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Common genetic variation influencing the
human lung imaging phenotypes

Meng Zhu1,2,3,10, Lingbin Du4,10, Lei Shi 5,10, Chen Ji1,10, Chen Zhu1,4,10,
Ci Song1,2,3,10, Lili Wu6, Lingying Zhu7, Jing Lu8, Qun Zhang8, Feiyun Wu8,
Chen Jin1, Yuanlin Mou1, Qiao Li1, Jiahao Zhang1, Mingxuan Zhu1, Jiaying Cai1,
Caochen Zhang1, Yating Fu1, Linnan Gong1, Dong Hang 1,2, Juncheng Dai 1,2,
Yue Jiang1,2, Guangfu Jin 1,2,3, Zhibin Hu 1,2, Hongxia Ma 1,2,9,11 ,
Xiangdong Cheng 4,11 & Hongbing Shen 1,2,11

Lung structures are critical for gas exchange and contribute to the patho-
genesis of respiratory diseases, exhibiting notable lobe-specific heterogeneity.
To investigate their genetic basis, we apply a deep-learning AI system and
Pyradiomics to define lobe-specific lung CT imaging phenotypes, conducting
genome-wide analyses in 35,469participants from the Lung ImagingGenomics
Initiative in China. We identify 36 loci associated with voxel intensities and 138
loci linked to three-dimensional shape. Functional annotation reveals sig-
nificant enrichment of relevant genes in pathways regulating early fetal lung
development and loci enriched in fetal lung regulatory elements. Genetic
correlations are identified between lung structures and chronic respiratory
diseases as well as lung function, with a number of loci showing colocalization.
Mendelian randomization analyses suggest a causal role of lung structures in
chronic lung diseases and extrapulmonary traits. This study provides new
insights into the genetic architecture of lung structures and their links to
diverse clinical outcomes.

The lungs are the foundational organs of the respiratory system,
primarily responsible for facilitating gas exchange between the
environment and the bloodstream. Lung development begins with
the formation of the conducting airways, followed by the expansion
of the gas exchange area through alveolarization, continuing into
young adulthood1. Lung diseases impact both zones and exhibit
distinct characteristics on computed tomography (CT) images.

Lung image-derived phenotypes (LIDPs) from CT reflect various
aspects of lung structure, intensity, and texture, serving as indica-
tors of lung condition and correlating closely with chronic
respiratory diseases1–4.

The right lung is divided into upper, central, and lower lobes by
major andminor fissures, while the left lung is divided into upper and
lower lobes by the major fissure. Each lobe is served by a second-
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order bronchus, which further divides into bronchopulmonary seg-
ments and eventually into respiratory bronchioles where alveoli
appear. The anatomical and physiological heterogeneity of different
lung lobes is associated with the selective distribution of lung
diseases5,6. Therefore, a deep understanding the development and
structure of each lobe is critical for addressing lung health and
disease.

Genetic variations at the individual level have a lasting impact
on lung structures and disease susceptibility. Although genes that
disrupt lung development and structure have been extensively
studied in model organisms, our current understanding of the
genetic variations influencing human lung size and structure is
largely limited to rare, highly penetrant variants7–10. Genome-wide
association studies (GWAS) have identified tens to hundreds of
genetic associations with common variants for chronic respiratory
diseases, including chronic obstructive pulmonary disease (COPD),
interstitial lung disease (ILD), asthma, and lung cancer11–15. Addi-
tionally, over 1000 genetic variants have been linked to lung func-
tion, a comprehensive index of lung health16. Further investigation
into genetic determinants on LIDPs will shed light on the causes for
individual differences in lung structure and the mechanisms of
chronic respiratory diseases.

Within the Lung Imaging Genomics Initiative (LIGI) in China, we
developed a scheme for defining LIDPs of each lung lobe using a deep-
learning AI system for segmentation17 and Pyradiomics (v3.0) for
radiomic features extraction18. To identify genetic loci associated with
variations in human lung structure, we conducted the first GWAS of
160 LIDPs (32 × 5) among 35,469 Chinese Han participants. Addition-
ally, we analyzed the distribution and function of loci associated with
these LIDPs, explored genetic colocalizations between LIDPs and lung-
related disorders and lung function, and performed a Mendelian ran-
domization phenome-wide association study (MR-PheWAS) to clarify
the associations between LIDPs and other diseases. An overview of the
study design is shown in Fig. 1.

Results
Lung imaging acquisition and radiomic features extraction
In the LIGI, we recruited 36,551 participants aged 18–75 years from
Zhejiang (N = 25,821) and Jiangsu (N = 10,730) and performed low-dose
CT scans (120 kV and 40–60mA). These CT images were first seg-
mented into five lung lobes using a deep-learning AI system, followed
by extraction of radiomic features using Pyradiomics (v3.0). Details
regarding image processing and feature extraction can be found in the
Methods section. Besides, we evaluated potential batch effects caused
by differences in scanning protocols between centers using principal
component analysis (PCA), and the results indicated minimal batch
effects (Supplementary Fig. 1). Of the 36,551 CT images, we excluded
916 that failed manual checks by radiologists, did not pass automatic
segmentation, or were identified as outliers through principal com-
ponent analysis. We further excluded 166 samples that did not meet
genomic data quality control standards. Consequently, 35,469 parti-
cipants with qualified CT images and genotype data were included in
the study (Supplementary Fig. 2 and Supplementary Data 1). This study
primarily focused on 32 LIDPs of each lobe, including 18 first-order
features describing the distribution of voxel intensities (density) and
14 shape features detailing the three-dimensional size and shape
(Methods). Most of the LIDPs showed significant associations with
sociodemographic factors (age, sex, smoking status, and BMI) sug-
gesting their ability to capture the effects of demographic and envir-
onmental factors on lung structure (Supplementary Data 2).
Considering the distinct clinical implications of LIDPs between first-
order and shape features, further analysis wasperformed for these two
dimensions separately.

Heritability and genetic correlation of lung imaging phenotypes
The LIDPs of first-order features showed an average heritability of
15.20% using BOLT-REML, ranging from 2.94% for minimum voxel
intensities at the right upper lobe to 50% for TotalEnergy (sumof voxel
values) at the right central lobe (Fig. 2a). Heritability estimates were

Fig. 1 | Overview of study design and analyses. We used lung radiomic traits as
endophenotypes to explore the genetic architecture of lung structure. The upper
workflowdescribed the overallworkflow, and the lowerpart describedkey analyses

involved in each step. GWAS genome-wide association study, LDCT low-dose
computed tomography, eQTL expression quantitative trait loci, UR right upper
lobe,UL left upper lobe, CR right centre lobe, LR right lower lobe, LL left lower lobe.
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significantlyhigher for LIDPs of shape features (P = 6.42 × 10−11),with an
average of 19.85%, peaking at 34.31% for the major axis length of the
right upper lobe (Fig. 2b). We further examined lobe-specific herit-
ability and found no significant differences across lobes (P >0.05 for
first-order and shape features).

We found strong genetic correlations for the 32 LIDPs within each
pair of the five lung lobes (average rg: 0.549~0.864), except for the
flatness (higher values imply sphere-like shape) (Supplementary
Fig. 3). Within each lobe, generally high positive genetic correlations
were observed for LIDPs within first-order and shape features, while
negative correlations were observed between the two dimensions
(Fig. 2c and Supplementary Fig. 4). However, first-order features
reflecting the distribution of voxel intensities (kurtosis, skewness, and
uniformity), extremum (maximum and range), and energy were posi-
tively associated with lung size. The surface volume ratio of shape
features also demonstrated a positive correlation with lung voxel
intensities. These findings suggest a mutual influence between first-
order and shape LIDPs.

Furthermore, we observed high genetic correlations of LIDPs
between the two recruitment centers (rg = 0.807) and across different
smoking statuses (rg = 0.764), underscoring the robustness of our
findings (Supplementary Data 3).

