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We develop an open-source package called AnnDictionary to facilitate the
parallel, independent analysis of multiple anndata. AnnDictionary is built on
top of LangChain and AnnData and supports all common large language model
(LLM) providers. AnnDictionary only requires 1 line of code to configure or
switch the LLM backend and it contains numerous multithreading optimiza-
tions to support the analysis of many anndata and large anndata. We use
AnnDictionary to perform the first benchmarking study of all major LLMs at de
novo cell-type annotation. LLMs vary greatly in absolute agreement with
manual annotation based on model size. Inter-LLM agreement also varies with
model size. We find that LLM annotation of most major cell types to be more
than 80-90% accurate, and will maintain a leaderboard of LLM cell type
annotation. Furthermore, we benchmark these LLMs at functional annotation
of gene sets, and find that Claude 3.5 Sonnet recovers close matches of
functional gene set annotations in over 80% of test sets.

Single-cell transcriptomic sequencing (scRNA-seq) analysis has enabled
the discovery of novel cancer targets, rare cell types, and deepened our
understanding of cell phenotype and function'”. One of the largest
bottlenecks in scRNA-seq is the annotation of cell type. Until recently,
this step has required input from human experts. Large language
models (LLMs) have emerged as a promising tool to automate single-
cell analysis based on marker genes*. What's more, LLMs have shown
satisfactory agreement with classical biological inference tools (i.e.,
Gene Ontology term analysis), and so additionally hold promise for
automating interpretation downstream of cell type annotation’.

LLMs are primarily accessed through a commercial provider via a
provider-specific interface. While some are open source and can be
downloaded for local use, the size and complexity of doing so can be
restrictive. Therefore, we built AnnDictionary (https://github.com/
ggitl2/anndictionary/), an LLM-provider-agnostic Python package
built on top of AnnData and LangChain that can use any available LLM
by changing just one line of code (e.g., any model provided by OpenAl,
Anthropic, Google, Meta, or available on Amazon Bedrock). The aim of
this package is to consolidate both automated cell type annotation and
biological process inference into a single Python package that

interfaces natively with Scanpy. Furthermore, while handling smaller
datasets with ease, AnnDictionary includes optimizations to allow the
LLM-based annotation of atlas-scale data. Previous work indicates that
LLMs can reliably identify cell type from curated lists of marker genes—
those identified via literature or calculated from previously identified
cells of known type—but there has not yet been an assessment of LLMs
at de novo cell type annotation, meaning annotation of gene lists
derived directly from unsupervised clustering*. These gene lists cru-
cially differ from curated gene lists, because they contain unknown
signal and noise that may affect the annotation process®’. De novo
annotation is therefore a potentially more challenging task. The goal of
this investigation is to assess the effectiveness of LLMs in this context.
So, we used AnnDictionary to benchmark the de novo cell type
annotation ability of the major commercially available LLMs (i.e., all
models from OpenAl, Anthropic, Google, Meta, and all additional
available text generation models on Amazon Bedrock, including Mis-
tral, Titan, and Cohere). These benchmarks will be displayed as a
running leaderboard at https://singlecellgpt.com/celltype-annotation-
leaderboard. We also benchmarked these LLMs at the functional
annotation of gene sets.
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In addition, as scRNA-seq experiments continuously increase in
size and complexity, so do their analyses®. For example, it can be
desirable to handle a dataset stratified at the donor, tissue, or cell type
level, and independently operate on each of these groups of data (i.e.,
normalize each tissue in Tabula Sapiens independently). AnnDic-
tionary aims to create a formal backend for independent processing of
multiple anndata in parallel. This functionality is a key building block in
various scRNA-seq and spatial transcriptomic tasks (e.g., de novo
annotation of cell type, label transfer, data integration, cell segmen-
tation), and we expect AnnDictionary to serve as a useful, flexible
backend for their analyses. We therefore provide notebooks of how
AnnDictionary can simplify the implementation of these tasks.

Results

AnnDictionary is a parallel backend for processing anndata
Our first step in benchmarking LLMs involved building a backend that
could handle the parallel processing of many anndata through a sim-
plified interface. The current state of the art is to manually create a
dictionary of anndata objects and loop over them. We aimed to for-
malize this concept by: (1) defining a class called AdataDict (i.e., a
dictionary of anndata objects); and (2) providing an essential work-
horse method—fapply—that operates conceptually similar to R’s lap-
ply() or Python’s map(), Fig. 1A. Fapply is multithreaded by design and
incorporates error handling and retry mechanisms, allowing the atlas-
scale annotation of tissue-cell types by 15 LLMs in a tractable amount of
time. However, multithreading can also be turned off for non-thread-
safe operations.

In AnnDictionary, we also include a module of wrappers to com-
mon Scanpy functions’. Furthermore, we provide centralized wrap-
pers for label transfer pipelines (i.e., via logistic regression with
Universal Cell Embedding)®, and data integration techniques (i.e.,
harmony)". While this is only a small sample of available methods,
AnnDictionary is extensible and can grow to accommodate additional
methods. Finally, AnnDictionary functions can typically take single
arguments to be broadcast to all anndata, or arguments can be pro-
vided as a dictionary, with a separate parameter for each anndata. For
example, one could normalize 3 different datasets to 3 different values
with a single AnnDictionary function call.

AnnDictionary consolidates common LLM integrations under
one roof

As previously mentioned, several LLM-based automations, including
gene set annotation and data label management, have been developed
and tested, but there does not exist, to the authors’ knowledge, a
centralized implementation of them in Python built on top of AnnData,
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the predominant data structure used in Pythonic scRNA-seq analysis.
Thus, we implemented a variety of LLM-based tools.

AnnDictionary is the first package in this space to natively support
multiple LLM providers, and contains substantial technical advances
over previous work*?, including few-shot prompting, retry mechan-
isms, rate limiters, customizable response parsing, and failure hand-
ling. All of these features contribute to a user-friendly experience when
annotating datasets.

Cell type annotation. We designed an LLM agent that attempts to
determine cluster resolution automatically from UMAP plots. Chart-
based reasoning is an established task family of LLMs"®. We note
that current LLMs do not seem good enough to reliably produce
reasonable resolutions, but still may be a useful first pass, and this
capability may eventually improve. Then, we provide several func-
tions for cell type annotation via different methods. The following
methods can generally be tissue-aware at the user’s discretion. These
include (1) based on a single list of marker genes, (2) by comparing
several lists of marker genes using chain-of-thought reasoning, (3) by
attempting to derive cell subtypes by comparing several lists of
marker genes using chain-of-thought reasoning with the parent cell
type supplied as context, and (4) using (2) in this list with the addi-
tional context of an expected set of cell types. At this stage, we note
that, as a design principle, AnnDictionary returns relevant LLM out-
put so that the user can manually verify cell type mappings,
annotation, etc.

Gene set annotation. We wrote several functions to assist with gene
processing. These include annotating sets of genes and adding these
annotations to the metadata—for example, adding an is_heat -
shock_protein column to the gene metadata. We also wrote functions
that use an LLM to attempt to infer the biological process represented
by a list of genes.

Automated label management. We implemented several functions to
assist with data label management in AnnData using LLMs. Use cases
include resolving syntactic differences in labels used across different
studies. Some functions are built to process category labels in a single
column by cleaning them, merging them, or generating multi-column
label hierarchies (i.e., from cell subtype all the way to compartment).
Other functions are designed to handle common situations when
dealing with datasets from multiple sources or annotations from
multiple methods, such as differing notation for common cell types.
Furthermore, we provide ways to assess label agreement (all using
LLMs to manage label comparison)
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Table 1| LLM performance

Cell Type Biological
Process
Binary (%) Perfect Match (%) Exact String Kappa Close Match
Match (%)
Model Cells By Cell Type Cells By Cells By With Manual Average % of Terms
Cell Type Cell Type With LLMs
Claude 3 Haiku 78.3+0.8 66.2+1.5 61.8+2.3 47+4 61.8+2.3 47+4 0.589+0.023 0.652+0.023 62.8+0.4
Claude 3 Opus 82.3+0.9 69.8+1.0 72.8+2.6 54+4 72.7+2.6 54+4 0.704+0.026  0.711+0.020 71.0+0.4
Claude 3.5Sonnet 84.0+0.7 70.5+£1.2 74.4+2.7 54+4 74.3+2.6 53+4 0.721+0.027 0.697+0.026 81.20+0.32
Command RPlus  77.2+1.0 59.4+2.6 645+2.6 40+5 645+2.6 405 0.616+0.027 0.646+0.026 58.5+0.7
GPT-4 79.2+0.9 64.3+1.9 64+4 44 +5 64+4 44 +5 0.61+0.05 0.65+0.04 65.24+0.33
GPT-40 80.9+0.7 70.1+£2.8 70.4+25 54+6 70.4+25 54+6 0.680+0.026 0.721+0.021 67.04+0.33
GPT-40 mini 76.8+1.0 66.2+1.6 63.4+3.0 47+6 63.4+3.0 47+6 0.605+0.031 0.681+0.022 64.8+0.5
Gemini 1.5 Flash 68.8+1.3 60.8+2.7 51.0+2.5 A+5 51.0+25 41+5 0.478 £+ 0.024 0.561+0.020 60.52+0.18
Gemini 1.5 Pro 77.5+1.8 67.9+0.8 65.1+2.4 50+5 65.1+2.4 50+5 0.625+0.024 0.658+0.019 66.32+0.11
Llama 3.1 405B 82.0+1.0 64.9+2.7 69.5+2.6 47+5 69.3£2.6 47+5 0.667+0.027 0.690+0.021 71.9+0.5
Instruct
Llama 3.170B T4+4 61.6+15 64+4 46+5 64+4 45+5 0.62+0.04 0.665+0.022 70.8+0.5
Instruct
Llama 3.1 8B 59+4 53+4 47.7+3.2 376 47.6+3.2 366 0.440+0.031 0.526 + 0.030 61.7+0.7
Instruct
Mistral Large 78115 66.2+2.0 64.9+2.7 50+5 64.8+2.8 49+5 0.623+0.027 0.696 +0.024 62.76 +0.17
Plurality Vote 80.5+0.9 69.4+1.7 72.4+£2.1 55EID 72.3+2.1 55+5 0.700+£0.022 0.770+£0.018 —

