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The microbiome may play arole in predicting future Type 1 Diabetes (T1D) risk.
Associations between the microbiome and T1D onset are well documented but
observational microbiome studies are difficult to interpret and reproduce due
to differences in study designs. To evaluate if the microbiome is a robust
predictor of T1D or T1D associated autoantibodies, we performed a “specifi-
cation curve analysis” from a longitudinal cohort of 783 individuals at high risk
of T1D, that attempts to parameterize and systematically test all possible study
design specifications. We predicted T1D and autoantibodies using 11,189 dif-
ferent specifications. We show a large amount of variation in the predictive
ability of the microbiome across specifications. 72.5% of models that only use
microbial features had an area under the curve (AUC) of 0.5 and the “best”
model had an AUC of 0.78. Results for every specification can also be found in
an interactive app at: http://apps.chiragjpgroup.org/teddy.

Human Leukocyte Antigen (HLA) haplotype', genetic risk score’, and
family history® are all strongly associated with T1D risk (AUC:
0.7-0.82)". The concordance rate for monozygotic twins is about 50%,
and perhaps that unknown environmental factors are also important
for predicting TID*® and may trigger the disease. Bovine serum albu-
min, from cow’s milk®” vitamin D%°, and introduction of gluten'®" are
associated with onset of T1D. Bacteria and viruses such as enterovirus”
and respiratory infections were both associated with TID and devel-
opment of islet antibodies”, and the microbiome has been shown to
potentially drive type one diabetes in NOD (non-obese diabetic) mice
via hormone regulation'* and molecular mimicry®.

We hypothesized it is possible to predict type one diabetes with
participant gut microbiota before autoantibodies become present.
There is some evidence for microbiome predictors of inflammatory
bowel disease'®”. The microbiome has also been associated with
development of islet autoantibodies® and TID'?° in retrospective
case-control cohort scenarios. To our knowledge, one other study has

attempted to predict future type one diabetes risk”. However, it only
predicted T1D for children older than 30 months of age and had very
modest predictive ability (AUC 0.58-0.63).

Often, the design of machine learning predictors focuses on
developing a single predictor that optimizes prediction accuracy, such
as area under the curve; however, in observational datasets, the study
design parameters may be flexible, and flexibility may lead to over-
optimistic predictions. Specification curves analysis is a method of
comparing different results based on different analytical choices or
specifications. Specification curve analysis has been used extensively to
evaluate the effect that analytical choices and confounders can have on
the reproducibility of results’”. This is especially important in TID
where three studies on the same subjects gave different results due to
methodological and analytical choices in the analysis®'*** (Supplemen-
tary Table 1). Here, we predicted T1D and autoantibodies for subjects of
different ages and HLA haplotypes with different machine learning
algorithms, clinical features, and feature selection methods (Fig. 1A).
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In this study, we aimed to test a bevy of microbiome character-
istics and study designs to predict type one diabetes and antibody
status. Microbiome characteristics included microbial genes, species,
or pathways for 783 individuals longitudinally sampled from the
TEDDY cohort”. To query the space of all possible predictors, we
performed a specification curve analysis'?*. 72.5% of models in the
specification curve analysis that only use microbial features as pre-
dictors has an area under the curve (AUC) of 0.5, and the “best” model
has an AUC of 0.78. Together, these results show a large amount of
variation in the predictive ability of the microbiome dependent on the
choice of specifications.

Results

Creation of 11,189 specifications for robust prediction of future
type 1 diabetes risk