Common genetic variants associated with lung imaging
phenotypes
In 35,469 LIGI participants, we conducted GWAS for the 160 LIDPs
across 844,7934 variants with aminor allele frequency (MAF) ≥ 1% and
an imputation information score (INFO) ≥ 0.3. The observed genomic
inflation factors (λgc) in QQ plots (Supplementary Fig. 5) and the low
linkage disequilibrium (LD) score regression (LDSC) intercepts,

ranging from 0.99 to 1.04, indicated that this inflation was consistent
with polygenicity rather than confounding (Supplementary Data 4).

Across the 90 LIDPs of first-order, we identified 346 independent
variant-LIDP associations (P < 5 × 10−8), using PLINK clumping with a
distance of 500 kb and LD r2 of 0.1 (Supplementary Data 5). These
associations were further grouped into 36 clusters by merging unique
variants within 500 kb at LD r2 of 0.1 across LIDPs (Fig. 3a), of which 27
clusters were associated with at least two LIDPs (Supplementary
Data 6). Among these associations, we discovered 12 unique loci that
satisfied a multiple testing significance threshold of P < 5.56 × 10−10

after Bonferroni correction, which consistently associated with multi-
ple LIDPs. Notably, two single nucleotide polymorphisms (SNPs),
rs4505789 (4q22.1, near FAM13A) and rs41268920 (6p21.32, near
AGER), were associated with 45 and 50 first-order LIDPs, respectively
(Supplementary Fig. 6a).

For the 70 shape LIDPs, we discovered 562 independent variant-
LIDP associations at P < 5 × 10−8 (Supplementary Data 7). After cross-
traits clumping, we observed 138 independent clusters (within 500 kb
at r2 ≤0.1) (Fig. 3b and Supplementary Data 8), of which 60 remained
significant when additionally corrected for multiple testing using the
threshold of P < 7.14 × 10−10 after Bonferroni correction. More than
half (57.2%, 79/138) of the identified variants were significant in at least
two LIDPs, and the proportion was as high as 88.3% (53/60) in the
identified loci after correction. Notably, we observed two independent
SNPs near HHIP (rs72731582 and rs11100862, r2 = 0.03) that were sig-
nificantly associatedwith 23 and 31 shape LIDPs, respectively; the locus
of FAM13A was also significantly associated with 15 shape LIDPs (Sup-
plementary Fig. 6b).

To validate the robustness of the identified loci, we performed a
subgroup analysis according to the recruitment center. Around 77.8%
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Fig. 2 | Overall phenotypic correlation and genetic correlation and results of
heritability estimation. Plots show the heritability of all lung radiomic features
(a, first-order;b, shape) using BOLT-REML.Different colors correspond to different
lung lobes. Blue dots indicate the UR lobe, blue squares the LR lobe, blue triangles
the CR lobe, red dots the UL lobe, and red squares the LL lobe. c Correlation
heatmap shows the results of phenotypic correlations (upper right triangle) and
genetic correlations (lower left triangle). Due to the low heritability of

firstorder_Minimum in the right upper lung lobe estimated using LDSC, the mean
heritability for firstorder_Minimum was calculated across the remaining four lung
lobes only. The color gradient ranges from red, indicating correlations close to 1, to
blue, indicating correlations close to -1. UR right upper lobe, UL left upper lobe, CR
right centre lobe, LR right lower lobe, LL left lower lobe, IQR InterquartileRange,
MAD MeanAbsoluteDeviation, RMAD RobustMeanAbsoluteDeviation, RMS
RootMeanSquared.
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allele effect sizes (beta) and their 95% confidence intervals (CIs) of lead variants
associated with traits of first-order and shape features. Error bars represent 95%
confidence intervals (CIs) around the point estimates (beta). The lead SNPs were
identified through GWAS analysis, where each SNP’s effect size and standard error
correspond to themost significant phenotype (smallestP value)within each feature
category, based on GWAS results from 35,469 individuals using the BOLT-LMM
Wald test (two-sided P values). No additional corrections beyond the GWAS fra-
mework were applied.
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(28/36) of associations from first-order features and 89.1% (123/138) of
associations from shape features were consistently significant in the
two centers (Supplementary Data 9). To exclude the impact of smok-
ing, we further tested these associations among 20,148 nonsmokers in
our study and observed that all of the associations were consistently
significant (Supplementary Data 9). Regional association plots of the
174 lead variants were verified by manual visual inspection.

Although first-order features and shape features reflect different
aspects of lung structure, we identified 11 shared regions associated
with both dimensions (Fig. 3c). We compared the per-allele effect sizes
of lead variants associated with any LIDPs of first-order and shape
features and observed two distinct distribution patterns (Fig. 3d).
Genetic variants near transcription factors (TFs) involved in lung
development, such as HHIP, HLX, RUNX2, EYA1, and TBX3/TBX519,
showed relatively positive correlations between first-order and shape
features. In contract, the effect sizes of SNPs near AGER, FAM13A,
MFAP2, and ADGRG6 showed negative correlations between first-order
and shape features, and these SNPs were consistently associated with
correspondinggene expression inour 338Chinese lung samples and in
515 lung tissue samples from GTEx (Supplementary Fig. 7).

More than one-fifth (39 out of 174) of the identified SNPs were
located near TFs, many of which play key roles in lung development19.
Among the six TFs related to first-order features, rs12581666 near
TBX3/TXB5was significantly associatedwith over half (60.0%, 54/90) of
the LIDPs across the five lobes (P <0.05); whereas rs4342857 near HLX
was only associated with 10 LIDPs in some lobes (Supplementary Fig. 8
and Supplementary Data 10). We also identified 33 unique variants
near 28 TFs were significantly associated with shape features (Sup-
plementary Data 11 and Supplementary Fig. 8). Notably, independent
SNPs (r2 < 0.1) near FGF10, TXB3/TXB5, and GATA6 exhibited highly
heterogeneous associations with different lung lobes. These results
suggest that TF regulation may vary selectively across different lung
lobes, with surrounding genetic variants potentially playing distinct
regulatory roles in lung development.

To assess the robustness of our GWAS findings, we re-evaluated
174 independent genome-wide significant loci (36 for first-order fea-
tures, 138 for shape features) by adjusting for height (Supplementary
Data 12-13). As expected, 96.55% (168/174) of the loci remained sig-
nificant at P < 1 × 10−5, and 75.29% (131/174) surpassing the genome-
wide significance threshold (P < 5× 10⁻⁸). To further validate ourGWAS
results, we conducted a replication analysis using an independent
dataset of ~7000participants recruited in 2022 inZhejiang province as
part of the LIGI (Supplementary Data 14). Of the 174 lead SNPs iden-
tified in the discovery cohort, 145 (83.3%) remained nominally sig-
nificant (P < 0.05) in this replication dataset. These findings provide
additional evidence for the robustness of the identified associations.

Fine-mapping and functional characterization for candidate
variants
To explore the secondary signals at the identified loci, we conducted a
conditional and joint analysis (COJO) (Methods). The additional
associations identified from these conditional analyses for each LIDP
are reported in Supplementary Data 15. We then conducted a fine-
mapping analysis using SuSiE to identify causal variants within 95%
credible sets for each LIDP. As a result, we identified 5995 variants
falling into 223 independent loci across first-order features (median 16,
ranging from 1 to 201 per locus, Supplementary Data 16) and 19,924
variants falling into 493 independent loci across shape features
(median 26, ranging from 1 to 577 per locus, Supplementary Data 17).

To functionally characterize the prioritized variants, we per-
formed an integrated variant function annotation using SNPnexus
(Methods). A total of eight unique nonsynonymous variants were
identified across first-order features (Supplementary Data 18). Of
those, rs17280293 (ADGRG6; p.S123G; combined annotation-
dependent depletion (CADD) score = 24.9) was also associated with

lung function20 and diffusing capacity of the lung for carbonmonoxide
traits21. Similarly, we discovered 22 unique nonsynonymous variants
among shape features (Supplementary Data 19). Notably, rs9379084
(RREB1; p.D1171N; CADD score = 29.7) had a posterior inclusion prob-
ability (PIP) of 1.00 forflatness of left low lobe. RREB1 is a zinc-finger TF
that functions downstream of RAS signaling and is activated in lung
lipofibroblasts, which play roles in lung development and regulation of
epithelial cell migration22.