Agreement with manual annotations measured by yes/no, quality of match, and exact string agreement. Kappa with manual annotation and average kappa of the given model with every other model.
Biological process annotation of known gene lists. All values are mean + standard deviation across five replicates. Source data are provided as a Source Data file.

AnnDictionary can plug in to any LLM with a single line of code
With a parallel processing backend and LLM integrations in place, the
next step was to create a simple interface to allow the use of any LLM
with AnnDictionary. This flexible design was desired to allow ease of
use and future-proofing as new LLMs become available. To accomplish
this, we built on top of LangChain to design a configurable LLM
backend that we could call from the LLM integration functions without
reference to a specific underlying model. The result is that the func-
tions in AnnDictionary can be used with any LLM with just a single line
of code—a function called configure_llm_backend().

This aspect of flexibility and incorporation of provider-specific
handling, including rate limits and message formatting, enables
AnnDictionary to be used to annotate Tabula Sapiens v2 with 15
different LLMs.

Claude 3.5 Sonnet had the highest agreement with manual
annotation

Data pre-processing, cell type annotation, and rating annotation
results. For this investigation, we used the Tabula Sapiens v2 single-
cell transcriptomic atlas and followed common pre-processing pro-
cedures. Handling each tissue independently, we normalized, log-
transformed, set high-variance genes, scaled, performed PCA, calcu-
lated the neighborhood graph, clustered with the Leiden algorithm,
and computed differentially expressed genes for each cluster, see the
Methods for details. We then used LLMs to annotate each cluster with a
cell type label based on its top differentially expressed genes, and had
the same LLM review its labels to merge redundancies and fix spurious
verbosity. We show example LLM annotations of all cells detected in
blood in Fig. 1B.

We assessed cell type annotation agreement with manual anno-
tation using direct string comparison, Cohen’s kappa (k), and two
different LLM-derived ratings: one in which an LLM is asked if the
automatically generated label matches the manual label and to provide
abinary yes/no answer, and a second method where an LLM is asked to
rate the quality of the match between automatic and manual labels as
perfect, partial, or not-matching. Note that if the labels were a direct

string match, this was treated as a “perfect” match without the need to
pass to an LLM. The use of LLMs in comparing free text results is
standard practice”,

To calculate Cohen’s kappa both between LLMs and with manual
annotations required a shared set of labels amongst all the annotation
columns. We computed this unified set of categories using an LLM, and
based the calculation of all agreement metrics on these unified col-
umns for consistency.

We ran all annotations in replicates of five to ensure stable
behavior and assessment of performance, and where applicable, dis-
cuss the average and standard deviation of performance across the
replicates.

Claude 3.5 Sonnet had the highest binary agreement with manual
annotations at 84.0 + 0.7% of cells, followed closely by Claude 3 Opus,
Llama 3.1 405B Instruct, and GPT-40, Table 1. Claude 3.5 Sonnet also
had the highest binary agreement on average by cell type 70.5 +1.2%,
and the highest proportion of perfect matches at 74.4 +2.7% of cells,
Fig. 2A. When considering the proportion of perfect matches on
average by cell type, Claude 3.5 Sonnet (54 +4%), Claude 3 Opus
(54 +4%), and GPT-40 (54 + 6%) were tied as the top performers by this
metric, Fig. 2B. Finally, Claude 3.5 Sonnet had the highest percent of
exact string matches across all cells (74.3 +2.6%), but Claude 3.5 Son-
net (53 +4%) was behind Claude 3 Opus (54 +4%), GPT-40 (54 + 6%),
when considering the same metric averaged by cell type. Note that the
performance differences among the top models are generally small,
with overlapping error bounds at times. As expected, the lowest per-
forming models were the lightweight models with smaller numbers of
parameters. We omit Amazon’s Titan models from the assessment
because they could not reliably follow directions well enough to
annotate cell types.

Inter-LLM agreement. The second way we assessed LLM annotation
was via consistency between the LLMs. First, we measured kappa
between each LLM and the manual annotation, Table 1. Of the LLMs
tested, Claude 3.5 Sonnet was the most consistent with manual
annotation (k=0.721+0.027). Then, we measured kappa values
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Inter-rater reliability measured as pairwise kappa between each LLM (C). Mean and
(D) Standard deviation. All metrics are shown as mean and standard deviation
across five replicates. Source data are provided as a Source Data file.

pairwise between all LLM annotation columns, Fig. 2C, D, and each
model’s average kappa with all other models, Table 1. On average, GPT-
40 was the most consistent with all other LLMs (k= 0.721 + 0.021), and
Claude 3 Opus and Claude 3.5 Sonnet were the most consistent LLM
pair (k= 0.786 + 0.024).

Performance of Plurality Vote of all LLMs. We also calculated the
ensemble vote of all LLMs by using the plurality label of all LLMs for
each cell. In terms of performance, this method was on par with,
although slightly less performant than, the other top-performing
LLMs, with the exception of having the highest perfect match and
exact string match rates when averaged by cell type at 55 + 5% for both
metrics, albeit by 1%, Table 1.

LLMs excel at annotating major cell types. Overall, there is roughly a
15-20% performance difference between annotating cells vs. cell type,
indicating that the models consistently agree with large, common cell
types. For the subsequent sections, with the exception of Fig. 3A, we
used a single run to understand annotations by the top-performing
models, and results are generally consistent between runs.

Among the 10 largest cell types, LLMs consistently scored highly
(>80-90%), except for Stromal Cells and Basal Cells, Fig. 3A. We then
looked at how the best-performing LLMs annotated these cell types.
Cells that were manually annotated as basal cells were, in large part,
annotated as epithelial cells by the top-performing LLM (Claude 3.5

Sonnet), Fig. 3B. Basal and epithelial cells are closely related in lineage.
Based on a small number of canonical marker genes (CDH1, EPCAM,
and KRTS8 for epithelial cells, and KRT5, KRT14, and TP63 for basal
cells), it seems that, while there may be a subpopulation of manually
annotated basal cells that have a more epithelial phenotype, basal cells
dominate this group, Fig. 3C. Meanwhile, stromal cells came from the
ovaries, and the LLMs derived cell type names for subclusters of this
population, Fig. 3D. However, known marker genes (specifically DCN
and LUM) were expressed broadly across cells manually annotated as
stromal cells, Fig. 3E”. In addition, it appeared that cells that were
manually annotated as Neutrophils were consistently labeled as Mac-
rophages by LLMs, Supplementary Figs. 1, 2. We also considered the
LLM annotation performance within each tissue, Supplementary Fig. 3.
The tissues with the lowest average agreement between manual and
LLM annotations were ear, muscle, and ovary. Viewing the tissue
results in the context of the tissue-cell type level metrics, we can see
that low tissue-level performance was driven by having a higher rela-
tive abundance of cell types that had low agreement with manual
annotation in general. Specifically, the ear had 37% stromal cells, the
muscle had 50% mesenchymal stem cells, and the ovary had 72%
stromal cells of ovary. So, we focus on understanding the annotations
at the cell type level.

To further understand LLM annotation behavior across all cell
types, we plotted inter-LLM agreement vs. agreement with manual
annotation for each cell type. Among other uses, this plot was
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with kernel density estimates scaled by population size as well. The manually drawn
ellipses outline two regions of interest: (A) the cell types with the highest inter-rater
agreement and lowest agreement with manual annotation—which are the subject of
Fig. 5, and (B) the cell types with the highest inter-rater agreement and highest
agreement with manual annotation—which includes the most abundant cell types
discussed earlier.

designed to allow us to identify cell types that were consistently rated
by the LLMs but disagreed with the manual annotations, Fig. 4. We
separate this plot into 4 quadrants, with cell types in the (1) top-left:
LLMs agree with each other, but disagree with the manual annotation;
(2) bottom-left: LLMs disagree with each other and with the manual
annotation; (3) bottom-right: LLMs disagree with each other but agree

with the manual annotation; and (4) top-right: LLMs agree with each
other and with the manual annotation. This plot is designed to quali-
tatively assess label confidence.

