bradycardia 1.13 (1.01–1.26) 1.12 (0.99–1.27) -

Table 2 (continued) | STRATIFY prediction models for Hypo-
tension, Syncope and Fracture. Values represent sub-dis-
tribution hazard ratios and 95% confidence intervals

Variable STRATIFY-
Hypotension
model

STRATIFY-
Syncope model

STRATIFY-
Fracture model

Tachycardia 1.4 (1.29–1.52) 1.19 (1.1–1.29) -

Structural car-
diac disease

1.22 (1.17–1.27) 1.18 (1.14–1.22) -

Cardiopulmonary
disease

1.31 (1.21–1.42) 1.17 (1.08–1.26) -

Osteoporosis - - 1.30 (1.25–1.34)

Rheumatoid
Arthritis

- - 1.30 (1.24–1.37)

Gastrointestinal
Conditions

- - 1.14 (1.08–1.21)

Epilepsy - - 1.37 (1.29–1.46)

Respiratory
problems

- - 1.06 (1.04–1.08)

Chronic liver
disease

- - 1.62 (1.47–1.80)

Anti-
hypertensive
drugs

ACE inhibitors 1.41 (1.37–1.45) 1.21 (1.17–1.24) 1.05(1.03–1.07)

Angiotensin II
receptor
antagonists

1.36 (1.30–1.43) 1.15 (1.1–1.21) 1.04 (1.00–1.07)

Alpha blockers 1.35 (1.26–1.45) 1.24 (1.18–1.31) 1.03 (0.98–1.09)

Beta blockers 1.29 (1.25–1.33) 1.15 (1.12–1.18) 1.00 (0.98–1.02)

Calcium channel
blockers

1.19 (1.16 to 1.23) 1.15 (1.12 to 1.18) 1.06 (1.04–1.08)

Diuretics 1.11 (1.07–1.15) 1.15 (1.12–1.17) 1.04 (1.02–1.06)

Other anti-
hypertensives

1.22 (1.13–1.33) 1.08 (1–1.17) 1.14 (1.07–1.21)

Other drugs

Opioids 1.30 (1.27–1.34) 1.19 (1.16–1.23) 1.16 (1.13–1.18)

Hypnotics,
anxiolytics

1.07 (1.03–1.11) 1.12 (1.09–1.15) -

Antipsychotics - 1.19 (1.13–1.26) 1.12 (1.07–1.17)

Antidepressants 1.31 (1.28–1.35) 1.24 (1.2–1.28) 1.19 (1.16–1.21)

Osteoporosis
medications

- - 1.20 (1.16–1.24)

Systemic
corticosteroids

- - 1.07 (1.04–1.09)

Hormone repla-
cement therapy

- - 0.76 (0.74–0.78)

Anticonvulsants - - 1.37 (1.29 to 1.44)

Proton pump
inhibitors

- - 1.08 (1.06 to 1.10)

*Variable transformed to account for non-linear association with the outcome
IMD Index of multiple deprivation; BMI Body mass index; ACE Angiotensin converting enzyme;
H2RA Histamine type-2 receptor antagonists
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generalisability within the UK primary care population25. There are also
some limitations. These data may not accurately capture all events of
interest (due to incorrect or incomplete coding), potentially affecting
the model’s performance, especially if certain events are systematically
underreported or misclassified26. Findings from clinical utility analyses
should be interpretedwith caution, as they estimate factual risk (i.e., risk
based on baseline characteristics). The net benefit in Decision Curve
Analysis (DCA) reflects the clinical utility of using the model’s predic-
tions for treatment decision-making, without accounting for the causal
effect of altering antihypertensive medication on outcomes. This study
primarily aims to predict baseline risk and does not evaluate how
treatment changes will modify these risks. While the model enhances
risk stratification and supports decision-making by identifying high- and
low-risk patients, it does not provide direct insight into how starting or
adjusting antihypertensive treatments affects patient outcomes. Thus,
any conclusions regarding treatment effects should rely on additional
evidence, such as randomised controlled trials or observational studies.
However, it is reasonable to assume that amodel with higher net benefit
may still improve clinical outcomes by better targeting interventions

The present study used large datasets of electronic health records
to derive and externally validate three clinical prediction models to
estimate the baseline risk of adverse events associated with

antihypertensive therapy. These models were shown to perform well
but revealed that only a small proportion of patients eligible for anti-
hypertensive treatment are at high risk of adverse events in the short to
medium term. Therefore, these models are most likely to be of clinical
utility in providing reassurance topatients considering antihypertensive
treatment, potentially reducing unnecessary worry or apprehension.