In addition to the identified genes with nonsynonymous SNPs, we
further mapped susceptibility genes underlying the GWAS associa-
tions basedonour expression quantitative trait locus (eQTL) database,
which was derived from 338 Chinese lung tissue samples. We exam-
ined the overlap between the GWAS-identified variants (r2 > 0.6 with
the identified lead SNPs) and significant eQTL variants (FDR <0.05),
identifying 48 unique eQTL genes for first-order features and 53
unique eQTL genes for shape features (Supplementary Data 20). To
prioritize candidate susceptibility genes, Bayesian colocalization ana-
lyses were conducted using the eQTL database and the GWAS sum-
mary statistics of each LIDP, employing the coloc method23. A total of
207 gene-LIDP pairs were colocalized for first-order features (PPH4 >
0.7), including 17 unique eQTL genes (Fig. 4a and Supplementary
Data 21). For shape features, we identified 244 gene-LIDP colocaliza-
tions, including 28 unique eQTL genes (Fig. 4b and Supplementary
Data 22). Interestingly, we found that 12 genes (36.36% of the coloca-
lization genes) were shared by both first-order and shape LIDPs, indi-
cating that these genes (ACY1, AGER, AP3B2, ERAP2, FAM13A, GBAP1,
HHIP, HLA-DRB6, MFAP2, NBPF1, PLXND1, and UQCC1) probably influ-
ence the lung’s shape and density characteristics simultaneously.
Additionally, we identified 767 gene-LIDP colocalizations (332 for first-
order and 435 for shape), pointing to 269 unique eQTL genes outside
of the genome-wide significant loci (Supplementary Data 23).

Using the Functional Mapping and Annotation (FUMA) platform,
we identified 35 genes for first-order LIDPs and 125 genes for shape
LIDPs according topositionalmappingwithin 10 kbof leadSNPs (P < 5
× 10−8) (Supplementary Data 24). Gene-level analysis using MAGMA
(Methods) detected 142 and 315 unique genes forfirst-order and shape
LIDPs, respectively, satisfying P < 2.7 × 10−6 (0.05/18,517, Bonferroni’s
correction) (Supplementary Data 25).

Based on the prioritization of candidate genes from SuSIE, colo-
calizations analysis, positional mapping, and MAGMA (Fig. 4c, d), we
additionally performed gene ontology and pathway analysis (Meth-
ods). A total of 40 and 199 pathways were significantly enriched for
first-order and shape LIDPs, respectively, after Benjamini-Hochberg
correction (Supplementary Data 26, 27). Notably, the candidate genes
showed the most significant enrichment in pathways related to
branching morphogenesis, epithelial tube morphogenesis, and
embryonic organ morphogenesis and development (Fig. 4e, f). These
pathways play a crucial role in the early development of fetal lung24.

To characterize the functional features of non-coding SNPs
identified in our study (~99%), we assessed their heritability enrich-
mentwithin functional elements across 14 tissues (including fetal lung)
by employing stratified LDSC25 and GARFIELD26 with derived genome-
wide summary statistics for first-order and shape features (Methods).
Significant genetic enrichments (P <0.05 after Bonferroni correction)
were observed in DNase, H3K4me1, and H3K9ac marks in the fetal
lung, as well as H3K27ac marks in adult lung for first-order features
(Fig. 5a). Similarly, significant enrichments were observed in the
functional elements for shape features in both fetal and adult lung
(Fig. 5b). Additionally, GARFIELD analysis confirmed significant
enrichment of genetic associations in the DNase hypersensitivity
regions of the fetal lung (Supplementary Fig. 9).

To further characterize specific cell types associated with first-
order and shape features in the fetal lung, processed single-cell
RNA (scRNA-seq) sequencing data of human fetal lungs (15–22
post-conception weeks) were obtained from the Lung Cell Atlas
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(https://lungcellatlas.org)27. A total of 26,568 genes for 14 cell types
were included for cell-specificity analysis (Supplementary Fig. 10). We
employed the single-cell disease relevance score (scDRS) to identify
cell types with elevated expression of genes associatedwith first-order
and shape features (Methods). Lungmesothelial cells exhibited strong
associations with both first-order and shape features, aligning with the
notion that the mesothelium serves as a source of progenitor cells for

mesenchymal lineages during organogenesis (Fig. 5c, d and Supple-
mentary Data 28, 29)28. Additionally, vascular endothelial cells and
peripheral nervous system (PNS) cells showed specific associations
with first-order features, emphasizing their roles in lung density29. In
contrast, chondrocytes and fibroblasts were uniquely linked to shape
features, highlighting their contributions to lung morphology30.
Interestingly, megakaryocytic-erythroid cells in fetal lung were
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associated with both first-order and shape features, although the
underlying mechanisms remain unclear31.

Genetic correlations and pleiotropy of genetic variants with
lung disorders and function
To explore the similarities in genetic architecture between LIDPs and
lung disorders and function, we examined genetic correlations
between 160 LIDPs and four chronic lungdiseases, aswell as three lung
function traits, using cross-trait LDSC (Methods). For lungdiseases,we
focused on non-small cell lung cancer (NSCLC), chronic obstructive
pulmonary disease (COPD), interstitial lung disease (ILD), and asthma
as they represent major chronic respiratory diseases widely studied in
epidemiological research32, covering a broad spectrum of respiratory

conditions to explore potential shared genetic factors. The GWAS
summary statistics of NSCLC, COPD, ILD, asthma, forced vital capacity
(FVC), forced expiratory volume in 1 s (FEV1), and FEV1/FVC were
derived from our previous study10, the China Kadoorie Biobank
(CKB)33,34, and the Biobank Japan (BBJ) (Methods)35.

At the FDR5% level,weobserved 196significant genetic correlations
between first-order LIDPs and NSCLC, FEV1/FVC, FEV1, and FVC (Fig. 6a
and Supplementary Data 30). Overall, lung voxel intensities (i.e., mean
and median voxel intensity) were positively associated with FEV1/FVC
but negatively associated with NSCLC, FEV1, and FVC. In contrast, the
three distribution characteristics (kurtosis, skewness, and uniformity)
showed completely opposite genetic associations. For shape LIDPs, we
observed 185 significant genetic correlations with the above lung

Fig. 4 | Colocalization analysis and pathway analysis. The heatmap shows the
overall Bayesian colocalization (‘coloc’ R package) results between different first-
order features (a) or shape features (b) and significant eQTL genes, which applies a
Bayesian framework to estimate posterior probabilities for different hypotheses.
For each radiomic feature-eQTL gene colocalization result, the colocalization
posteriori probability of hypothesis 4 (PPH4) is indicated with shades of red (closer
to 1) and blue (closer to 0). Results with PPH4 >0.7 are marked with ‘*’, and results
with PPH4 >0.9 are marked with ‘**’. For the colocalization results of a phenotype
across the five lung lobes, the result with the highest PPH4 is shown. The venn
diagram illustrates the overlap of candidate genes identified by the four methods