Nearly all cell types had greater than 50% agreement between the
LLMs, suggesting that the rate of completely spurious annotation by
these LLMs is generally low across the atlas, Fig. 4A. To see how cell
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Fig. 5| Cell types with high inter-LLM agreement and low manual agreement.
A For the 10 cell types closest to the top-left corner of the scatterplot in Fig. 4A, a
confusion matrix of top-performing LLM annotations and corresponding manual
annotations, with a red box around the largest cell type by abundance present in
this group (phagocytes). The color bar represents the proportion of cells from each

category of manual annotation that are in each category of LLM annotation. Thus,
each row sums to 1. B Macrophage, monocyte, and dendritic cell module scores
derived using canonical marker genes for cells manually annotated as phagocytes.
C UMAP visualization of the module scores in (B).

type population size may have affected annotation consistency, we
divided cell types into tertiles of population size. Generally, major cell
types had high agreement both between LLMs and with respect to
manual annotation, while smaller cell types still had moderate (> 50%)
agreement between LLMs, but did not agree with the manual annota-
tion. To see where the majority of cells lie, we weighted the density
estimates by the number of cells in each cell type, Fig. 4B. Here, it is
clear that the majority of cells are consistently rated by the LLMs and
agree with manual annotation. The differences from this trend were
primarily basal and stromal cells. As previously discussed, these cells
were labeled less consistently by the LLMs than most other major
cell types.

We then investigated the group of (mostly) smaller cell types in
the upper-left of this scatterplot, Fig. 4A. For the 10 cell types that were
closest to the top-left corner of the scatterplot, we plotted a confusion
matrix to see the correspondence of manual annotations with anno-
tations by the top-performing LLM (Claude 3.5 Sonnet), Fig. 5A. The
largest of these cell types were manually annotated as mononuclear

phagocytes (n - 5000), and LLM-annotated as macrophages. Based on
visualization of canonical marker genes and associated module scores,
there is evidence that this cluster is mostly composed of macrophages,
but also contains monocytes and dendritic cells, Fig. 5B, C. We note
that there are other cell populations in the stomach that are manually
labeled as monocytes and macrophages. Taken together, these data
suggest that, in this case, the manual annotations may be technically
correct, but the LLM annotation may be more pragmatic, as this cluster
overall has the highest expression of macrophage marker genes. That
is to say that the label “mononuclear phagocyte” is a useful description
of phenotype across several cell types, but ultimately represents a
different depth of annotation than other labels in the same set. Finally,
we might expect to record disagreement for small cell types whose
clusters were not reproduced in the present study due to parameter
decisions.

Annotation from expected cell types. We also benchmarked an LLM
annotation strategy based on expected cell types. To do so, we
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designed a function that uses chain-of-thought reasoning to first pre-
sent the list of expected cell types to the LLM, then ask the LLM to
compare and contrast the gene lists presented, then ask it to provide
annotations for each list one list at a time, and finally use partial string
matching with a similarity threshold to map the LLM labels back to the
initial set of expected labels. The threshold allows LLM labels that are
not similar to the expected labels to pass through as new labels.
Because this function uses chain-of-thought reasoning to help the LLM
assign cell types to multiple gene lists in a single conversation, it is
substantially more expensive to run and requires higher rate limits.
Therefore, we benchmarked the annotation from expected cell types
on a subset of the LLMs used previously that had higher API rate limits
(excluding Claude 3 Opus due to cost). Here, the performances of the
LLMs were only marginally lower compared to the previous annotation
performances, which represented a coarser scale, Supplementary
Table 1. Furthermore, some degradation of performance is to be
expected given that in this annotation strategy, the labels returned
from the annotation function were not post-processed before being
compared between LLMs and with manual annotations.

Annotation performance was not driven by the presence of cells
from Tabula Sapiens v1. More than half of Tabula Sapiens v2 had not
been publicly released by the knowledge cutoffs of the majority of
models benchmarked in this study, including all of the top-performing
models. However, cells from Tabula Sapiens vi—which was released
before the knowledge cutoffs—account for a substantial portion of
Tabula Sapiens v2. To determine if the presence of Tabula Sapiens v1
cells was driving the annotation results in this investigation, we re-ran
the LLM benchmarking pipeline after removing cells that were part of
Tabula Sapiens V1. In this control experiment, the performance of the
LLMs is marginally better, Supplementary Table 2. This is not surpris-
ing because this test dataset was smaller. Because the Tabula Sapiens
v2 dataset as a whole is of primary interest for downstream biological
tasks, we still focus our investigation on the LLM annotations of the
entire Tabula Sapiens v2 atlas, and use the agreement metrics calcu-
lated thereon because they are generally lower and therefore more
conservative.

Annotation performance is robust to the LLM used in label post-
processing. To address the concern that the choice of post-processing
model can introduce bias, we ran replicates of the post-processing step
using a second LLM, GPT-40, giving an independent assessment of the
same set of annotations. We then computed the same set of perfor-
mance metrics based on these corrected labels, Supplementary
Table 3. The performance metrics as assessed by independent post-
processing models are highly correlated, Supplementary Table 4. We
thus conclude that the results are robust to the choice of post-
processing model.

Annotation performance is robust to the LLM used as rater. Self-
enhancement bias refers to the potential behavior of LLMs to prefer
their own answers to those from other LLMs". To assess the presence
of self-enhancement bias in the performance ratings presented in this
study, we ran replicate experiments to compare the performances as
rated by a second model, GPT-40, Supplementary Table 5. The per-
formances of each LLM when assessed by Claude 3.5 Sonnet vs. GPT-40
were highly correlated, Supplementary Table 6, indicating that the
effect of self-enhancement bias seems to be minimal.

Prompt ablation study. The unablated prompt of the annotation
function contained the following key components: (1) a system prompt
designed to decrease output token usage and set context (2) a base
prompt designed to decrease output token usage and make the LLM
return only a cell type label (3) tissue context intended to provide a
weak suggestion of expected labels (4) marker genes sorted as

returned by scanpy’s rank_gene_groups function. To understand which
components of the cell type annotation module impact annotation
performance, we conducted a prompt ablation study using Claude 3.5
Sonnet, Supplementary Table 7. Detuning the base prompt caused
annotations to be too long to use in the automated benchmarking
pipeline, and so this ablation was removed from downstream com-
parisons. The performances amongst the remaining ablations seemed
to be similar, given their means and standard deviations across five
replicates.

Standard deviations of metrics in the context of ablations were
generally larger than in previous runs without ablation. Therefore, a
dominating effect of the ablations was to decrease the overall stability
of the annotation pipeline. Specifically, we noticed a sharp increase in
the frequency of sporadic cell subtyping compared to that observed
during testing of the unablated pipeline. Furthermore, without tissue
context, the LLM tended to include spurious tissue information or cell
types that would not reasonably be expected in the given sample.
Being more stringent measures of agreement, the percent of labels
that were rated as perfect matches, as well as the percent of labels that
were exact string matches, were more sensitive to the ablations overall
than the less stringent binary rating.

Benchmarking biological process annotation. To assess the perfor-
mance of the LLM biological process annotation function in AnnDic-
tionary, we followed the previous methodology outlined in Hu et al.’ to
define close matches between LLM-generated annotations of gene sets
and the Gene Ontology terms labels from which the genes were taken,
see Methods. All but one of the LLMs in this study—GPT-4—have not
been previously benchmarked at this task. Based on annotation of 500
gene sets derived from GO Biological Process terms, Claude 3.5 Sonnet
achieved the highest proportion of close matches to source GO terms
(81.20 + 0.32%), followed by Llama 3.1 405B Instruct (71.9 + 0.5%), and
Claude 3 Opus (71.0 £ 0.4%), Table 1.

To demonstrate the biological process annotation function, we
present sample LLM annotations of gene lists of known processes from
the Gene Ontology Biological Process database. In these three cases,
the LLM annotations, while slightly broader, generally agreed with the
existing labels, Supplementary Table 8.

Discussion

This study represents the first comprehensive benchmark of LLMs at
de novo cell type annotation, and we plan to maintain a leaderboard of
LLMs at this task as measured on Tabula Sapiens. We also present the
first benchmarks of 14 LLMs at biological process annotation from
gene sets of known process. Overall, our measures of performance
indicate that large LLMs can provide reliable de novo cell type anno-
tations at the broad cell type level and reliable biological process
annotations.