To evaluate whether the microbiome’s ability to predict type one
diabetes depends on different analytical choices (specifications) or is
robust to them, we performed a specification analysis. With this
method we chose a set of theoretically justified, statistically valid, and
non-redundant specifications, predicted T1D and related phenotypes,
and visualized results from all specifications together to evaluate how
model and analytical choices affected prediction. At each stage in our
machine learning pipeline we made different, equally valid, analytical
choices. We predicted TID, presence of one of three autoantibodies
and seroconversion for all ages and for each of the following age
groups: 6, 12, 18, 24 months, 6-12 months, 12-18 months, or
18-24 months old. We also chose all subjects regardless of HLA hap-
lotype, or those only with one of the following HLAs: DR4/DRS8, DR4/
DR4, DR4/DR3, DR3/DR3. Due to the stratification, different specifi-
cations had different sample sizes (Supplementary Fig. 1). The average
number of samples was 103 ¥ 71 and only specifications with at least 10
cases and 10 controls were used in the analysis. We also trained our
models on either 50, 66, or 80 percent of the data, optionally per-
formed feature selection with a ¢ test, and used six different machine
learning models to perform prediction: binary lasso regression, ran-
dom forests, lasso regression using the cox model, random survival
forests, logistic regression, and cox-regression. Due to the unbalanced
nature of our cases and controls we also ran every model after either
weighting or unweighting cases and controls by the proportion of
samples they made up. We also used different features for prediction.
For the microbiome, we used either gene, species, or pathway abun-
dances, and for clinical variables we used family history, genetic risk
score, number of autoantibodies, and sex. For binary models we pre-
dicted whether a subject would or would not get TID, seroconvert, or
obtain any one of the three major autoantibodies. For survival models
we predicted whether a subject would get the condition one or three
years in the future (Figs. 1B, 2). In total we varied eight different
parameters in our pipeline, resulting in 11,189 specifications (Fig. 3A).
Only 3.58% of these specifications have been performed in previous
prospective association studies between TID and the microbiome
(Figs. 1B, 3A).

Heterogeneity in type 1 diabetes predictions for all
specifications

Through the specification curve analysis, we can evaluate how robust
predictions are to changes in analytical choices and understand how
each choice effects the predictions. We found large heterogeneity in
type one diabetes and antibody predictions (Fig. 3A). The average AUC
of the receiver operating characteristic (ROC) for all specifications was
0.60 and the average AUC for microbiome only models was 0.517. To
quantify the predictive ability of each analytical choice in our specifi-
cations, we associated the AUC with the presence of each choice,
where each choice was quantified as a categorical variable except
sample size (Fig. 3B). We found that adding the number of auto-
antibodies as a predictor resulted in an increase in AUC of 0.15

(p=3.69e-97) compared to our reference model where family history
and genetic risk score were used as predictors. Furthermore, using
only microbial features resulted in a decrease in AUC of 0.23 (p <2.2e-
16) compared to using family history and genetic risk score together
(Supplementary Table 2). This pattern also held true when performing
a specification analysis on specifications with over 300 samples
(Supplementary Fig. 2A). The average AUC for microbiome only spe-
cifications was 0.52 and using microbial features only results in a
decrease in AUC of 0.23, p <2.2e-16, (Supplementary Fig. 2B). We also
used Wilcoxon signed rank tests to directly compare specifications
that shared all the same analytical choices except for the features
used in prediction (i.e., microbial or clinical features). We
found that microbiome only models have significantly lower AUCs
(p <2.3e-13) than complementary models that predict T1D with num-
ber of autoantibodies, family history, and genetic risk score (Supple-
mentary Fig. 3). Together these data show that using the microbiome
decreases predictive ability compared to methods that can be eval-
uated at birth.

In addition to the microbiome, we also checked how the size of
our training dataset affected prediction. To interrogate how the per-
cent of training data impacted prediction, we compared the AUC
between specifications with all the same model choices except for the
percentage of training data used to train the models. We found that
using 66% and 80% of data for training gave a small but significant
increase in AUC compared to using 50% of data for training (p = 2.3e-07
mean difference: 0.007 and p = 0.031; mean difference 0.006). How-
ever, there was no significant difference in AUC when comparing
models using 66% and 80% of data for training (p = 0.2 mean difference
0.0007; Supplementary Fig. 4). We also compare the AUC between
models similar in all other specification choices except whether to
correct for imbalanced data by weighting observations based on the
number of cases and controls. There was no significant difference in
AUC between weighted and unweighted models in Random Forest
methods (p=0.72 and p=0.68). For non-random forest methods,
there was a significant difference in AUC (p =9.3e-06), but the mean
difference was —0.0017 indicating that weighting decreased AUC by a
very small amount (Supplementary Fig. 5).

While the microbiome does not predict T1D, microbial genes
consistently associated with type one diabetes and related phenotypes
could be useful to understand the etiology of T1D. We counted the
proportion of specifications that chose different microbial genes as
significant predictors (absolute value of beta coefficient or importance
greater than O in lasso regression or random forest models respec-
tively). No microbiome genes, pathways, or taxa were found in greater
than 50% of models (Fig. 4; Supplementary Fig. 6) providing evidence
that the microbiome is not robustly associated with T1D before onset.