(Near gene, SuSIE, coloc, MAGMA) for first-order features (c) and shape features
(d). Pathway enrichment analyses of Gene Ontology terms were performed using
‘clusterProfiler’ R package. For each GO term, a hypergeometric test (two-sided)
was used to assess over-representation of candidate genes (identified from SuSIE,
colocalizations analysis, positional mapping, and MAGMA) for first-order features
(e) and shape features (f). P values were adjusted for multiple testing using the
Benjamini–Hochberg false discovery rate (FDR <0.05). The enrichment of the top
15 pathways was visualized. posmap position mapping, SuSIE sum of single effects,
coloc colocalization, MAGMA multi-marker analysis of genomic annotation.
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Fig. 5 | Tissue- and cell-type specificity functional annotation. The tissue-
specificity functional annotation was performed using the processed GWAS sum-
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the first order or shape categories is extracted. a-b: Heritability enrichment of
GWAS summary statistics in functional elements across 14 tissues using stratified
LDSC for first-order features (a) and shape features (b). The x-axis represents the
-log value of the enrichment fold P value, and the y-axis represents regulatory
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color. Thedashedblue line indicates theBonferroni significance level. Theheatmap
illustrates the enrichment of different LIDPs (c: first order features; d: shape

features) across various cell types in fetal lungs at 15 to 22 weeks, evaluated using
the single-cell disease relevance score (scDRS). The heatmap colors represent the
proportion of significantly associated cells for each cell type–phenotype pair
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megakaryocyte-erythroid progenitor cell, Myofibro & SMC myofibroblasts and
smooth muscle cells, PNS peripheral nervous system cells.
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disorders and lung function (Fig. 6b and Supplementary Data 31). On the
whole, lung sizes were positively associated with FEV1, FVC, and NSCLC,
while exhibiting a negative association with FEV1/FVC. On the contrary,
inverse genetic association was observed for the surface volume ratio.
Collectively, these results highlight the extensive genetic associations
between lung imaging features and lung disorders, providing evidence
for the potential of CT scans in the early assessment of lung health.

To identify the shared genetic effects between LIDPs and lung
function and disorders, we further examined the associations of the
identified lead SNPs with the four lung diseases and three lung func-
tion traits. More than half (53.4%, 93/174) of the identified SNPs were
significantly associated with any of the seven traits (Fig. 6c, Supple-
mentaryData 32, 33). Of the 8,051 SNPs recorded for lung function and
disorders in the GWAS Catalog, 8.55% (asthma) ~32.15% (FEV1) were
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significantly associated with any of the LIDPs compared with 4.65% for
pneumonia after Benjamini-Hochberg correction (Fig. 6d).

We then conducted Bayesian colocalization analysis to evaluate
whether LIDPs and chronic lung diseases share causal variants. For
first-order LIDPs, we identified 215 colocalization signals, primarily in
three loci: 4q22.1 (FAM13A), 6p21.32 (AGER), and 14q13.1 (NPAS3)
(Supplementary Data 34). For example, at 6p21.32 (AGER), colocaliza-
tion was observed between the 90th percentile of voxel intensities
(90Percentile) of the right central lobe and COPD. The lead SNP,
rs41268920, was also significantly associated with 50 first-order LIDPs
and showed associations with NSCLC, FVC, and FEV1/FVC (Fig. 6e). For
shape LIDPs, we identified 61 colocalization signals across 11 loci,
including 4p15.31 (DCAF16), 4q22.1(FAM13A), 4q31.21 (HHIP), 5p12
(FGF10), 6p21.32 (AGER), 8q23.1 (RSPO2), 10q25.2 (VTI1A), 12q24.13
(NAA25), 15q25.2 (AP3B2), 16q24.1 (LINC00917), and 19q13.42 (LILRA3)
(Supplementary Data 35). For instance, at 4q22.1 (FAM13A), colocali-
zation was observed between the maximum 2D diameter column of
the right upper lobe and NSCLC. The lead SNP, rs4693974, was also
significantly associated with COPD, FEV1, and FEV1/FVC (Fig. 6f).
Additionally, we assessed colocalization between genome-wide sig-
nificant loci (P < 5 × 10−8) for the four chronic lung diseases and LIDPs,
identifying three loci for NSCLC, four for COPD, and two for asthma
that colocalizedwith at least one LIDP (Supplementary Data 36). These
findings demonstrate that LIDPs share substantial genetic components
with NSCLC, COPD, asthma, and ILD, highlighting potential connec-
tions between lung structural phenotypes and disorders.

Phenome-wide Mendelian-randomization analysis with lung-
related traits and other diseases
In light of the widespread genetic correlations between LIDPs and
lung-related traits, we examined the underlying causal genetic links
between the 160 LIDPs and lung function and disorders using Men-
delian randomization (MR). Additionally, we explored potential causal
links with 90 additional diseases out of the lung in the BBJ (Methods).

We identified causal genetic links underlying LIDPs and lung
functions. Specifically, 36 first-order LIDPs to FEV1/FVC, three first-
order and one shape LIDPs to FVC, and five first-order LIDPs to FEV1
were identified after Bonferroni’s correction (P < 3.88 × 10−4, 0.05/129,
considering 129 LIDPs analyzed in the MR analysis) (Fig. 7a and Sup-
plementary Data 37). Meanwhile, we observed robust evidence of
causal genetic links between LIDPs on COPD as well as ILD (Fig. 7b).
Although several LIDPs (i.e., surface volume ratio of right lower lobe,
odds ratio=0.32, P =0.016) showed potential causal genetic effects on
NSCLC, no significant associations were observed after Bonferroni’s
correction. Among the 103 significant associations identified by the

IVW method, 65 had sufficient instrumental variables (IVs) for MR-
Egger analysis, and 62 (95.4%) of them showed consistent effect
directions across both methods, supporting the robustness of our
findings (Supplementary Data 38). Besides, horizontal pleiotropy tests
suggested that the reported associations are unlikely to be driven by
confounding and are more likely to reflect true causal effects, further
supporting the reliability of the results (Supplementary Data 39).

In addition to lung-related traits,multiple genetic causal effects of
LIDPs on type 2 diabetes (T2D), myocardial infraction (MI), and
ischemic stroke (IS) were identified after Bonferroni’s correction
(P < 5.05 × 10−4, 0.05/99, considering 99 LIDPs analyzed in the MR
analysis) (Fig. 7a). A total of 17 loci associated with LIDPs were also
significantly associated with T2D, MI, or IS (Supplementary Data 40)
after Bonferroni’s correction (P < 1.62 × 10−4, 0.05/308, considering
308 loci identified in BBJ database). Seven shape LIDPs showed
potential genetic causal associations with T2D, with the volume of left
upper lung lobe being significant after Bonferroni’s correction
(Fig. 7b). The association between lung function and T2D has been
reported in several cohort studies and MR analyses36,37. Similarly,
COPD and impaired lung function have been strongly associated with
cardiovascular disease, particularly MI38. Our results provide new
insights into the complex etiology of cross-organ interactions.

Implicated genes highlight druggable targets
The candidate genes were investigated for known gene-drug interac-
tionsusing theDrug-Gene InteractionDatabase.Nearly 37.8% (45/119) of
the first-order candidate genes and 43.7% (131/300) of the shape can-
didate genes were interacted with approved drugs or drugs in devel-
opment (Supplementary Data 41 and Supplementary Data 42). Here, we
highlight two examples of new genetic signals implicating targets for
drugs utilization. One of our signals is an eQTL for AGER, which was
colocalized with 27 LIDPs and COPD (Fig. 6e). AGER encodes advanced
glycosylation end-product specific receptor, which is interacted with
PYRIDOXAMINE (vitamin B6). AGER is selectively and specifically
overexpressed in lung tissue (Supplementary Fig. 11). According to
46,807participantswithproteomics data from theUKBiobank, the lead
SNP rs41268920was significantly associatedwith reduced level of AGER
in plasma, and high AGER in plasma were significantly associated with
reduced risk of lung cancer, COPD, ILD, and asthma in smokers (Sup-
plementary Fig. 12). Notably, inverse association between serum levels
of vitamin B6 and lung cancer risk have been reported by the European
Prospective Investigation into Cancer and Nutrition (EPIC)39. Another
signal is MAPKAPK5, which encodes a kinase enzyme involved in key
inflammatory pathways. MAPKAPK5 can be inhibited by a small-
molecule inhibitor, GLPG-0259, which is under investigation in a