Previous work has assessed GPT-4’s ability to annotate curated
lists of genes, including lists derived from Tabula Sapiens v1*. We build
on this previous work by assessing LLMs’ abilities to annotate the full
complexity of gene lists derived from unsupervised clustering. In the
present study, we used Tabula Sapiens v2, which contains more than
double the number of cells compared to Tabula Sapiens v1. On this
larger dataset, we find the annotation of major cell types to be more
than 80-90% accurate, making LLM-based annotation a viable option
for first-pass cell type annotation. The flexibility of LLM-generated
annotations solves a major problem of automated annotation proce-
dures, which have historically lacked flexibility due to the need to use a
reference set of annotations’. Furthermore, the LLM-based approach is
reference-free and so does not require additional datasets, which
could otherwise increase computational burden.

In addition to direct LLM labeling of single lists of differentially
expressed genes, we also tested two other annotation strategies:
annotation by the ensemble vote of several LLMs, and annotation by

Nature Communications | (2025)16:9511


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-64511-x

chain-of-thought reasoning of multiple marker gene lists in a single
conversation with expected cell types for context. Both of these
methods add substantial runtime, financial expense, and complexity,
but did not yield general performance increases. Therefore, of the
three methods tested, the straightforward annotation of a single gene
list at a time was the best-performing, simplest, and most cost-
effective approach to annotating broad cell types. Previous investiga-
tion involving curated marker gene lists found that annotations based
on the top 10 differentially expressed genes gave better performance
than using the top 20 or 30*. Here, we used 10 marker genes and find
that this gives satisfactory performance while keeping token usage
minimal. Furthermore, using longer lists of marker genes risks com-
promising the gene lists’ specificity and including genes with smaller
effect size.

Beyond saving time, effort, and cost, one major advantage of
using LLMs to annotate cell types is that the LLMs seem to be able to
annotate at a more consistent depth than achieved manually. However,
large-scale cell type annotation with LLMs highlighted the potential
pitfalls of cell type annotation in general. The apparent shortfall of LLM
annotation for cell types such as basal cells and mononuclear phago-
cytes may actually represent an artifact of dichotomizing continuous
expressional gradients in transcriptomic data, and not speak to the
performance of LLMs themselves. This is supported by the fact that the
LLM annotations for these cells were, for the most part, nearly correct,
representing closely related cell types (i.e., a large portion of basal cells
were annotated as epithelial cells, and mononuclear phagocytes were
annotated as macrophages). In contrast, the case of stromal cell sub-
cluster annotation by LLMs could be an artefact of potential over-
clustering in the preprocessing pipeline used in the present study, or
limitations of the marker gene selection method. We also observed the
difficulty inherent in distinguishing immune cell types, such as neu-
trophils, macrophages, and monocytes, based on a small number of
differentially expressed marker genes.

In the present study, we opted not to assess intra-LLM kappa (i.e.,
a model's consistency with itself upon repeated, independent
prompts) because we believe this to be a trivial assessment of the
temperature parameter of the model. The temperature hyperpara-
meter controls how deterministic the LLM responses are.

In addition to comprehensive cell type annotation benchmarking,
we also include biological inference functions (e.g., functional gene set
annotation with biological processes) and associated benchmarking.
Most of the LLMs used in this study have not been previously bench-
marked at this task, with GPT-4 being the one exception. We demon-
strate that some LLMs have substantially higher performance
compared to the best performances previously observed with other
LLMs. Specifically, we observed Claude 3.5 Sonnet to achieve just over
an 80% close semantic match rate when annotating curated gene sets,
whereas the previous best performance was GPT-4, with a roughly 60%
close semantic match rate. It is convenient to consolidate all these
annotation tasks into one package. A major limitation of current gene
set enrichment analyses is their dependence on the sizes of the gene
sets in the query database’. The use of LLMs—which do not rely on
static lists of genes—to annotate pathways is therefore a promising
solution to this issue.

Limitations

There are several potential limitations related to the LLMs used in this
study. We attempted to fully characterize the extent to which data
leakage could influence benchmarking by denoting all information of
the previous preprint that used Tabula Sapiens v2, cataloging the use
of relevant information in the present analysis, and making note of all
this information in the context of the knowledge cutoffs of all LLMs
used in the study. Furthermore, we ensured that the observed per-
formances are not due to overlap with the previously published Tabula

Sapiens v1 by reproducing performance in only the portion of Tabula
Sapiens v2 that was not released in Tabula Sapiens v1. Because the
Tabula Sapiens v2 dataset as a whole is of primary interest for down-
stream biological tasks, we still focus our investigation on the LLM
annotations of the entire Tabula Sapiens v2 atlas, and use the agree-
ment metrics calculated thereon because they are generally lower and
therefore more conservative.

We also ensured that performance results were not due to the
specific post-processing model used by reproducing highly correlated
performances with another independent post-processing model.

Finally, we showed that self-enhancement bias did not sub-
stantially influence the annotation ratings by reproducing highly cor-
related performances with another independent model. The lack of
observed self-enhancement bias is not surprising because the cell type
annotations are short strings, and so it seems unlikely that they contain
substantial stylistic information. While we used an LLM to rate the
quality of matches, we also present these results alongside the much
stricter exact string match agreement.

One goal of the present study was to build an annotation tool that
could cheaply produce accurate first-draft annotations. The identifi-
cation of finer-grained cell type annotations, including subtype and
state, is often context-specific and dependent on the practitioner. So,
we focus our efforts here on benchmarking annotations at a broad
level, attempting to provide accurate coarse annotations to best
facilitate downstream analysis. Thus, we have not considered cell type
annotation beyond the broad level, but higher resolution annotations
may be investigated in future work.

With regard to the benchmarking of LLMs at biological process
annotation, a key limitation is that the benchmarking was performed
on curated gene sets derived directly from GO terms. These lists likely
differ from experimentally derived gene lists, and so further evaluation
could be investigated. Difficulty in further evaluation includes estab-
lishing ground truth interpretations of gene lists, as genes are often
used in many potentially independent contexts.

In conclusion, we developed a parallel backend that simplifies the
processing of several anndata at once. This package is flexible to allow
users to build their own additions. We also have wrapped the LLM-
backend configuration and switching into a single line of code, thereby
simplifying the use of LLMs for annotation tasks. Beyond the bench-
marking of LLMs at cell type annotation based on marker genes
described here, we plan to maintain an LLM leaderboard of this task at
https://singlecellgpt.com/celltype-annotation-leaderboard.

Methods

Data access

The Tabula Sapiens v2 dataset was accessed through its pre-release
version with the help of the Tabula Sapiens Consortium. The dataset
contains n=61,806 genes and n=1,136,218 cells annotated by the
Tabula Sapiens Consortium, more than half of which were not publicly
released until December 4™, 2024 (this is relevant for LLM annotation,
because LLMs are trained on published marker gene data).

Data preprocessing

The full data processing pipeline, starting from raw counts, is available
in the form of a snakemake pipeline at https://github.com/ggit12/
benchmark_lims?.

To perform the de novo LLM-based cell type annotation of the
entire atlas, we first applied standard scRNA-seq analysis on a per-
tissue basis with identical parameters using AnnDictionary v0.3.65 and
Scanpy v1.10.2.

We first opted to use only protein-coding genes. The list of
protein-coding genes is available in the benchmark_llms pipeline under
benchmark_llms/src/dat/protein_coding_genes list.csv and was down-
loaded from Ensembl by searching for all protein-coding human genes
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Table 2 | List of LLMs studied

Company Provider Endpoint Knowledge Cutoff Date
Meta Bedrock meta.llama3-1-8b-instruct-v1:0 December 2023%

Meta Bedrock meta.llama3-1-70b-instruct-v1:0 December 2023*

Meta Bedrock meta.llama3-1-405b-instruct-v1:0 December 2023%
Amazon Bedrock amazon.titan-text-express-vl Not defined™®

Amazon Bedrock amazon.titan-text-lite-v1 Not defined*®

Cohere Bedrock cohere.command-r-plus-v1:0 February 2023°" *
Mistral Bedrock mistral.mistral-large-2407-v1:0 Released July 24", 2024
Google Google gemini-1.5-pro-002 September 2024
Google Google gemini-1.5-flash-002 September 2024
OpenAl OpenAl gpt-4-0613 November 30, 2023
OpenAl OpenAl gpt-40-2024-08-06 September 30", 2023*
OpenAl OpenAl gpt-40-mini-2024-07-18 September 30", 2023**
Anthropic Anthropic claude-3-5-sonnet-20240620 April 2024

Anthropic Anthropic claude-3-opus-20240229 August 2023*
Anthropic Anthropic claude-3-haiku-20240307 August 2023%

*not clear which model version is accessed on bedrock.

in the GRCh38 reference genome. We also then ensured that a com-
mon list of abundant, uninformative genes was removed (MALATI1,
NEATI, XIST, KCNQ1OT1, RPPH1, RN7SL1, RMRP, SNHGI, MIAT, H19).