Methods
Ethics approval
The study protocol was approved by CPRD’s Independent Scientific
Advisory Committee in February 2019 before obtaining the data rele-
vant to the project (protocol given in the eAppendix in the Supple-
ment). All data are fully anonymised so consent was not required. A
project summary is published on the CPRDwebsite (https://www.cprd.
com/isac). Elements of the methodology used in this manuscript have
been previously reported in related publications from the same
research programme, using the same dataset and protocol and are
summarised here for completeness7,8,27.

Design
We conducted a retrospective observational cohort study to develop
three clinical prediction models using data from the Clinical Practice

Fig. 1 | Calibration curves for the external validation performance of the final
STRATIFY models (CPRD Aurum). Green line corresponds to the line of equality,
red line the calibration curve with 95% CI and yellow dots the deciles of predicted
risk. The 5- and 10-year models were re-calibrated using the derivation dataset. For

one-year re-calibration was not required. Groups represent tenths of the linear
predictor, as createdbetweendeciles. Histogramsunderneath each calibrationplot
show the distribution of predicted probabilities.
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Research Datalink (CPRD) GOLD. This dataset includes primary care
records from general practices that use the Vision electronic health
record system (Cegedim Healthcare Solutions, London, England). The
cohort comprised 11.33million patients from 674 general practices, of
whom 4.4million were active (alive)28. For external validation, we used
a second retrospective observational cohort based on CPRD Aurum,
which contains data from practices using Egton Medical Information
Systems (EMIS, Leeds, England) which t included 19 million patients
from 738 practices, with 7 million active patients29. Both CPRD GOLD
and Aurum datasets are representative of the UK population in terms
of age, sex, ethnicity, and deprivation28,29. Primary care data from both
sources were linked to additional datasets, including Office for
National Statistics (ONS) mortality data, Hospital Episode Statistics
(HES), and the Index ofMultipleDeprivation (IMD). The study protocol
was approved by the Independent Scientific Advisory Committee
(ISAC) for CPRD (protocol number 19_042; see Protocol S1 in the
supplementary material).

Population
Patients were eligible for inclusion if they were registered at a general
practice in England contributing linked data to CPRDGOLD between 1
January 1998 and 31 December 2018. To avoid duplicate entries, indi-
viduals appearing in both CPRD GOLD and CPRD Aurum due to tran-
sitions between electronic health record systems during the study
period were excluded from the CPRD Aurum (validation) dataset.
Inclusion criteria required patients to be aged 40 years or older at the

time of data entry (with no upper age limit), registered with a CPRD
“up-to-standard” practice (for GOLD only), and to have records avail-
able during the defined study period.

Patients entered the cohort at the point they became potentially
eligible for antihypertensive therapy, defined as the date of their first
systolic blood pressure measurement ≥130mmHg following the start
of the study period. Follow-up continued for a maximum of 10 years.

The 130mmHg threshold was selected to align with the varying
treatment initiation criteria outlined in international hypertension
guidelines22,30. Patients with a systolic blood pressure measurement
≥180mmHg were excluded from the cohort, as treatment would be
indicated for them regardless of their estimated risk of adverse
outcomes.

Baseline patient characteristics and model predictors were
assessed at the indexdate, defined as 12months after cohort entry. The
same eligibility criteria and procedures for determining baseline
characteristicswere applied consistently to both the development and
validation cohorts.

Patients exited the cohort at the end of follow-up (31 December
2018) or upon transferring out of a CPRD-registered practice, death, or
occurrence of the specific outcome of interest.

Outcomes
For each model, the primary outcome was defined as any hospitalisa-
tion or death with a primary diagnosis of (hazardous) hypotension,
syncope, or fractureoccurringwithin 10 years of the indexdate. This 10-

Fig. 2 | Overlap of High-Risk Patients Identified by STRATIFY Models
(CPRD Gold). Venn diagrams showing the overlap of high-risk patients ( ≥ 5%) as
classified using the final STRATIFY-Hypotension, STRATIFY-Syncope, and

STRATIFY-Fracture in the CPRD Gold cohort (derivation). Denominator population
is the total number of patients with either a high ( ≥ 5%) STRATIFY-Hypotension,
STRATIFY-Syncope or STRATIFY-Fracture risk.
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year time horizon aligns with those used in established cardiovascular
risk predictionmodels9. Outcomeswere identified using ICD-9 and ICD-
10 codes recorded in Hospital Episode Statistics (HES) and Office for
National Statistics (ONS)mortality data (see Table S1 for code lists). Pre-
specified secondary outcomes included hypotension, syncope, or
fracture (defined identically) occurring within 1 and 5 years of the index
date, to account for potential short-term clinical relevance.