Fig. 6 | Genetic correlations of lung imaging traits and chronic lung diseases
and regional plot of representative genetic pleiotropy loci.We illustrated
genetic correlations (calculated using LD Score Regression) between first-order
features (a) or shape features (b) and complex traits and diseases. P-values were
calculated using a Z-test and corrected for multiple comparisons using the
Benjamini-Hochberg FDR procedure (two-sided). The genetic correlation is indi-
cated with shades of red (closer to 1) and blue (closer to -1). A single asterisk
indicates significance before correction. The double asterisks highlight genetic
correlations that have passed multiple testing adjustments using the Benjamini-
Hochberg procedure to control the FDR at the 5% level. c The Upset plot illustrates
the significance (two-sided P <0.05) of independent significant loci identified by
two types of features across seven lung-related complex traits and diseases. Red
represents loci from first-order features, while blue represents loci from shape
features. The lower section of the Upset plot displays the combinations of different
significant loci. d The bar plot illustrates the significance of loci reported in the
GWAS catalog for seven lung-related complex traits and diseases in LIDPs. Gray
represents the total number of reported loci, while other different colors indicate
loci that are significant in at least one LIDP: blue for GWAS two-sided P <0.05,
orange for FDR-adjusted P <0.05, and red for P < 5 × 10−8. The left panels show the

genes within a 300 kb upstream and downstream region of the representative lead
SNPs, rs41268920 (e) and rs4693974 (f), along with the regional plots and colo-
calization with lung diseases COPD (e) and NSCLC (f). In 6p21.32, we observed
colocalization between the 90Percentile_CR and COPD (PPH4 =0.993); In 4q22.1,
we observed colocalization between the Maximum2DDiameterColumn_UR and
NSCLC (PPH4 =0.819). The right panels show forest plots of the effects of these
SNPs across seven complex traits and diseases, including their corresponding
GWAS two-sided P-values in the summary database. For continuous traits (FEV1,
FVC, FEV1/FVC), point estimates (beta)with 95% confidence intervals are shown; for
binary traits (COPD, ILD, NSCLC), odds ratios (ORs) with 95% confidence intervals
are shown. The total sample sizes were: FEV1, FVC, and FEV1/FVC (100,285); COPD
(meta-analysis: 10,060 cases/236,329 controls), ILD (meta-analysis: 1201 cases/
252,729 controls), NSCLC (13,327 cases/13,328 controls). Detailed information is
provided in Supplementary Data 45. NSCLC non-small cell lung cancer, COPD
chronic obstructive pulmonary disease, ILD interstitial lung disease, FEV1 the first
second of forced expiration, FVC forced vital capacity, UR right upper lobe, UL left
upper lobe, CR right centre lobe, LR right lower lobe, LL left lower lobe, OR odds
ratio, CI confidence interval.
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clinical trial (NCT01024517). The signal colocalized with MAPKAPK5
expression in lung tissue and was linked to an increased risk of COPD
and asthma, as well as reduced lung function (Supplementary Fig. 13).

Discussion
In this study, we analyzed the genetic architecture of the five lung
lobes using CT scans from 35,469 Chinese Han participants in the

LIGI. To the best of our knowledge, this is the first GWAS study of
lung radiomics, and all GWAS summary statistics are freely available
online (http://ccra.njmu.edu.cn/LIGI/). Our analysis revealed 36
genomic regions influencing the lung voxel intensities and 138
genomic regions affecting lung shape. These findings advanced
our understanding of the genetic architecture underlying lung
organization.
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Using a deep-learning AI system for the segmentation of lung CT
imaging, we were able to explore the genetic architecture of under-
studied lung radiomics in each of the five lobes, respectively. This
improvement allowed for a more precise description of lung pheno-
types and increased the discoverability of susceptibility loci. Of the 174
identified loci, 103 were significant in only one lobe, whichmight have
been missed without segmentation. This finding aligns with the
understanding that the lung is a fundamentally heterogeneous organ,
with differences in perfusion-ventilation ratio, lymphatic flow, meta-
bolism,mechanics, and the unevendistribution of lung diseases across
lung lobes40,41.

Our findings demonstrate that genetic variations affecting gene
regulation during fetal lung development significantly influence adult
lung structures. Heterozygous single-nucleotide variants (nonsense,
frameshift) and copy number variant deletions in the TBX4-FGF10-
FGFR2 epithelial-mesenchymal signaling pathway, as well as other
genes suchasTCF21, have been observed in over 65%of newbornswith
lung dysplasia42. In this study, we observed that common noncoding
genetic variants near FGF10 and TCF21, along with their family genes
such as TBX3/TBX5/TBX18 and FGF18, can consistently affect lung
structure, though to varying degrees43,44. In addition, SNPs near several
TFs involved in branching morphogenesis (e.g., GATA6, ISL1)45,46,
proximal-distal patterning of epithelial cells (e.g., SOX6, THRB, EYA1,
and KLF5)47,48, and maintaining spatial specification of airway and
vascular smooth muscle cells (e.g., HHIP, MEF2C, WT1) in fetal lung
development47 were also identified to be associated with adult lung
structure in this study. Dysfunction of these TFs has been related to
various abnormalities in airway development and regeneration in
model organisms49–51. Although our identified SNPs were noncoding,
they were significantly enriched in the regulation regions of the fetal
lung. Taken together, our results provided genetic evidence of gene
regulation during fetal lung development affects adult lung structure.

We demonstrate that genetic variations associated with lung
structure also impact lung function and common chronic lung dis-
eases. Notably, we identified three loci (linked to FAM13A, HHIP, and
AGER) that affect multiple lung structure traits and colocalize with
chronic lung diseases. In experimental animal models, FAM13A-defi-
cient mice are protected from cigarette smoke-induced alveolar sim-
plification through increased β-catenin signaling and subsequent
increased epithelial cellular proliferation52. AGER-deficient mice
showed increased albumin in the bronchoalveolar lavage fluid and are
protected from alveolar damage and inflammation induced by
hyperoxia53. HHIP in adult human lungs is mainly expressed by type 2
(AT2) alveolar epithelial cells, and HHIP-insufficient mice develop
alveolar simplification when exposed to cigarette smoke, a repre-
sentative symptom in COPD patients54. Mechanistic studies suggest
that these genes may be involved in lung epithelial repair in response
to injury55. In addition to the aforementioned chronic lungdiseases,we
also detected multiple loci related to pulmonary arterial hypertension

(KCNK3)56, acute lung injury (KCNQ5, KIF26B, ACKR3, PLXND1, and
ESR1)57–61, and severe COVID-19 (DOCK2, and ERAP2)62,63. Our analysis
demonstrated several colocalization loci shared by lung structures and
chronic lung diseases, perhaps suggesting that lung structure is a key
phenotype along the causal pathway from genetic variation to the
pathogenesis of lung diseases. These findings suggest that LIDPs may
capture preclinical structural alterations, offering promising avenues
for developing non-invasive tools for risk stratification, early diagnosis,
and longitudinal monitoring of chronic lung diseases.

Although we identified multiple associations of LIDPs, this
study has several potential limitations. First, pulmonary function
tests were not performed in the LIGI. Considering the overall
prevalence of spirometry-defined COPD is nearly 8.6% among
individuals aged 40 years or order, our study might include par-
tially preclinical patients64. Second, our findings may not be
generalizable to individuals of European or other Asian ances-
tries. The Lung Cell Atlas database used for enrichment analysis is
predominantly of European ancestry and does not match the LD
patterns of the Chinese population, potentially reducing the
power of our analysis. Currently, there are no published GWAS of
similar radiomic features in European or other populations, which
limits our ability to conduct direct cross-ancestry comparisons or
identify ancestry-specific associations. Third, the publicly avail-
able GWAS summary statistics used in the colocalization analyses
and lookup approaches were not checked for quality, which
might introduce bias. Additionally, due to the limited number of
incident cases of chronic lung diseases from CKB and BBJ, the
GWAS summary statistics for chronic lung diseases used in our
analysis are generally underpowered. Finally, the current study
focused only on the first-order and shape features of CT images,
which describe the size and density of the lung lobes. However,
many high-order features, which capture the texture of the lungs
by describing the spatial relationships among multiple voxels, will
be studied in our future studies with larger sample sizes.