All the following steps were performed with Scanpy functions,
accessed through AnnDictionary wrappers to parallelize across tissue.
Starting from raw counts, we (1) normalized to 10,000 counts per cell,
(2) log-transformed, (3) set high variance genes (top 2000 genes), (4)
scaled each gene to zero mean and unit variance, (5) performed PCA,
retaining the top 50 principal components, (6) calculated neighbor-
hood graph (7) clustered the neighborhood graph using the Leiden
algorithm with resolution = 0.5, (8) calculated the UMAP embedding,
(9) calculated differentially expressed genes for each cluster using the
t-test and Benjamini-Hochberg-corrected p-values. All of these pre-
processing parameters are within the range of those commonly used.
With regard to the resolution for Leiden clustering, we opted to use the
same moderate-to-low resolution value across all tissues. We initially
tested higher resolutions in the range 2-5 with the intent to merge
clusters based on their cell type identities. But we observed that doing
so often yielded clusters that were enriched for genes typically thought
of as artifactual, such as mitochondrial and ribosomal signals. Thus, we
caution the user against the over-cluster-and-merge strategy.

LLM hyperparameters

For all LLM queries, we set the temperature to 0, which makes the LLM
behave more deterministically. For all other hyperparameters, the
defaults were used.

Cell type annotation

We then annotated clusters with cell type labels using the following
process, which contains multiple LLM passes over the labels. For the
following analysis, each tissue is handled entirely separately. First,
using AnnDictionary’s ai_annotate_cell_type() function, clusters within
a tissue were independently annotated with an LLM based on the top
10 marker genes'. Second, using AnnDictionary’s simpli-
fy_obs_column() function, cell type labels within a tissue were merged
via the same LLM as used in the previous step to account for redundant
labels (i.e., “Macrophage”, “macrophage”, and “macrophage.”), spora-
dic cell subtyping (i.e., “T cell” and “Cytotoxic T cell”), and sporadic
verbosity (i.e., “This cell type looks like a Macrophage. 'm basing this
off expression of...”). We performed correction for subtyping because
we noticed that, during package development, broad cell type labels
were easy to consistently elicit, but more specific labels were not

consistent. We therefore performed agreement assessments at this
coarser cell type level. This may not speak to LLM performance spe-
cifically, and could be due to conflicting or undecided literature on cell
subtypes in general.

We performed this two-pass annotation process with each of the
LLMs listed in Table 2.

Annotation post-processing

In order to compute inter-LLM consistency, we needed to have a
shared set of labels across all LLM-generated and manual annotations.
Our goal was to build an automated assessment pipeline so that the
benchmarking results can be updated as new models become avail-
able. Therefore, to automate annotation post-processing, we used an
LLM to create a unified set of cell type labels across all annotations
(manual and LLM-based). We opted to use Claude 3.5 Sonnet for label
unification because, during testing, we observed that it had the best
reasoning capabilities and sufficiently high API rate limits. We also
compared the results when using GPT-4o for the same task to assess if
the choice of model biased the results. GPT-40 was chosen for this step
due to sufficient API rate limits, similar reasoning capabilities, and
having come from an independent provider compared to Claude 3.5
Sonnet*.

Cell type annotation by multi-LLM vote

To investigate the extent to which the annotation performance varied
by using the ensemble vote of the LLMs, we computed the consensus
annotation for each cell as the plurality vote of all LLMs, and rated
annotation agreement in the same manner as the other LLM
annotations.

Agreement with manual annotation

To assess label agreement between the LLMs and manual annotations,
we used an LLM (Claude 3.5 Sonnet) to automate the comparison of
cell type labels because this allowed us to meet the scale requirements
and goals of the present study, which involved assessing the agree-
ment of -~ 10,000 unique pairs of labels. We measured label agreement
by comparing LLMs to (1) manual annotation (2) each other.

Resolutions. We calculated the rate of agreement of each model with
manual annotations at four resolutions: (1) cells, (2) cell types, Table 1,
(3) tissue-cell types, Supplementary Figs. 1 and 2, and tissues, Sup-
plementary Fig. 3. The first resolution, cells, corresponds to treating
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each cell individually, and seeing the rate of agreement across all cells.
We consider this resolution to be the most representative of overall
annotation performance, because it directly measures the overall
proportion of cells that are correctly annotated across the dataset. The
second resolution, cell types, is calculated by taking the mean of
agreement of cells when grouped by the manual annotation column.
The average of this metric across all cell types is presented in Table 1,
and in specific cell types in Fig. 3A, B. This metric is useful for unco-
vering annotation performance of the model at each cell type, but,
unlike the cell resolution, does not take into account differential cell
type abundance. The third resolution, tissue-cell type, is calculated as
the mean agreement within a single tissue-cell type. This metric was
considered because cell types are known to have tissue-specific
expression programs, and so it was possible that the resulting differ-
entially expressed genes, and thus annotation performance, varied at
the tissue-cell type level. Finally, agreement was calculated at the tissue
level by taking the mean agreement of all cells in a single tissue.

Agreement metrics. We assessed agreement between LLM and man-
ual annotations using several different metrics.

First, for each unique pair of manual and LLM cell type labels, we
used a function that asks the LLM if the two annotations agree, and
then process the response to get a binary output (O for no, 1 for yes).
Second, we asked the LLM to rate the quality of the label match as
perfect, partial, or non-matching and calculated the rate of “perfect”
matches among individual cells and cell types, Table 1, and visualized
the rates of all match qualities, Fig. 2A, B. Third, we assessed the
agreement via direct string comparison between the labels.

We note that the direct string comparison is overly conservative
and represents a lower bound on performance. This is because cell
type labels can agree semantically, but not typographically, for
example, “T-helper cell” and “CD4+ lymphocyte.”, or be typo-
graphically close but semantically far, for example, “T cell” and “B cell”.
It would be difficult to programmatically resolve these differences.
However, it is standard practice to use LLMs to compare and rate the
quality of free text results”®. Our rationale for using an LLM here was
that it offered a powerful solution for assessing conceptual distances
between free text labels. Finally, there is a standard ontology for cells.
However, the first step of annotation typically uses free text labels, and
most dataset annotations are not mapped to terms in the standard
ontology. Furthermore, converting free-text labels to standard termi-
nology can lose the specificity desired by individual research projects
for their particular applications®. Annotation is also an iterative pro-
cess that involves updating labels with the most up-to-date knowledge,
and there can be a lag in updating formal ontologies. The tool devel-
oped in this study is designed to be used in tandem with a researcher to
increase the speed of draft annotation generation. Thus, we believe it is
of most relevance from a practical perspective to assess the quality of
free text labels provided by LLMs, as that is the type of label that will
most likely be used by the majority of users, especially at early stages
of projects.

Finally, we measured Cohen’s kappa between each LLM label
column and the manual label column as additional metrics of
agreement.

Annotation from expected cell types

The annotation from expected cell types was carried out starting from
the same differentially expressed gene lists as used in the previously
mentioned annotation benchmarking. To annotate gene lists, we used
the ai_annotate_from_expected_cell_types() function from AnnDic-
tionary, passing the unique cell types present in the given tissue as the
expected cell types. This function uses a chain-of-thought reasoning
approach where, first, the LLM is supplied the tissue and expected cell
types as context in the system prompt, where supported, or a message
from the user if system prompts are not supported. Then, all

differentially expressed gene lists to be annotated are supplied, and
the LLM is asked to compare and contrast them. Finally, each list is
presented again and requested to be labeled. The last step of this
function is to use partial string matching to map the LLM-supplied
labels back to the expected cell types, with a similarity threshold to
allow new labels from the LLM to pass through to the returned anno-
tations. Because the returned annotations are generally mapped back
to the original set of expected annotations, these annotations are
directly used to calculate agreement metrics without the post-
processing step mentioned in the previous annotation pipeline
(described in the Methods section titled “Annotation post proces-
sing”). The source code modifications for this analysis are available
under the from_expected branch of the benchmarkllms code
repository.

Assessment of self-enhancement bias

To assess the presence of self-enhancement bias on the performance
ratings presented in this study, we ran replicate experiments to com-
pare the performances as rated by a second model from an indepen-
dent provider, GPT-40, selected for its sufficiently high API rate limits
and reasoning capabilities. For consistency, the same set of post-
processed annotations were used here as were used in the main
assessment of performance. The source code modifications for this
analysis are available under the cross_check branch of the bench-
mark_llms code repository.

Inter-LLM agreement

The second way we assessed LLM annotation was via consistency
between the LLMs. To do so, we measured Cohen’s kappa between
each pair of LLM label columns. We also computed each LLM’s average
consistency with other models as the average of pairwise kappas for
that LLM.