Model covariates
Potential predictors of hazardous hypotension, syncope, and fracture
were identified based on published literature and consultation with
clinical experts. A detailed summary of included variables is provided
in Supplementary Table S2. A total of 40 predictors were assessed for
the hypotension model, 41 for the syncope model, and 44 for the
fracture model. These included demographic characteristics (such as
age, sex, smoking history, and alcohol intake), medical history (e.g.,
prior relevant adverse events, diabetes, chronic kidney disease, stroke,
atrial fibrillation, arrhythmias, osteoporosis, rheumatoid arthritis,
epilepsy), and current medications (including but not limited to anti-
hypertensives, opioids, sedatives, antidepressants, corticosteroids,
and proton pump inhibitors; see Table S2). All comorbidities and
clinical history were defined using relevant Read codes recorded any
time before the index date. In contrast, medication exposure was

defined by at least one prescription issued in the 12 months prior
to index.

Sample size
A pre-specified sample size calculation was used to guide model
development, yielding an estimated events-per-variable (EPV) range
from 7 for the hypotension model to 20 for the fracture model. These
estimates were based on assumptions of event rates between 18 and 51
per 10,000 person-years, a median follow-up duration of 7 years, an
anticipated Nagelkerke’s R² value of 0.15, and a maximum of 40 can-
didate predictor parameters per model4,31. Under these assumptions,
the required number of outcome events was estimated to range from
277 to 784. The development cohort from CPRD GOLD substantially
exceeded these requirements.

For external validation, the syncope model required a minimum
sample of ~8000 individuals, including at least 400 events, to ensure a
95% confidence interval width of 0.2 around the estimated calibration
slope32. This estimate was derived under several assumptions: a skew-
normal distribution for the linear predictor withmean 0.16, variance 0.5,
skewness 1, and kurtosis 4; an exponential survival time distributionwith
a baseline hazard rate of 0.008 (corresponding to 89% survival at 10
years); and an exponential distribution for censoring timeswith a rate of
0.2 (implying ~87% censoring by 10 years). Comparable sample size
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Fig. 3 | Decision curve analysis of STRATIFY Models (CPRD Aurum). Decision
curves, showing the smoothed, standardised net benefit of using the prediction
models across different threshold probabilities for assigning treatment. Treat all

corresponds to introducing adverse event prevention measures (which may
include deprescribing) for all patients and treat none corresponds to not intro-
ducing adverse event prevention measures for all patients.
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estimates were obtained for the other outcomes. The CPRD Aurum
validation dataset also exceeded these sample size thresholds.

Statistical analysis
The analysis was conducted using the statistical software R versions
4.02 and 4.1.1 and STATA 16. All models are reported in line with the
transparent reporting of a multivariable prediction model for indivi-
dual prognosis or diagnosis (TRIPOD) guidelines for reporting of
clinical predictionmodels (see Guideline S1 in appendix)33. Descriptive
statistics were calculated for baseline characteristics in the model
development and external validation cohorts separately.

Model development
Model development and internal validation were carried out by
researchers at the University of Oxford (CK, AW, JPS). For each impu-
ted dataset, multivariable models were constructed using Fine-Grey
subdistribution hazard regression to account for the competing risk of
death from other causes34. This approach was selected to avoid over-
estimating the cumulative incidence of adverse events in the presence
of competing mortality35. Model coefficients are presented as sub-
distribution hazard ratios (SHRs) with corresponding 95% confidence
intervals. Baseline cumulative incidence functions were estimated
post-estimation using a Breslow-type method as outlined by Fine and
Grey34. Analyses were undertaken using the fastcmprsk package in
RStudio36. Automated selection algorithms were not employed; all
predictors were predefined based on prior literature and expert clin-
ical judgement. Given the large sample size, most variables would be
statistically significant, so further filtering was used to improve parsi-
mony. Specifically, predictors with SHRs close to 1 (i.e., between 0.95
and 1.05) and low prevalence were excluded in the final model-fitting

stage. Shrinkage or penalisationmethods to adjust for overfitting were
not necessary due to the very large sample size.

To assess the linearity of continuous predictors (age, systolic and
diastolic blood pressure, frailty index), fractional polynomial trans-
formations were used37. The best-fitting transformation for each con-
tinuous covariate was applied uniformly across all imputations to
ensure consistent coefficient estimates.