In summary, we identified several common genetic variants that
contribute to variations in lung imaging phenotypes. These variants
appear to influence lung development by regulating the gene expres-
sion and biological pathways active during fetal lung development.
Our findings also underscore the potential connections between lung
structures and chronic lung diseases, as well as other health condi-
tions. Thediscoveryof these common variants affecting lung structure
has become feasible through collaborative analysis of CT data, paving
the way for uncovering genetic mechanisms underlying lung devel-
opment and disease.

Methods
Study participants
The research reported herein was conducted in compliance with all
relevant ethical regulations and in accordance with the Declaration of

Fig. 7 | Genetic causal effects of lung imaging traits and lung diseases. a The
scatter plots illustrate the correlation and causality between lung radiomic features
and97 complex phenotypes. The toppart of the figure shows the two sided P values
of identified lead SNPs in 97 complex traits, while the bottom part displays the
Mendelian randomization P values (two sided, using the IVW technique as ourmajor
model). The horizontal dashed lines indicate the Bonferroni-corrected P value
threshold (0.05/308 for upper part and 0.05/99 for lower part, considering 308 loci
identified in the BBJ and 99 LIDPs analyzed in theMendelian randomization in BBJ).
Different categories of diseases or phenotypes are marked with different colors.
b From left to right, the forest plots display the specific Mendelian randomization
results for COPD, ILD, NSCLC, and T2Dwith lung radiomic features. Light blue areas
indicate first-order features, and light red areas indicate shape features. Data are
presented as Mendelian randomization IVW estimates (beta) ± 95% CIs. The dots
represent the beta values from the Mendelian randomization IVW results. The
horizontal bars represent 95% CIs, with color and an asterisk indicating significance

levels: red denotes nominal significance (P <0.05), an asterisk indicates significance
after Bonferroni’s correction (P < 3.91 × 10−4 for COPD and ILD, 0.05/128, con-
sidering 128 LIDPs analyzed in theMR analysis withCOPDand ILD; P < 3.88× 10−4 for
NSCLC, 0.05/129, considering 129 LIDPs analyzed in the MR analysis with NSCLC;
P < 5.05 × 10−4 for T2D, 0.05/99, considering 99 LIDPs analyzed in the MR analysis
with T2D), and gray indicates nonsignificant correlations. The reported P-values
were two-sided. The sample sizes were: COPD (meta-analysis: 10,060 cases/236,329
controls), ILD (meta-analysis: 1201 cases/252,729 controls), NSCLC (13,327 cases/
13,328 controls), and T2D (45,383 cases/132,032 controls). Exact P values, effect
sizes, and 95% CIs are provided in Supplementary Data 37-38. IVW inverse-variance
weighted, COPD chronic obstructive pulmonary disease, ILD interstitial lung dis-
ease, NSCLC non-small cell lung cancer, T2D type 2 diabetes, UR right upper lobe,
UL left upper lobe, CR right centre lobe, LR right lower lobe, LL left lower lobe, IQR
InterquartileRange, MAD MeanAbsoluteDeviation, RMAD RobustMeanAbsolute-
Deviation, RMS RootMeanSquared, CI confidence interval.
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Helsinki. The Lung Imaging Genomics Initiative (LIGI) aims to reveal
the genetic basis of lung radiomics in the Chinese population and
establish the radiation-phenotype causal link of common respiratory
diseases. All participants in this study were recruited from the LIGI in
China, which collected genomic and lung imaging data from Zhejiang
and Jiangsu provinces between April 2019 and November 2021. In
Zhejiang, we recruited 28,185 participants who participated in the free
lung cancer screening program organized by the local government. In
Jiangsu, we recruited 12,007 participants from the routine physical
examination populationwith pulmonary CT examination in the Health
Promotion Center of the First Affiliated Hospital of Nanjing Medical
University. Inclusion and exclusion criteria for the LIGI participants are
provided in Supplementary Data 43. The LIGI study received approval
from the Ethics Committee of Taizhou Cancer Hospital, the First
Affiliated Hospital with Nanjing Medical University, and written
informed consent was obtained from each participant. All participants
were requested to complete an interviewer-administered electronic
questionnaire covering lifestyle and other health-related information,
as well as provide physical measurements and a blood sample at
baseline. After excluding those who refused to undergo LDCT exam-
ination, declined to provide a blood sample, or hadmissing covariates,
36,551 eligible individuals were included. Further exclusions were
made for participants who failed manual checks by radiologists
(N = 162) or radiomic feature extraction (N = 130), were identified as
extreme phenotypic outliers (±6 SD) through principal component
analysis (PCA) (N = 624), or did not pass the quality control of genomic
data (N = 166). As a result, Phase I of the LIGI study included 35,469
participants with qualified CT images and genotype data. The partici-
pant inclusion and exclusion process is detailed in Supplemen-
tary Fig. 1.

Imaging acquisition and radiomic feature extraction
In the LIGI, lung imaging data were acquired using a 16-slice spiral CT
scanner in Zhejiang and a 128-slice spiral CT scanner in Jiangsu
(120 kV and 40-60mA). The detailed acquisition parameters were as
follows: field of view 500mm; collimation 16 × 0.6mm; rotation time
0.5 s; and pitch 1.5. The scan matrix was no less than 512 × 512 pixels,
and the images were reconstructed with a slice thickness ranging
from 1.00 to 1.25mm. The lung window settings were as follows:
window width 1500 HU, window level −600 to −500 HU. Participants
were instructed to take a deep breath and to hold their breath during
scanning (5–8 s). The scanning range of the LDCT extended from the
lung apex to the level of the posterior costophrenic angle (including
the entire lungs and both chest walls, with full breast coverage for
female participants).

To minimize inter-center variability introduced by differences in
scanner models and imaging protocols, all LDCT images underwent a
standardized preprocessing workflow prior to radiomic feature
extraction. Specifically, images were resampled to isotropic 1 × 1 ×
1mm³ voxel spacing, intensities were normalized within a standard
lung window, and ComBat harmonization was applied to reduce batch
effects. A deep-learning AI system (developed by Beijing Deepwise &
League of PhD Technology Co. Ltd) was used to segment the five lung
lobes17. The system was initially trained on a large dataset65 and has
been successfully employed in previous studies to segment lung lobes
in COVID-19 patients66,67. Its segmentation accuracy has been inde-
pendently validated, achieving an average Dice score of 0.95 across
lung lobes as confirmed by experienced radiologists17. In our study, we
randomly selected 800 images for re-evaluation by two radiologists,
and the accuracy rate of automatic segmentation is 99.9% (799/800).
Additionally, participants were excluded if fewer than five lung lobes
were successfully segmented (i.e., zero to four lobes detected). Review
of these excluded cases revealed that segmentation failures were pri-
marily due to poor image quality (e.g., motion artifacts), incomplete
lung coverage, or anatomical alterations such as atelectasis. After

segmentation, radiomic features were extracted using Pyradiomics
(v3.0) for each lobe18. A total of 1470 quantitative radiomics features
were extracted from each lobe per patient, including 18 first order
features, 14 shape features, 22 Gray Level Cooccurrence Matrix
(GLCM) features, 16 Gray Level Run Length Matrix (GLRLM) features,
16 Gray Level Size Zone Matrix (GLSZM) features, 14 Gray Level
Dependence Matrix (GLDM) features, and 5 Neighboring Gray Tone
DifferenceMatrix (NGTDM) features,while the image type consistedof
Original, Wavelet, Laplacian of Gaussian (LoG), Square, Square Root,
Logarithm, Exponential, Gradient and LocalBinaryPattern2D. In this
study, we focused on 18 first-order features describing the distribution
of voxel intensities (density) and 14 shape features detailing the three-
dimensional size and shape of each lobe. First-order features describe
the distribution of voxel intensities within a lung lobe and are directly
related to tissue density, while shape features describe the geometrical
characteristics of each lung lobe. Detailed definitions of the 32 lung
image-derived phenotypes (LIDPs) by the Imaging Biomarker Stan-
dardization Initiative (IBSI)68 and representative interpretations are
shown in Supplementary Data 44 and Supplementary Fig. 14.