Discussion

Here we predicted future type one diabetes risk as a function of the gut
microbiome. Instead of reporting one or a few models, we used a
“specification curve analysis”, an approach to parameterize and sys-
tematically test all possible study design specifications”. We found a
large amount of heterogeneity in our predictions that are dependent
on clinical features used in the model, and, in general, that the
microbiome is not predictive of prospective type one diabetes or
seroconversion. Specifically, predicting T1D with the number of auto-
antibodies resulted in the most accurate predictions®, while predicting
with the microbiome alone was less accurate than using family history
and genetic risk factors.

Specification curve analysis allows investigators to quantify the
role of participant level characteristics and variables (e.g., age) that
influences predictions. This allows us to quantify the influence of all
feasible study specifications and variables on prediction. In fact, we
found that the metagenome led to worse prediction capability on
average compared to the number of autoantibodies, which is part of
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Fig. 1| Analytical Pipeline Overview and an illustration of all specifications used
in the study. A The step by step analytical pipeline performed for each specifica-
tion. In bold are the different steps in the pipeline we vary for each specification.
These include the phenotype being predicted, age, and HLA of the subject, the

proportion of data being used for training, the feature selection method, and the
machine learning model used for prediction. B A stacked bar-plot illustrating the
specifications. The x-axis is the category of analytical choice made, and the y-axis is
the percent of specifications that use a given analytical method in each stacked box.

The boxes are colored by one of three studies previously done that associated type
one diabetes with the microbiome (Supplementary Table 1) to illustrate the ana-
lytical choices other studies have done previously. Acronyms: fdr (is a first degree
relative of someone with Type 1 Diabetes) grs2 (genetic risk score) healthy_pre-sero
(specification in which seroconverters are compared to healthy individuals) num-
ber_AAs (number of autoantibodies) BRF (balanced random forest) RFQ (Random
Forest Quantile Classifier).

the current best model for TID prediction®. We believe prospective

clinical predictions are therefore not enhanced by the microbiome.
The main drawback of this study was that low sample size left us

underpowered to systematically probe all specifications. These could

lead to findings that are biased, and lack of generalizability in new
cohorts. Indeed, our power analysis showed that we would need
1783 samples to be well powered to make predictions using Cox
regression models, but the gain in the AUC over variables such as family
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Fig. 2 | Example specification curve. 20 randomly sampled specifications to
demonstrate a specification curve. The bottom panel is a heatmap where columns
represent specifications and rows represent choices made in each specification.
Purple cells represent the presence of a choice in a specification. The next panel
“Study” shows specifications performed by other studies. The next panel “Sample
Size” shows the number of samples in each specification. The top panel is a scat-
terplot where each red dot is the area under the receiver operating characteristic

3ase|me 18month

baseline: 24mo th

baseline:6mon

baseline: 6month 12month
SN

:%I HLA

HLA: :(ngR{onl

HLA:DR4_DR4 on|

HLA:DR4_DR8 0|

prop oF ISH {Fglﬂd 5rd§

I ] —

arogO{ jon_train: 38 38

el:cox_regression

orest
model:unregu Srlze _logistic_regression
0SS_functio
0ss_function:lo

eature selectlo method none
eature_selection_| ngﬁtehod ‘ttest

Neéhted wei hted

eat res:{dr, 32
eatures:tdr,grs:
eatures:fdr.gr 2 gex number_autoantibodies

ng ,aumber_autoantibodies

eatures:microbiome,fdr,
rs2. gex number_autoantibodies

eatures:microbiome ;dr
r

eatures micro
I features: mlcroblome fdrg

eatures: mlcroblome

rzon_timenN

(ROC) curve for a specification, which measures how well a specification distin-
guishes cases from controls. The lines represent the 95% confidence intervals.
Acronyms: fdr (is a first degree relative of someone with Type 1 Diabetes) grs2
(genetic risk score) healthy_pre-sero (specification in which seroconverters are
compared to healthy individuals) BRF (balanced random forest) RFQ (Random
Forest Quantile Classifier).

history would likely be modest. While increasing the sample size may
have allowed us to detect subtle associations between the microbiome
and T1D, they still pale in comparison to baseline predictors that can be
taken at birth such as family history and genetic risk score®*.