Potential interactions between age, sex, and antihypertensive
therapy were explored but were excluded due to convergence issues,
model instability and for the sake of parsimony. The proportional
hazards assumption for each covariatewasevaluated using Schoenfeld
residuals38.

Apparent validation using development data
Apparent calibration of the models was evaluated using calibration
plots that compared predicted and observed risks at 1, 5, and 10 years.
Observedoutcomeprobabilitieswereestimatedusingpseudo-values—
jackknife-based estimators that quantify an individual’s contribution
to the cumulative incidence function for each outcome while
accounting for the competing risk of death, derived using the
Aalen–Johansen method39. To enhance stability, pseudo-values were
computed separately within 50 groups stratified by linear predictor
values. These calculations accounted for both competing risks and
non-informative right censoring40,41. Calibration plots were con-
structed from the pseudo-values, incorporating a non-parametric
smooth curve (symmetric nearest neighbour smoothing) with 95%
confidence intervals to visualise the agreement between predicted and
observed risks across the full risk spectrum42. Plots were generated
separately for each imputed dataset, and consistency across imputa-
tions was assessed.

10% threshold CVD low risk CVD high risk
Hypotension low risk 47.4% 52.6%
Hypotension high risk 0.0% 0.0%

5% threshold CVD low risk CVD high risk
Hypotension low risk 26% 73.9%
Hypotension high risk 0.0% 0.02%

10% threshold CVD low risk CVD high risk
Syncope low risk 47.4% 52.6%
Syncope high risk 0% 0%

5% threshold CVD low risk CVD high risk
Syncope low risk 26% 73.9%
Syncope high risk 0.0% 0.04%

10% threshold CVD low risk CVD high risk
Fracture low risk 47.4% 52.6%
Fracture high risk 0.0% 0.03%

5% threshold CVD low risk CVD high risk
Fracture low risk 26% 73.4%
Fracture high risk 0.0% 0.5%

10% threshold CVD low risk CVD high risk
Hypotension low risk 47.4% 52.5%
Hypotension high risk 0.0% 0.1%

10% threshold CVD low risk CVD high risk
Hypotension low risk 26% 70.5%
Hypotension high risk 0.0% 3.4%

10% threshold CVD low risk CVD high risk
Syncope low risk 47.4% 52.5%
Syncope high risk 0.0% 0.06%

5% threshold CVD low risk CVD high risk
Syncope low risk 26% 67.1%
Syncope high risk 0.0% 6.9%

10% threshold CVD low risk CVD high risk
Fracture low risk 47.4% 46.1%
Fracture high risk 0.03% 6.5%

5% threshold CVD low risk CVD high risk
Fracture low risk 25.9% 56.4%
Fracture high risk 0.06% 17.5%

10% threshold CVD low risk CVD high risk
Hypotension low risk 47.4% 49.8%
Hypotension high risk 0.0% 2.8%

5% threshold CVD low risk CVD high risk
Hypotension low risk 26% 56.5%
Hypotension high risk 0.01% 17.5%

10% threshold CVD low risk CVD high risk
Syncope low risk 47.7% 47.0%
Syncope high risk 0.01% 5.6%

5% threshold CVD low risk CVD high risk
Syncope low risk 25.9% 49.4%
Syncope high risk 0.2% 24.6%

10% threshold CVD low risk CVD high risk
Fracture low risk 46.8% 33.6%
Fracture high risk 0.6% 18.9%

5% threshold CVD low risk CVD high risk
Fracture low risk 25.1% 36.9%
Fracture high risk 0.96% 37.1%

Fig. 4 | Comparison of 10-Year Cardiovascular Risk (QRisk2) with STRATIFY
Risk Scores (CPRD Gold). Comparison of 10-year cardiovascular risk (QRisk2) and
final STRATIFY-Hypotension, STRATIFY-Syncope and STRATIFY-Fracture risk in the

CPRD Gold dataset (derivation). Red dashed lines indicate 5% risk threshold; Black
dashed lines indicate 10% risk CVD cardiovascular disease.
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When miscalibration was observed at any time point (1, 5, or 10
years), the originalmodelwas recalibrated for that timepoint by fitting
a generalised linear model with a logit link to the observed pseudo-
values in the development cohort. The recalibration model used only
the original model’s linear predictor as the independent variable and
allowed for non-linear recalibration via fractional polynomials. These
recalibrated models were then subjected to external validation using
the independent validation dataset.