Imaging data quality control and preprocessing
Radiographic images from participants eligible for the LIGI were
manually checked by a team of thoracic radiologists from Zhejiang
CancerHospital, eachwith over 8 years of experience in radiographic
diagnosis. Participants were excludedbased on the following criteria:
(1) incomplete LDCT scans, (2) severe artifacts affecting feature
extraction and (3) presence of pneumoconiosis. All manually vali-
dated images will undergo lung lobe segmentation and feature
extraction (as mentioned above). The accuracy of segmentation by
the AI system was verified manually by two radiologists with more
than 8 years of diagnostic experience in chest imaging. We con-
ducted a repeat assessment in 100 participants who underwent two
rounds of LDCT screening in 2022 in Zhejiang. The consistency of
radiomic features between the two assessments reached an average
correlation coefficient of 0.853, indicating high reproducibility. The
radiomic features were standardized using the scale function in R,
and PCA was performed on the standardized radiomic features. We
used the first 15 principal components (PCs), which explained over
85% of the variance, to calculate a principal component score for
each sample. Participants with scores lying beyond six times the
standard deviation (±6 SD) from the mean were considered outliers
and excluded from further analysis.

Genotyping, imputation and genetic quality control
Participants were genotyped with Infinium Asian Screening Array
BeadChip (Illumina, Inc., San Diego, CA, United States) with ~750,000
markers. Given the high racial homogeneity and substantial sample
size of the LIGI, we conducted quality control following standard
practices established in previous literatures69,70. Briefly, genetic quality
control was carried out at both the variant and sample levels. At the
variant level, we removed duplicated markers, excluded markers with
high allele missing rates (>5%), significant deviations from Hardy-
Weinberg equilibrium (HWE) (P < 10−7), or a minor allele frequency
(MAF) < 0.1%. At the sample level, we removed samples with sex mis-
matches and excluded those with high heterogeneity (>10 SD) or
missing rates (>5%). Finally, a total of 582,663 SNPs from 35,469 par-
ticipants were included in the subsequent analyses.

Imputationwasperformedbased on a two-staged strategy using a
combined reference panel of the 1000 Genomes Phase 3 reference
panel (N = 2504) and the Nanjing Medical University Omics database
(N = 3020)71 with SHAPEIT470 and IMPUTE272. After excluding SNPs
with MAF < 1% and an imputation information score (INFO) < 0.3, a
total of 8,447,934 SNPs were included in the final GWAS analysis.
Variant positions were mapped to the GRCh37 human genome
reference.
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Heritability and GWAS association analyses
BOLT-REML (v2.3.4) was used to estimate the SNP heritability of the
160 LIDPs (32×5) based on the qualified imputed autosomal SNPs.
Single-variant association analysis was performed using BOLT-LMM
(v2.4), which accounts for cryptic population structure and sample
relatedness73. In the genetic analysis, we adjusted for sex, age, BMI,
pack years of smoking, region (Zhejiang/Jiangsu), and the first ten
principal components74. Genetic variants on the X chromosome were
analyzed using the generalized linearmodel (GLM) in PLINK-2.075, with
the same covariates described above. Variants with an association P < 5
× 10−8 were considered genome-wide significant.

For each LIDP, we extracted all significant variants (P < 5 × 10−8)
and then performed LD clumping using PLINK-1.975 with the East Asian
(EAS) reference panel from the 1000 Genomes Project (the Phase III
integrated variant set release, 504 East Asians). We outlined a 500 kb
window (–clump-kb 500) and used a common LD threshold (–r2 0.1) to
identify independently significant SNPs for each LIDP (Supplementary
Data 5 and Supplementary Data 7). Then, the independent lead SNPs of
different LIDPs of first-order and shape, respectively, were combined
todefine a cluster bymerging variantswithin 500 kbof eachother. The
variants with the smallest P value in each cluster was defined as sig-
nificant lead SNPs for thefirst-order LIDPs and shapeLIDPs,whichwere
reported in Supplementary Data 6 and Supplementary Data 8. Sub-
group analysis were further performed according to region (Zhejiang/
Jiangsu) and smoking status. Locus plots of independently significant
SNPs were produced with LocusZoom and verified by manual visual
inspection76.

Genetic correlation estimation
Genetic correlation across traitswas assessed using cross-trait LDSC77,78

within 160 LIDPs and 7 lung-related traits (FEV1, FVC, FEV1/FVC, COPD,
ILD, asthma, and NSCLC). The genome-wide summary statistics of lung
function were derived from the

China Kadoorie Biobank (CKB)33; the genome-wide summary sta-
tistics of COPD, ILD, and asthma were derived from the meta-analysis
of CKB and the Biobank Japan (BBJ); and the genome-wide summary
statistics of lung cancer were derived from our previous study10. For
COPD, ILD, and asthma, we conducted genome-wide meta-analyses to
enhance statistical power and robustness. The meta-analyses were
performed using the METAL software79, employing a fixed-effect
inverse-variance weighting approach; more details can be found in
Supplementary Data 45. We first prepared GWAS summary statistics
for each trait, ensuring that they were aligned to the same reference
allele. Only SNPs available in both datasets and passing quality control
were retained.We employed the LD scores provided by the authors for
the East Asian population, which were estimated from 1KG EAS indi-
viduals. Genetic correlation pairs at an FDR 5% level were considered
statistically significant.

With LDSC, the genomic control factor (lambda GC) was parti-
tioned into components reflecting polygenicity and inflation, using the
software’s defaults. The LDSC intercept was utilized to evaluate poly-
genicity and the genomic inflation factor. An intercept value closer to
1 suggests minimal population stratification and confounding due to
cryptic relatedness or other biases.

Conditional analysis and Statistical fine-mapping
For each LIDP, we extracted all SNPs within ±1Mb of each sentinel
variant and employed the GCTA conditional and joint association
analysis (GCTA-COJO)80 to conduct a stepwise conditional analysis to
select independent association signals (P < 5.0 × 10−8) for each locus.

Statistical fine-mapping was performed with SuSiE (v.0.11.92;
https://github.com/stephenslab/susieR), allowing for up to five puta-
tive causal variants within each locus. The LD structure was referenced
against the EAS dataset from the 1000 Genomes Project. Each region
was defined by a ± 250 kb window centered on the lead variants.

Variants in the 95% credible sets (representing a 95% likelihood of
harboring at least one causal variant) were assessed for their predicted
functional effects using the Variant Effect Predictor (VEP, https://
grch37.ensembl.org/) and SNPnexus (https://www.snp-nexus.org/v4/
)81. We annotated four scores, including fitcons, eigen, FATHMM and
CADD, to assess the potential biological function of each variant. For
missense variants in coding regions, we further used SIFT and Poly-
Phen to predict the pathogenicity.

Tissue-type-specific heritability enrichment analysis
Stratified LD score regression (S-LDSC, https://github.com/bulik/ldsc/
wiki/Cell-type-specific-analyses) was employed for tissue-type-specific
heritability enrichment estimation. We first generated two artificial
genome-wide summary statistics for first-order features and shape
features by retaining the statistical parameters of the corresponding
LIDP with the smallest P value for each variant. Heritability enrichment
was then performed for transcription regulation regions marked by
histonemedications (H3K4me1, H3K4me3, H3K9ac, andH3K24ac) and
DNase hypersensitivity sites in 13 common adult tissues and fetal lung
tissues. The partitioned LD scores of all annotations and the baseline
model for EAS ancestry on HapMap3 SNPs were downloaded from the
Broad Institute’s repository (https://alkesgroup.broadinstitute.org/
LDSCORE). Meanwhile, we also used the GWAS Analysis of Reg-
ulatory or Functional Information Enrichment with LD correction
(GARFIELD, https://www.ebi.ac.uk/birney-srv/GARFIELD) to evaluate
the enrichment of significant SNPs (5 × 10−5 and 5 × 10−5) in regulatory
regions from the ENCODE and Roadmap projects with default
parameters.