Similarly to sample size, low sequencing depth may also render us
unable to detect lowly abundant genes or microbes. There is an aver-
age of 13.3 million reads per sample which is not enough to capture the
full diversity of the microbiome®. This may cause us to miss lowly
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abundant but important microbes that could influence TID risk?.
However, given that lowly abundant microorganisms are less likely to
be in the entire population, this is unlikely to influence prediction.
Another factor that can influence our view of the microbiome is the
clustering method we use to create the gene catalog. This step consists
of finding open reading frames within the metagenomic samples and

clustering them at a specific percent identity. Here we use 30% because
homologous proteins can diverge up to 30% identity and at least one
other gene catalog reports high quality clusters with 30% identity?*’.
However, there is no consensus on the percent identity to use as no
single cutoff can capture all biological boundaries and the number of
genes in a gene catalog can differ based on the percent identity used
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Fig. 3 | Specification curve and association between AUC and different analy-
tical choices. A The specification curve. The bottom panel is a heatmap where each
column is a different specification. Purple indicates the choice made for the spe-
cification. The panel labeled “Study” illustrates the specifications made by previous
studies shown in Supplemental Table 1 that associate the microbiome with T1D. The
panel labeled Sample Size represents the number of samples per specification. The
top panel represents the AUC for each specification. The red dots represent the
AUC-ROC. The top of the black line and bottom of the black line represent the 95%
confidence interval of the AUC. B A forest plot illustrating the beta coefficients and

significance of a linear model where the dependent variable is AUC and the inde-
pendent variables are the choices made in each specification (i.e., row labels of the
plot). *p < 0.05. **p < 0.01. **p < 0.001. Blue text and lines indicate specifica-

tion choices positively associated with AUC and red text and lines indicate speci-
fication choices negatively associated with AUC. Acronyms: fdr (is a first degree
relative of someone with Type 1 Diabetes) grs2 (genetic risk score) healthy_pre-sero
(specification in which seroconverters are compared to healthy individuals) BRF
(balanced random forest) RFQ (Random Forest Quantile Classifier).

for clustering®. As a result of the hard cutoff, some clusters may have
genes with multiple functions, while other clusters should be com-
bined together because they hold genes with the same functions. In
previous work we showed that clustering at 30% captures all KEGG
pathways, thus, we do not expect clustering thresholds to drastically
change the interpretation of this manuscript®®*’.

It is also important to note that the specification curve analysis is
only as good as the specifications or analytical choices deemed fea-
sible. As in any other computational analysis, it is possible we are
missing an unknown microbial feature or potential interaction
between different microbial features that would successfully predict
type one diabetes.

Just because the metagenome cannot predict future TID,
does not mean the microbiome has no link to T1D. This manu-
script is specifically focused on using gut metagenomics to pro-
spectively predict TID among high risk individuals two years of
age and younger. Prediction naturally assumes that the meta-
genome predisposes individuals to diabetes. However, it is often
thought that genetics predispose individuals, while environ-
mental factors (such as the microbiome) trigger the disease® .
To test this hypothesis one could perform a case only analysis
where the microbiome is compared early in life to a period right
before TID onset. Thus, future work could focus on under-
standing acute changes in the microbiome right before onset
rather than changes early in life that may predispose an indivi-
dual to TID.

In this manuscript, we saw a large heterogeneity in results based
on the specification used for prediction. This begs the question, is
there a “best” specification. This work was specifically designed to test
if the microbiome could reliably predict type one diabetes despite
different analytical choices. However, one could instead use a Speci-
fication Curve to test what analytical choices give the best predictions.
Such a study could be used to evaluate the best analytical choices for a
study that uses the microbiome to predict a phenotype, similarly to Le
Goallec et al.**. This could lead to a list of “best practices” in micro-
biome analyses that could advance the reproducibility of methods
used in the field and be a helpful resource for other researchers that
want to perform microbiome association studies but are unsure of the
best methods to use.

Associations between T1D and the microbiome are difficult to
reproduce. A recent study was unable to replicate any of the 34 asso-
ciations found in two different T1D cohorts®. Similarly three different
studies on the TEDDY cohort'®'*** found different taxa associated with
islet autoantibodies and T1D (Supplemental Table 1). Each study made
different analytical choices including sequencing method and micro-
bial features being analyzed, phenotype being evaluated, computa-
tional model and confounding variables adjusted for, and age of
subjects being studied, any or all of which could be responsible for
variations in results (Figs. 1, 3A). As a result the clinical applicability of
the microbiome is unclear. Here we show that the microbiome is not a
useful predictor of future type one diabetes and, with small sample
sizes, is on average, more likely to decrease predictive accuracy in
comparison to clinical predictors such as family history, genetic risk
score, or seroconversion.

Methods

Specifications

In a specification curve analysis, one tests how results change based on
the use of different, theoretically justified, and statistically valid ana-
lytical choices, or specifications. Here we tested how the predictive
ability of the microbiome changes based on the age and genetic sus-
ceptibility of individuals to T1D, the machine learning method used,
and the type of microbial features used for prediction, along with
many other analytical choices detailed below.