Qualitative assessment of label confidence
To qualitatively assess label confidence of manual annotations, we
used a scatterplot where each cell type was plotted based on how
consistently the LLMs annotated the cells in that cell type, and how
much these LLM labels agreed with the manual annotation. To do so,
we opted to use only the top (n=4) performing LLMs when ranked by
their overall binary agreement (percent of cells). We chose n=4
because during testing, the top 4 LLMs tended to include models from
several companies, and so we hoped to sample across a potentially
more diverse array of LLM behaviors and identify annotation incon-
sistences that were robust to model- or company-specific behaviors.
Inter-LLM agreement was calculated as the percent of LLM labels
that matched the plurality label among the top LLM models for that
cell. LLM agreement with manual annotation was calculated as the
percent of LLM labels that matched the manual annotation for that
cell. Both inter-LLM agreement and LLM agreement with manual
annotation were calculated per cell, and averaged across all cells of a
given cell type based on their manually annotated cell type. We also
calculated the number of cells in each cell type, which we used to split
the cell types into three groups, which represented the smallest,
middle, and largest cell types by population size. We calculated and
plotted Gaussian kernel density estimates of cell types on each axis—
inter-LLM agreement and agreement with manual annotation—and
scaled the areas of the marginal density estimates by the total number
of cells they represented, to understand the distribution of cell types
on this plot, where the majority of cells lie on the agreement plot, and
how agreement varied by cell type population size.

Risk of data leakage biasing the results

To understand the risk of data leakage, we reviewed the release dates
of all manuscripts that used Tabula Sapiens v2 and looked at these in
the context of the model training knowledge cutoff dates. Prior to the
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present manuscript (first posted in preprint form on bioRxiv on
October 13th, 2024), the only work to use Tabula Sapiens v2 data was
posted on bioRxiv on November 29%, 2023. Six canonical memory vs.
naive B cell markers (IGHM, IGHD, YBX3, TNFRSF13B, CD27, ATXNI1)
were the only differentially expressed genes from Tabula Sapiens v2
that were mentioned. Given that these are all previously published B
cell markers® %, their mention in Rosen et al. does not provide note-
worthy additional information in LLM model training compared to
what already existed in the literature. For completeness, we assessed
the frequency of these genes in the full list of all marker genes used for
annotation in this study. Of 676 clusters annotated, YBX3 was used in
the annotation of 10 clusters, and none of the other 5 genes were used.
Any other preprints or publications that used Tabula Sapiens v2 were
released after the knowledge cutoff dates of models used in the pre-
sent manuscript, Table 2. There were 3 exceptions, which involved
models that were in the lower range of performance. Specifically,
Mistral Large 24.07 was released July 24*, 2024, but Mistral does not
specify a knowledge cutoff date. The two Titan models also do not
have a knowledge cutoff date, but these models were omitted from
detailed benchmarking in this study, as previously discussed. We thus
conclude that there is minimal risk of data leakage biasing the anno-
tation results.

Ensuring pipeline stability

To ensure the stability of the results, we analyzed the performance of
the LLMs across five replicate annotation runs and report performance
metrics as mean * standard deviation.

Validation on Tabula Sapiens v2

Using the Tabula Sapiens v2 dataset obtained as described above in
Data access, we took only donors that were not included in Tabula
Sapiens v1, that is, any donor after but not including TSP15. We then re-
ran the entire LLM benchmarking pipeline on this subset of the data.
We excluded the pancreas from this analysis due to low cell abun-
dance. The source code for this version of the pipeline is available in
the benchmark_lims GitHub repository under the branch metrics_only.

Prompt ablation study. We generated a set of ablated functions by
taking the core annotation function (ai_cell_type) and independently
ablating each component of the prompt. The first ablation was to
detune the base prompt from, “In a few words and without restating
any part of the question, describe the single most likely cell type
represented by the marker genes:” to, “What cell type is represented by
the marker genes:”. The second ablation was to remove the tissue
context from the prompt. The third ablation was to remove the system
prompt, “You are a terse molecular biologist.” The fourth and final
ablation was to randomize the gene order in the gene list input. To test
how these ablations impacted the agreement of LLM-generated
annotations and manual annotations, we used claude-3-5-sonnet-
20240620 on the full Tabula Sapiens v2. We followed the same data
preprocessing and filtering steps as used in the main analysis, as well as
the same label comparison procedure. The source code for the mod-
ifications used in the prompt ablation study are available in the
benchmark_llms GitHub repository under the branch ablate.

Benchmarking biological process annotation

To benchmark LLMs at biological process annotation, we followed the
procedure designed by Hu et al.> We used gseapy v1.1.8 to access the
2023 release of the Gene Ontology Biological Process (GOBP) database
(n=5406 human terms). To generate gene lists of known biological
process, we randomly selected 500 GOBP terms from the set of GOBP
terms with between 3 and 100 genes (n = 5094). Each of these 500 gene
lists were annotated by LLMs using the ai_biological_process function
from AnnDictionary. To measure whether each LLM annotation was a
close semantic match to the gene list’s associated GOBP term, we

computed text embeddings of all LLM-generated annotations and all
5406 GOBP terms, and used the cosine similarity to measure the
similarity between the embeddings of each LLM annotation and all
GOBP terms. An LLM annotation was considered a close match to the
source GOBP term if the source GOBP term was in the 95™ percentile or
higher of GOBP terms by cosine similarity of the text embedding to the
LLM annotation. Text embeddings were computed using OpenAl’s
text-embedding-3-large model. We ran 5 replicates of each model to
ensure stability, and also tested several random seeds to ensure that
observed performance was not due to the specific set of GOBP terms
sampled. Source code to reproduce this benchmarking analysis is
available in the benchmark_llms GitHub repository as a Jupyter note-
book in the nbs directory.

Then, to make a brief example, we retrieved the gene lists asso-
ciated with the first three terms in the database, and used AnnDic-
tionary’s ai_biological_process function to label the gene sets with
claude-3-5-sonnet-20240620.

Correlation analysis

Correlations and p-values presented in Supplementary Tables 4 and 6
were calculated using scipy v1.14.1 with the function scipy.stat-
s.pearsonr, and p-values are two-sided.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

This study used publicly available data. The gene expression data used
in this study have been deposited in Figshare under accession code
https://doi.org/10.6084/m9.figshare.27921984.v1”. The raw fastq files
are available under restricted access, and access can be obtained by
submitting a request at https://tabula-sapiens.sf.czbiohub.org/
whereisthedata. All data processing can be reproduced via the pro-
vided code, see Code Availability. Source data are provided in
this paper.

Code availability

The code to run the LLM benchmarking pipeline and reproduce all
figures and tables presented in this study is publicly available in the
benchmark_Ilms repository at https://github.com/ggit12/benchmark_
llms and is archived in Zenodo at https://doi.org/10.5281/zenodo.
16816304, The AnnDictionary source code is publicly available in the
anndictionary repository at https://github.com/ggit12/anndictionary.
AnnDictionary is also available on PyPI for installation via pip. For
reproducibility, the specific version of the AnnDictionary associated
with this publication is archived in Zenodo at https://doi.org/10.5281/
zenodo.16815933%, For general use of the package, install the latest
version via pip.

References

1. Fan, J., Slowikowski, K. & Zhang, F. Single-cell transcriptomics in
cancer: computational challenges and opportunities. Exp. Mol.
Med. 52, 1452-1465 (2020).

2. Vande Sande, B. et al. Applications of single-cell RNA sequencing
in drug discovery and development. Nat. Rev. Drug Discov. 22,
496-520 (2023).

3. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore
immune cell heterogeneity. Nat. Rev. Immunol. 18, 35-45 (2018).

4. Hou, W. & Ji, Z. Assessing GPT-4 for cell type annotation in single-
cell RNA-seq analysis. Nat. Methods 21, 1462-1465 (2024).

5. Hu, M. et al. Evaluation of large language models for discovery of
gene set function. Nat. Methods 22, 82-91 (2025).

Nature Communications | (2025)16:9511


https://doi.org/10.6084/m9.figshare.27921984.v1
https://tabula-sapiens.sf.czbiohub.org/whereisthedata
https://tabula-sapiens.sf.czbiohub.org/whereisthedata
https://github.com/ggit12/benchmark_llms
https://github.com/ggit12/benchmark_llms
https://doi.org/10.5281/zenodo.16816304
https://doi.org/10.5281/zenodo.16816304
https://github.com/ggit12/anndictionary
https://doi.org/10.5281/zenodo.16815933
https://doi.org/10.5281/zenodo.16815933
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-64511-x

6. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsu-
pervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20,
273-282 (2019).

7. Luecken, M. D. & Theis, F. J. Current best practices in single-cell
RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

8. Kharchenko, P. V. The triumphs and limitations of computational
methods for scRNA-seq. Nat. Methods 18, 723-732 (2021).

9. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 19, 15 (2018).

10. Rosen, Y. et al. Universal cell embeddings: A foundation model for
cell biology. Preprint at https://doi.org/10.1101/2023.11.28.

568918 (2023).

1. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-
cell data with Harmony. Nat. Methods 16, 1289-1296 (2019).

12. Zeng, Z. et al. OmicVerse: a framework for bridging and deepening
insights across bulk and single-cell sequencing. Nat. Commun. 15,
5983 (2024).

13. Kahou, S. E. et al. FigureQA: An annotated figure dataset for visual
reasoning. https://openreview.net/forum?id=SyunbfbAb (2018).