External validation
External validation of the prediction models was conducted indepen-
dently by researchers at the University of Birmingham (LA, KIES, RDR),
separate from the model development team. The full prediction
algorithms are presented in the supplementary appendix (Equa-
tions S1–S3) andwere applied to individuals in the validationdataset to
generate predicted probabilities of hypotension, syncope, or fracture
within 1, 5, and 10 years, accounting for the competing risk of death
from other causes43. Calibration was assessed by comparing predicted
risks to observed event probabilities, estimatedusing pseudo-values as
described previously39.

Model performance was summarised using calibration plots,
observed-to-expected (O/E) ratios, Harrell’s C-statistic, and Royston’s
D-statistic along with its associated R² each calculated using the
pseudo-values as described above. To evaluate variability in model
performance across general practices, we used random-effects meta-
analysis with restricted maximum likelihood estimation (REML),
acknowledging that case mix and event incidence may differ between
sites25,44. The O/E ratio was pooled on the natural log scale, the
C-statistic on the logit scale (standard errors derived via the delta
method), and theD-statisticwas pooledon its original scale45,46. Pooled
estimates are reported with prediction intervals (PI) to give an indi-
cation of expected model performance in a new GP practice.

Clinical utility was examined using decision curve analysis for a
range of potential threshold probabilities probabilities47. A decision
threshold is defined as the probability at which a patient is classified as
high risk and thus a decision has to bemade (i.e., treat, refer for further
investigation, etc.). The range of probabilities should reflect potential
decision thresholds for the STRATIFY models. In the UK a CVD risk of
10% is considered high and given that the STRATIFYmodels should be
used alongside a CVD risk tool a range of threshold probabilities of up
to 20%was considered reasonable. The final models for each outcome
were compared at 1, 5 and 10 years to ‘model-blind methods’ of (a)
introducing adverse event prevention measures (which may include
deprescribing) for all patients or (b) not introducing adverse event
prevention measures for all patients, regardless of risk. If the models
have higher net benefit than the strategies (a) or (b) then this would
suggest using the models to inform prescribing would be preferable.

Direct comparison with existing cardiovascular risk prediction
tools (e.g., QRisk2) using decision curve analysis is not possible.
Therefore, to further explore clinical utility and potential imple-
mentation, we examined the relationship between predicted risk of
hypotension, syncope, and fracture (at 1, 5, and 10 years) and 10-year
cardiovascular risk using QRisk2 at 5% and 10% thresholds9. The
overlap in patients identified as high-risk ( ≥ 5% and ≥10%) by the
STRATIFY models versus QRisk2 was quantified and visualised using
Venn diagrams.

Missing data
To address missing data in both the development and validation
cohorts, we employed multiple imputation using chained equations,
generating ten imputed datasets for each cohort. Separate imputation
procedures were conducted independently for the development and
validation datasets. The imputation models included all model cov-
ariates within each dataset, along with the Nelson-Aalen estimator for
the cumulative baseline cause-specific hazards for hypotension,

syncope or fracture and for the competing event of death, and binary
event indicators for each of these possible event types48,49. For
comorbidity diagnoses and prescribed medications, missingness was
handled under the assumption that absence of data reflected absence
of diagnosis or prescription. Variables imputed included ethnicity,
body mass index (BMI) category, smoking status, alcohol consump-
tion, and (in the validation cohort only) the deprivation score.

Imputations were assessed for consistency and validity by com-
paring density plots, histograms, and summary statistics across
imputations and back to complete values. Following imputation,
model coefficients and performance metrics were estimated sepa-
rately within each imputed dataset and then combined using Rubin’s
Rules50. In instances where Rubin’s Rules were inappropriate due to
non-normal posterior distributions, summary measures across impu-
tations were reported using themedian and interquartile range (IQR)51.
A sensitivity analysis using a full case approach was also employed to
compare with the imputed models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study is based on data obtained through an institutional license
from the Clinical Practice Research Datalink (CPRD). Access to these
data is restricted and permitted only to researchers with approved
study protocols reviewed by CPRD’s Independent Scientific Advisory
Committee (ISAC). Data access may involve a fee and is subject to
specific governance and licensing conditions. Full details on how to
request access, including contact information and procedures, are
available at: (https://www.cprd.com/data-access).

Code availability
The developed algorithms are freely available for research use and can
be downloaded from (https://process.innovation.ox.ac.uk/software/).
Code lists used to define variables included in the dataset are available
at (https://github.com/jamessheppard48/STRATIFY-BP (https://doi.
org/10.5281/zenodo.15481343).
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