We predicted TID and four related phenotypes including future
seroconversion and presence of three different islet autoantibodies
(GAD, IA2A, and MIAA). Metadata was customized for each phenotype
being predicted and the age of the subjects we were predicting on. We
also stratified the data based on the HLA haplotype of individuals. To
evaluate variation in prediction due to train-test split proportions, we
made three additional variations of our data, one where 50% of the
subjects were put into the train group, and another where 66% of
subjects were put into the train group, and a third where 80% of sub-
jects were put into the train group. We used four different machine
learning algorithms to evaluate variation in prediction due to machine
learning algorithms. The four methods were LASSO cox-regression,
random survival forests, LASSO logistic regression, and random for-
ests. Weighted and unweighted versions of each algorithm were
implemented as well (Supplementary Materials).

Age specifications and landmark-horizon analysis for
longitudinal data

To incorporate the longitudinal aspect of the data into the modes we
used landmark-horizon cox-regression models as done in a previous
manuscript by the TEDDY Study Group®. In a landmark-horizon ana-
lysis, we train our data using samples under a certain age (landmark
ages). Then we make predictions whether that subject will have
the predicted phenotype at specific years in the future (horizons).
This allows us to make full use of the longitudinal data by evaluating
the age a child needs to be to accurately predict their risk of type 1
diabetes.

Specifically, we created different models where we only trained on
samples from subjects in a specific age range. These age ranges were
less than or equal to 3 months, 6 months, 12 months, 18 months, and
24 months or between 6 and 12 months of age, 12 to 18 months of age,
and 18 to 24 months of age. These age ranges are called landmark ages.
Then we made predictions on whether a subject will get Type 1 Dia-
betes or will have an autoantibody 1 or 3 years into the future, which
are the horizons. This landmark-horizon analysis allows us to evaluate
how well we can predict TID 1 or 3 years in the future in children of
different ages.

For the binary classification methods, we used different baseline
ages as done for the cox-regression, but instead of predicting at spe-
cific years in the future, we predicted whether that subject would have
TID in the future or not.

For microbial features, the microbiome abundances from the
same subject during the baseline age range were averaged together.
Microbiome abundances from the same subject after the baseline age
were also averaged together, such that we trained our models on the
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abundances during the baseline age and predicted using microbial
abundances after the baseline age.

Machine learning model specifications

We used six different machine learning algorithms for each dataset to
evaluate variation in prediction due to machine learning algorithms.
These six machine learning methods can be separated into two main
categories, binary classification and survival analysis. These two cate-
gories address slightly different questions. Survival analysis allows us
to predict if someone will get a disease while accounting for time to
that individual being “censored” (leaving the study as someone with-
out TID) or having T1D. Binary classification only predicts whether the
subject will ever get the disease, regardless of the time of followup. The
binary classification is simpler but does not take into account the
varied times that an individual can get a disease, such as T1D. There-
fore, we chose to incorporate both classification and survival approa-
ches into this study.

As a baseline model for the survival method, we used a standard
Cox regression model to fit clinical risk factor variables known to be
predictive of TID* such as number of autoantibodies, genetic risk
score, and family history of TID. As a baseline model for binary clas-
sification, we fit a logistic regression model with the same clinical risk
factor variables. These two models are meant to be used as baselines to
test if models incorporating microbiome data improved the state of
the art baseline model. To demonstrate whether microbiome models
improved prediction accuracy over the clinical baseline we have
plotted the difference in AUC between the baseline model and its
respective microbiome model in predicting TID using a Wilcoxon
signed rank test (Supplementary Fig. 3).

In addition, we also wanted to compare the performance of non-
linear models to linear models. For non-linear modeling, we used
random forest models, specifically, random forests and random sur-
vival forests to perform binary and survival analysis respectively. To
represent linear models, we used binary lasso regression and lasso-
regularized cox-regression for binary classification and survival ana-
lysis respectively. Lasso regression was used to perform feature
selection during training to (1) ovoid overfitting models during train-
ing and (2) to make accurate predictions even if features are corre-
lated. LASSO accomplishes this by penalizing models that include
more features, thus promoting sparse models. One consequence of
this is that given two or more correlated variables, the LASSO algo-
rithm will only choose one variable to represent the correlated set of
variables®?’,