14. Kafle, K., Price, B., Cohen, S. & Kanan, C. DVQA: Understanding data
visualizations via question answering. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 5648-5656 (Salt Lake
City, UT, USA, 2018). https://doi.org/10.1109/CVPR.2018.00592.

15.  Methani, N., Ganguly, P., Khapra, M. M. & Kumar, P. PlotQA: Rea-
soning over scientific plots. In 2020 IEEE Winter Conference on
Applications of Computer Vision (WACV), 1516-1525 (Snowmass, CO,
USA, 2020). https://doi.org/10.1109/WACV45572.2020.9093523.

16. Masry, A., Long, D. X., Tan, J. Q., Joty, S. & Hoque, E. ChartQA: A
benchmark for question answering about charts with visual and
logical reasoning. In Findings of the Association for Computational
Linguistics: ACL 2022., 2263-2279 (Association for Computational
Linguistics, Dublin, Ireland, 2022).

17. Zheng, L. et al. Judging LLM-as-a-judge with MT-bench and chatbot
arena. In Advances in Neural Information Processing Systems, Vol.
36 (eds Oh, A. et al.) 46595-46623 (Curran Associates, Inc., 2023).

18. Fu,J., Ng, S., Jiang, Z. & Liu, P. GPTScore: evaluate as you desire. In
Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Vol. 1: Long Papers, 6556-657 (Association for
Computational Linguistics, Mexico City, Mexico, 2023).

19. Fan, X. et al. Single-cell reconstruction of follicular remodeling in
the human adult ovary. Nat. Commun. 10, 3164 (2019).

20. Karp, P. D., Midford, P. E., Caspi, R. & Khodursky, A. Pathway size
matters: the influence of pathway granularity on over-
representation (enrichment analysis) statistics. BMC Genomics 22,
191 (2021).

21. Crowley, G., Tabula Sapiens Consortium. & Quake. S. R. Bench-
marking cell type and gene set annotation by large language
models with AnnDictionary. Benchmark LLMs. https://doi.org/10.
5281/zenodo.16816305 (2025).

22. Anthropic. Claude 3.5 Sonnet Model Card Addendum https://www-
cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304¢52/
Model_Card_Claude_3_Addendum.pdf (2025).

23. Bastian, F. B. et al. Bgee in 2024 focus on curated single-cell RNA-seq
datasets, and query tools. Nucleic Acids Res. 53, D878-D885 (2025).

24. Lee, R. D. et al. Single-cell analysis identifies dynamic gene
expression networks that govern B cell development and transfor-
mation. Nat. Commun. 12, 6843 (2021).

25. Dominguez Conde, C. et al. Cross-tissue immune cell analysis
reveals tissue-specific features in humans. Science 376,
eabl5197 (2022).

26. Didonna, A. et al. Ataxin-1regulates B cell function and the severity
of autoimmune experimental encephalomyelitis. Proc. Natl. Acad.
Sci. USA 117, 23742-23750 (2020).

27. Pisco, A. Tabula sapiens v2 https://doi.org/10.6084/m9.figshare.
27921984.v1 (2024).

28. Crowley, G., Tabula Sapiens Consortium. & Quake. S. R. Bench-
marking cell type and gene set annotation by large language
models with AnnDictionary. AnnDictionary. https://doi.org/10.5281/
zenodo.16815934 (2025).

29. Meta. llama3_1/MODEL_CARD.md, https://github.com/meta-llama/
llama-models/blob/main/models/llama3_1/MODEL_CARD.

md (2025).

30. Amazon. Amazon Titan Text Lite and Titan Text Express - AWS Al
Service Cards. https://docs.aws.amazon.com/ai/responsible-ai/
titan-text/overview.html (2025).

31. Cohere. Cohere’s Command R+ Model (Details and Application),
https://docs.cohere.com/v2/docs/command-r-plus#unique-
command-r-model-capabilities (2025).

32. MistralAl. Changelog. https://docs.mistral.ai/getting-started/
changelog/ (2025).

33. Google. Gemini models. https://ai.google.dev/gemini-api/docs/
models (2025).

34. OpenAl. Compare models. https://platform.openai.com/docs/
models/compare (2025).

35. Anthropic. How up-to-date is Claude’s training data?, https://
support.anthropic.com/en/articles/8114494-how-up-to-date-is-
claude-s-training-data (2025).

Acknowledgements

We thank Jaeyoon Lee for his insights and feedback on the Python
package and the manuscript. We thank Mira N. Moufarrej for her
feedback on the Python package. We thank Fabio Zanini, Madhav
Mantri, Loic A. Royer, Yusuf Roohani, and Douglas E. Henze for dis-
cussions related to the manuscript and Python package. We thank
Robert C. Jones and Jaeyoon Lee for help in accessing the Tabula
Sapiens v2 dataset.

Author contributions

Conceptualization: G.C. and S.R.Q. Data curation: G.C. Tabula Sapiens
Consortium: S.R.Q. Formal analysis: G.C. and S.R.Q. Funding acqui-
sition: S.R.Q. Investigation: G.C. and S.R.Q. Methodology: G.C. and
S.R.Q. Project administration: G.C. and S.R.Q. Resources: G.C.,
Tabula Sapiens Consortium: S.R.Q. Software: G.C. Supervision: S.R.Q.
Validation: G.C. and S.R.Q. Visualization: G.C. and S.R.Q. Writing -
original draft: G.C. and S.R.Q. Writing - review & editing: G.C.

and S.R.Q.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-64511-x.

Correspondence and requests for materials should be addressed to
Stephen R. Quake.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Nature Communications | (2025)16:9511

12


https://doi.org/10.1101/2023.11.28.568918
https://doi.org/10.1101/2023.11.28.568918
https://openreview.net/forum?id=SyunbfbAb
https://doi.org/10.1109/CVPR.2018.00592
https://doi.org/10.1109/WACV45572.2020.9093523
https://doi.org/10.5281/zenodo.16816305
https://doi.org/10.5281/zenodo.16816305
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://doi.org/10.6084/m9.figshare.27921984.v1
https://doi.org/10.6084/m9.figshare.27921984.v1
https://doi.org/10.5281/zenodo.16815934
https://doi.org/10.5281/zenodo.16815934
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://docs.aws.amazon.com/ai/responsible-ai/titan-text/overview.html
https://docs.aws.amazon.com/ai/responsible-ai/titan-text/overview.html
https://docs.cohere.com/v2/docs/command-r-plus#unique-command-r-model-capabilities
https://docs.cohere.com/v2/docs/command-r-plus#unique-command-r-model-capabilities
https://docs.mistral.ai/getting-started/changelog/
https://docs.mistral.ai/getting-started/changelog/
https://ai.google.dev/gemini-api/docs/models
https://ai.google.dev/gemini-api/docs/models
https://platform.openai.com/docs/models/compare
https://platform.openai.com/docs/models/compare
https://support.anthropic.com/en/articles/8114494-how-up-to-date-is-claude-s-training-data
https://support.anthropic.com/en/articles/8114494-how-up-to-date-is-claude-s-training-data
https://support.anthropic.com/en/articles/8114494-how-up-to-date-is-claude-s-training-data
https://doi.org/10.1038/s41467-025-64511-x
http://www.nature.com/reprints
www.nature.com/naturecommunications

Article https://doi.org/10.1038/s41467-025-64511-x

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Tabula Sapiens Consortium

Stephen R. Quake ® %3/, Robert C. Jones', Mark Krasnow?®, Angela Oliveira Pisco®, Julia Salzman®’, Nir Yosef¢2-°,
George Crowley ®", Siyu He'’, Madhav Mantri', Jessie Aguirre’®, Ron Garner'®, Sal Guerrero'®, William Harper',
Resham Irfan'™, Sophia Mahfouz'?, Ravi Ponnusamy'®, Bhavani A. Sanagavarapu'®, Ahmad Salehi'®, lvan Sampson™®,
Chloe Tang'®, Alan G. Cheng", James M. Gardner'2'3, Burnett Kelly'®', Thurman Slone'®, Zifa Wang'®, Anika Choudhury™®,
Sheela Crasta’, Chen Dong"®, Marcus L. Forst!, Douglas E. Henze', Jaeyoon Lee', Maurizio Morri®, Serena Y. Tan'®,
Sevahn K. Vorperian'®'7, Lynn Yang"®, Marcela Alcantara-Hernadez'®, Julian Berg'®, Dhruv Bhatt?°, Sara Billings",
Andrés Gottfried-Blackmore'™?', Jamie Bozeman?®, Simon Bucher??, Elisa Caffrey?>, Amber Casillas?*, Rebecca Chen?3,
Matthew Choi??, Rebecca N. Culver?®, Ivana Cvijovic"?, Ke Ding?®, Hala Shakib Dhowre?’, Hua Dong?®, Kenneth Donaville??,
Lauren Duan'®, Xiaochen Fan?°, Mariko H. Foecke?*, Francisco X. Galdos'®, Eliza A. Gaylord?*, Karen Gonzales?°,
William R. Goodyer?®, Michelle Griffin?®, Yuchao Gu*3°3, Shuo Han?®, Jun Yan He?3, Paul Heinrich®,