Cell-type specificity analysis
To identify the cell types associated with different LIDPs, processed
scRNA-seq datasets of human fetal lung were obtained from the Lung
Cell Atlas (https://lungcellatlas.org). The single-cell disease relevance
score (scDRS)82 was used to assess polygenic disease enrichment in
fetal lung cells at 15-22 weeks. Given the strong correlations among
the 32 LIDPs across the five lung lobes (Supplementary Fig. 3), we
combined results for each gene across the five lobes, retaining the
most significant P values in MAGMA. The top 1000 genes for each
phenotype, alongwith their weights (absolute values of ZSTAT), were
used as inputs for scDRS. In the enrichment analysis, we adjusted for
sex, total RNA count, and the number of detected genes. Using the
downstream pipeline provided by scDRS, we also performed Monte
Carlo (MC) testing to evaluate the association results for 14 broad
cell types.

eQTL analysis of lung tissues
We have built an eQTL database involving 116 adjacent lung tissues in
our previous study71. Here, we further collected 222 noncancerous
lung tissues and matched blood samples from the Nanjing Chest
Hospital. The DNA/RNA sample extraction, sequencing, and data
processing were in line with our previous publication71. The genotyp-
ing of the 222 samples was performed with the Infinium Asian
Screening Array BeadChip, and data processing was consistent with
the above description. eQTL analysis was performed with FastQTL83

according to the standard pipeline of GTEx84. The expression of each
gene was normalized using an inverse normal transform. We adjusted
for age, sex, smoking, sequencing batches, the top five principal
components, and 45 Probabilistic Estimation of Expression Residuals
(PEER) factors in a linear regression model.

Bayesian colocalization analysis
Bayesian colocalization analysis85 was performed using the coloc
package (version 5.2.2; https://chr1swallace.github.io/coloc) for each
significant locus of the LIDPs and eQTL signals. Evidence of pairwise
colocalization was defined as having a posterior probability of the
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shared causal variant hypothesis (PPH4) >0.7. EAS LDmatrix from 1000
Genomes (phase 3) was incorporated into the LD-dependent approach.
In addition, we also performed Bayesian colocalization analysis for
LIDPs and the seven lung-related traits to evaluate whether two asso-
ciated genetic signals were consistent with the shared causal variants.

Positional Mapping by FUMA
The web tool Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA) has previously been described in detail
(https://fuma.ctglab.nl/)86. We utilized positionalmapping to associate
genome-wide significant loci (P < 5 × 10−8 and r2 < 0.1) with genes using
FUMA’s default settings and specialized datasets. Variants within a
10 kb window of known protein-coding genes in the human reference
assembly (GRCh37/hg19) are mapped accordingly.

Gene-based analysis
The SNP-based P values were used for gene-based analysis using
MAGMA87 software (http://ctg.cncr.nl/software/magma) for gene-
based analysis. MAGMA used a multiple regression approach to
properly incorporate LD between markers and to detect multi-marker
effects for a genome-wide gene association analysis, thereby reducing
thepotential inflation of association signals causedby correlated SNPs.
We applied a stringent Bonferroni correction to account for multiple
testing, considering associations with P < 2.70 × 10−6 (0.05/18,517) as
statistically significant.

Gene Ontology (GO) enrichment analysis
We performed GO enrichment analysis on the candidate target genes
identified through positional mapping, colocalized eQTL analysis,
nonsynonymous mutations detected by SuSiE, and the genes identi-
fied by gene-based analysis. This analysis aimed to explore the
enrichment of these genes in pathways defined in biological processes
(BP), cellular components (CC), andmolecular functions (MF). The GO
analysis was performedusing the clusterProfiler R package88. Pathways
with a BH-adjusted P value < 0.05 were considered significant and
retained for further investigation.

Phenome-wide Mendelian-randomization analysis
To investigate whether variants associated with LIDPs were also asso-
ciated with other human complex traits in EAS, we obtained statistics
for the non-overlapping lead variants across 90 disease traits with
case≥500 from BBJ PheWeb (https://pheweb.jp). Variants were con-
sidered to exhibit pleiotropy if they met a significance threshold of
P < 3.13 × 10−4 after multiple-test corrections.

We further evaluated the genetic causal relationships between
the 160 LIDPs and seven lung-related complex traits, as well as 90
diseases from the BBJ using Mendelian randomization (MR) analysis.
We preprocessed the GWAS summary statistics according to the
standardMR preprocessing procedures. Specifically, in the exposure
GWAS, the genetic variants were initially chosen at a significance level
of 5 × 10−8. To ensure that the genetic variants included in the
downstream MR analysis were independent, we performed a LD-
based clumping firstly with window size of 1Mb and r2 < 0.01 taking
the EAS in 1KG as a reference panel. We used the harmonization
procedure in the TwoSampleMR package (https://mrcieu.github.io/
TwoSampleMR/) to infer the correct allele alignment. The inverse
variance weighted (IVW) model was used as the major reported
model, and significant results were prioritized based on a Bonferroni
correction threshold of P < 3.13 × 10−4, which are reported in Sup-
plementary Data 40.

Drug targets
Candidate genes with nonsynonymous variants in the credible sets of
SuSiE, identified through positional mapping, colocalized eQTL ana-
lysis, and gene-based analysis, were cross-referenced with the gene-

drug interactions table in the Drug-Gene Interactions Database
(DGIdb, https://www.dgidb.org/). Mapped drugs were assigned cor-
responding CHEMBL IDs, and information regarding clinical trial data
and indications for each drug was obtained from ChEMBL (https://
www.ebi.ac.uk/chembl/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genome-wide summary statistics for the 160 LIDPs generated in
this study have been deposited in the GenomeVariationMap (GVM) at
National Genomics Data Center, China National Center for Bioinfor-
mation, under accession number GVP000047 (https://ngdc.cncb.ac.
cn/gvm/). The summary statistics are available upon request, subject
to participant privacy and ethical restrictions. Researchers may
request access through the CNCB online application system by sub-
mitting a brief description of the intended scientific use. Requests are
reviewed by the LIGI data access committee, and applicants will typi-
cally receive a response within 2–4 weeks. Access is granted solely for
academic, non-commercial research purposes, and data use agree-
ments prohibit attempts to re-identify participants or to use the data
beyond the approved scope. Researchers can also query single-locus
level results through the LIGI database (http://ccra.njmu.edu.cn/LIGI/).
All variant positions are mapped to the GRCh37 human genome
reference. Genome-wide summary statistics for lung function, chronic
obstructive pulmonary disease (COPD), interstitial lung disease (ILD),
and asthma were obtained from the China Kadoorie Biobank (CKB)
through the CKB data access system (https://www.ckbiobank.org/).
Summary statistics for 90 complex traits from Biobank Japan (BBJ)
were obtained from the BBJ PheWeb (https://pheweb.jp). The 1000
Genomes reference panel and East Asian (EAS) cell-type annotations
for S-LDSC analyses were acquired from the Broad Institute’s reposi-
tory (https://alkesgroup.broadinstitute.org/LDSCORE). Regulatory
region data for GARFIELD analyses were obtained from the GARFIELD
website (https://www.ebi.ac.uk/birney-srv/GARFIELD). Single-cell RNA-
seq data used in S-LDSC analyses were obtained from the Lung Cell
Atlas (https://lungcellatlas.org/). Additional details on the data sources
used in this study are provided in the main text and Supplementary
Tables. Source data for all analyses are provided as a Source Data
file. Source data are provided with this paper.

Code availability
Publicly available software and packages were used for bioinformatics
analysis in the present study. The software and packages used in each
analysis are described in Methods. The code used to perform the
analyses in this study is publicly available at Zenodo (https://doi.org/
10.5281/zenodo.17071649)89. Users arepermitted to reuse,modify, and
distribute the code in accordance with the terms of the license, with
appropriate attribution to the original authors.
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