Feature selection specifications

Feature selection was performed in the training set (Fig. 1A). We per-
formed the feature selection in two different ways: (1) by using lasso
regression, where all features with a coefficient of greater than O were
included in the model or (2) via t-test where we input genes sig-
nificantly associated (BY adjusted p-value <0.05) with TID or auto-
antibodies into the model for training. In specifications where both
lasso regression and t-tests were used, we first performed a t-test,
inputting genes significantly associated (BY adjusted p-value < 0.05)
with TID or autoantibodies into the lasso-regularized model for
training. In random forest methods, we only input genes significantly
associated (BY adjusted p-value < 0.05) into the random forest model.
If more than 100 genes were significantly associated with T1D or
autoantibodies the top 100 features were chosen, ranked by p-value.

Specifications for imbalanced data
On the random forest models, we used two different types of
weighting procedures. One was down sampling and the other was the
random forests quantile-classifier®®.

For the other models, we estimated weights by computing the
frequencies of case to controls. Control observations received the

weights of #cases/#controls while cases received the weight of 1-
(#cases/#controls). As a result, the more unbalanced the dataset, the
more influence the cases had over the model. We only used weights
during the training procedure, and not when estimating the test
data AUC.

T1D outcomes and predictors

We predicted T1D and related phenotypes with microbial and clinical
features. Microbial features included species, pathways, and gene
abundances. Clinical features include family history, genetic risk score,
and sex (Supplementary Materials). All statistical analyses were per-
formed in R, version 4.2.2. We visualized the AUC for all specifications
using the ComplexHeatamp package. Any AUC values below 0.5 were
rounded to 0.5 for downstream analysis and visualization.

Description of the specification curve figures

In Fig. 2 we display an example of our Specification Curve from Fig. 3A.
This was constructed by randomly sampling 20 specifications and
creating a Specification Curve from them (Fig. 2). In this example figure
(as in Fig. 3A) the bottom panel displays a heatmap where columnis a
specification (model created for prediction) and the rows are the
choices we make (e.g., the condition we are predicting, the machine
learning method we use for prediction). The purple color in each cell
represents the presence of the choice in the specification. For exam-
ple, in the rightmost specification, the model is predicting the pre-
sence of a MIAA autoantibody as indicating by the purple color. The
topmost panel is the “curve” in specification curve. This is a scatterplot
where the red dots represent the area under the ROC curve for each
prediction made by a specification. The lines extending from each red
dot represents the 95% confidence interval. The confidence intervals
are made through cross-validation on three train-test splits.

Statistical analysis

We performed all analyses using R version 4.1. Using multivariate
regression models, we evaluated analytical choices that influence
prediction as measured by AUC. We included the condition being
predicted (T1D or autoantibodies) baseline age, HLA of subjects, the
proportion of data used during training, the model used for predic-
tion, the feature selection method, the type of microbiome features
(species, gnes, or pathways) whether samples were weighted or
unweighted, the number of samples, the type of features used for
prediction (clinical or microbial) and the horizon time as covariates in
the model. The equation is described below.

AUC = ﬂcondition (Xcondition) +
ﬁbaselineage (Xbaselineage) +
BraXura) +
ﬁproportiontrainingdata (Xproportiontrainingdata) +
ﬁmodel(xmudel) +
ﬁfeatureselectionmethod (Xfeatureselectionmethod) +
ﬁmicrobiomefeaturetype (Xmicrobiomefeaturetype ) +
ﬁweighted (Xweighted )+
ﬁsamplenumber(Xsamplenumber) +
leeatures (Xfeatures)

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TEDDY shotgun metagenomics data are available at the NCBI data-
base of Genotypes and Phenotypes (dbGaP) under the primary
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accession code phs001443.vl.pl [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs001443.vl.pl] in accor-
dance with the dbGaP controlled-access authorization process. Clin-
ical metadata and whole genome sequencing data are available
through the NIDDK Central Repository at https://doi.org/10.58020/
y3jk-x087 in accordance with the NIDDK’s controlled-access author-
ization process. All data necessary to reproduce figures can be found
at https://figshare.com/authors/Samuel_Zimmerman/10885572. Users
can also access a Shiny app to analyze the results from the manuscript
as well at http://apps.chiragjpgroup.org/teddy. The TEDDY data
sharing policy is located here: https://teddy.epi.usf.edu/documents/
TEDDYDataSharingPolicy.pdf.

Code availability
Code to reproduce the figures in this manuscript is available at https://
github.com/b-tierney/teddy®.
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