Rebeca Arroyo Hornero'®, Keliana Hui?3, Juan C. Irwin??, SoRi Jang®, Annie Jensen'®-*?, Saswati Karmakar'®-25,

Jengmin Kang®3, Hailey Kang??, Soochi Kim33, Stewart J. Kim*3°3, William Kong?®, Mallory A. Laboulaye?®, Daniel Lee'®,
Gyehyun Lee??, Elise Lelou??, Anping Li%%, Baoxiang Li%’, Wan-Jin Lu?®, Hayley Raquer-McKay'®, Elvira Mennillo34,
Lindsay Moore®®, Elena Montauti?3, Karim Mrouj?®, Shravani Mukherjee?’, Patrick Neuhofer*3%-31, Saphia Nguyen??,
Honor Paine??, Jennifer B. Parker?®-2°, Julia Pham?3, Kiet T. Phong®®, Pratima Prabala?®, Zhen Qi?®, Joshua Quintanilla'-32,
lulia Rusu®?, Ali Reza Rais Sadati'®, Bronwyn Scott?’, David Seong'®, Hosu Sin®’, Hanbing Song®2, Bikem Soyur??,

Sean Spencer'®?!, Varun R. Subramaniam?’, Michael Swift', Aditi Swarup?’, Greg Szot'>'3, Aris Taychameekiatchai?,
Emily Trimm?°, Stefan Veizades'®32, Sivakamasundari Vijayakumar?®, Kim Chi Vo?4, Tian Wang®®, Timothy Wu?,

Yinghua Xie'®*2, William Yue??, Zue Zhang*, Angela Detweiler®, Honey Mekonen®, Norma F. Neff€, Sheryl Paul®,
Amanda Seng®, Jia Yan®, Deana Rae Crystal Colburg®®, Balint Laszlo Forgo', Luca Ghita'®, Frank McCarthy*°,

Aditi Agrawal®, Alina Isakova’, Kavita Murthy’, Alexandra Psaltis', Wenfei Sun', Kyle Awayan®, Pierre Boyeau?',

Robrecht Cannoodt*?>4344, Leah Dorman®, Samuel D’Souza®, Can Ergen®#', Justin Hong*®, Harper Hua’, Erin McGeever®,
Antoine de Morree®3%47, Luise A. Seeker', Alexander J. Tarashansky®, Astrid Gillich? Taha A. Jan*®, Angela Ling?®,
Abhishek Murti??, Nikita Sajai?2, Ryan M. Samuel*®, Juliane Winkler®®-®', Steven E. Artandi*3°-3', Philip A. Beachy?6-3252,
Mike F. Clarke?®, Zev Gartner®®3, Linda C. Giudice®?, Franklin W. Huang®2®5, Juliana Idoyaga'®°¢, Michael G. Kattah3?,
Christin S. Kuo®’, Diana J. Laird?*, Michael T. Longaker?®-°8, Patricia Nguyen'®32°%, David Y. Oh?3, Thomas A. Rando®3,
Kristy Red-Horse?°, Bruce Wang??, Albert Y. Wu?’, Sean M. Wu'®32, Bo Yu®” & James Zou’-¢°

“Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA. SHoward Hughes Medical Institute, San Francisco, CA, USA. ®Chan
Zuckerberg Biohub, San Francisco, CA, USA. ’Department of Biomedical Data Science, Stanford University, Stanford, CA, USA. 8Center for Computational
Biology, University of California, Berkeley, Berkeley, CA, USA. °Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. "°Donor Network West, San
Ramon, CA, USA. "Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA. ?Department of
Surgery, University of California San Francisco, San Francisco, CA, USA. ®Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
4DCI Donor Services, Sacramento, CA, USA. "®Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. "®Department of

Chemical Engineering, Stanford University, Stanford, CA, USA. "Sarafan ChEM-H, Stanford University, Stanford, CA, USA. ®®Department of Microbiology and
Immunology, Stanford University School of Medicine, Stanford, CA, USA. "®Stanford Cardiovascular Institute, Stanford, CA, USA. 2°Department of Biology,
Stanford University, Stanford, CA, USA. Z'Division of Gastroenterology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Nature Communications | (2025)16:9511 13


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0002-1613-0809
http://orcid.org/0000-0002-1613-0809
http://orcid.org/0000-0002-1613-0809
http://orcid.org/0000-0002-1613-0809
http://orcid.org/0000-0002-1613-0809
http://orcid.org/0000-0002-0473-6934
http://orcid.org/0000-0002-0473-6934
http://orcid.org/0000-0002-0473-6934
http://orcid.org/0000-0002-0473-6934
http://orcid.org/0000-0002-0473-6934
www.nature.com/naturecommunications

Article https://doi.org/10.1038/s41467-025-64511-x

22Department of Medicine and Liver Center, University of California San Francisco, San Francisco, CA, USA. 2Division of Hematology/Oncology, Department
of Medicine, University of California San Francisco, San Francisco, CA, USA. 2*Department of Ob/Gyn and Reproductive Sciences, Eli and Edythe Broad Center
for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA. 2>Department of Genetics, Stanford University School of
Medicine, Stanford, CA, USA. 2®Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
2’Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA. 28Department of Pediatrics, Division of Cardiology, Stanford
University School of Medicine, Stanford, CA, USA. 2°Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of
Medicine, Stanford, CA, USA. *°Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA. 3'Department of Medicine, Division of
Hematology, Stanford University School of Medicine, Stanford, CA, USA. *?Department of Medicine, Division of Cardiovascular Medicine, Stanford University,
Stanford, CA, USA. 3*Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. **Division of
Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA. 3®Division of Pediatric Otolaryngology Stanford
University School of Medicine, Stanford, CA, USA. *®Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San
Francisco, CA, USA. 3’Department of OB/GYN Stanford University, Palo Alto, CA, USA. 3®Division of Hematology and Oncology, Department of Medicine,
Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA. *°Stanford
Health Care, Stanford, CA, USA. “°Mass Spectrometry Platform, Chan Zuckerberg Biohub, Stanford, CA, USA. “IDepartment of Electrical Engineering and
Computer Sciences, University of California, Berkeley, Berkeley, CA, USA. “?Data Intuitive, Flanders, Belgium. **Data Mining and Modelling for Biomedicine
group, VIB Center for Inflammation Research, Ghent, Belgium. **Department of Applied Mathematics, Computer Science, and Statistics, Ghent University,
Ghent, Belgium. “*Department of Computer Science, Columbia University, New York, NY, USA. “®Department of Biomedicine, Aarhus University,

Aarhus, Denmark. 4’Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA. *®Department of Otolar-
yngology, Vanderbilt University Medical Center, Nashville, TN, USA. “°Department of Cellular Molecular Pharmacology, University of California, San Fran-
cisco, San Francisco, CA, USA. *°Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, USA. 5'Center for Cancer
Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. 2Department of Urology, Stanford University School of Medicine, Stanford,
CA, USA. 5Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA. ®*Center for Reproductive Sciences,
Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA. *®Division of Hematology/
Oncology, Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA. S6Pharmacology and Molecular Biology
Departments, Schools of Medicine and Biological Sciences, University of California, San Diego, CA, USA. >’Department of Pediatrics, Division of Pulmonary
Medicine, Stanford University, Stanford, CA, USA. 38Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. ®Veterans Affairs
Palo Alto Health Care System, Palo Alto, CA, USA. °Department of Computer Science, Stanford University, Stanford, CA, USA.

Nature Communications | (2025)16:9511 14


www.nature.com/naturecommunications

	Benchmarking cell type and gene set annotation by large language models with AnnDictionary
	Results
	AnnDictionary is a parallel backend for processing anndata
	AnnDictionary consolidates common LLM integrations under one roof
	Cell type annotation
	Gene set annotation
	Automated label management

	AnnDictionary can plug in to any LLM with a single line of code
	Claude 3.5 Sonnet had the highest agreement with manual annotation
	Data pre-processing, cell type annotation, and rating annotation results
	Inter-LLM agreement
	Performance of Plurality Vote of all LLMs
	LLMs excel at annotating major cell types
	Annotation from expected cell types
	Annotation performance was not driven by the presence of cells from Tabula Sapiens v1
	Annotation performance is robust to the LLM used in label post-processing
	Annotation performance is robust to the LLM used as rater
	Prompt ablation study
	Benchmarking biological process annotation


	Discussion
	Limitations

	Methods
	Data access
	Data preprocessing
	LLM hyperparameters
	Cell type annotation
	Annotation post-processing
	Cell type annotation by multi-LLM vote
	Agreement with manual annotation
	Resolutions
	Agreement metrics

	Annotation from expected cell types
	Assessment of self-enhancement bias
	Inter-LLM agreement
	Qualitative assessment of label confidence
	Risk of data leakage biasing the results
	Ensuring pipeline stability
	Validation on Tabula Sapiens v2
	Prompt ablation study

	Benchmarking biological process annotation
	Correlation analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




