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Partial differential equations (PDEs) are fundamental for modeling complex
physical processes, often exhibiting structural features such as symmetries

and conservation laws. While physics-informed neural networks (PINNs) can
simulate and invert PDEs, they mainly rely on external loss functions for
physical constraints, making it difficult to automatically discover and embed
physically consistent network structures. We propose a physics structure-
informed neural network discovery method based on physics-informed dis-
tillation, which decouples physical and parameter regularization via staged
optimization in teacher and student networks. After distillation, clustering and
parameter reconstruction are used to extract and embed physically mean-
ingful structures. Numerical experiments on Laplace, Burgers, and Poisson
equations, as well as fluid mechanics, show that the method can automatically
extract relevant structures, improve accuracy and training efficiency, and
enhance structural adaptability and transferability. This approach offers a new
perspective for efficient modeling and automatic discovery of structured

neural networks.

The evolution of complex systems is fundamentally governed by high-
dimensional, nonlinear, and multiscale partial differential equations
(PDEs), which arise in diverse fields such as geosciences, materials
science, fluid dynamics, and biological systems'. Numerical methods
such as finite element’ and meshless approaches® have advanced
physical modeling over the past decades, but traditional PDE-
solving paradigms are increasingly limited in theory and application
when confronted with high-dimensional parameter spaces, extreme
computational costs*, the high trial-and-error cost of inverse
problems’, and practical constraints such as missing boundary or
initial conditions. These methods are also limited in their ability
to exploit the underlying structural features of the system. Therefore,
there is an urgent need for modeling frameworks that integrate data
and physics and possess strong applicability to overcome these
bottlenecks.

In recent years, machine learning methods, especially deep
learning methods®, has provided new perspectives for scientific
modeling. ML can automatically learn couplings and nonlinear map-
pings between variables from observational data, demonstrating great
potential in system identification and equation discovery’, complex
system modeling®. However, conventional end-to-end deep learning
approaches require large amounts of data and are prone to overfitting,
which limits their applicability’. To address these issues, physics-
informed neural networks (PINNs)’ have emerged, embedding physi-
cal constraints into neural networks (NNs) via loss functions and thus
integrating data-driven learning with physical priors. PINNs offer
scalability’®, flexibility and mesh-free characteristics", making them
powerful tools for solving PDEs and showing promise in inverse
problems'”. However, most existing PINN approaches focus on enfor-
cing physical constraints through loss functions, while largely ignoring
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the explicit structural characteristics of the underlying physical sys-
tems. Furthermore, external loss functions only minimize the average
inconsistency between model predictions and the physical
mechanism®. As a result, for problems requiring strong physical con-
sistency, one limitation of PINNSs is that their predictions do not strictly
adhere to underlying physical conservation laws™.

It is practical to enhance model performance by adding more
domain-specific constraints®". Some methods impose constraints
externally to the network, such as Hamiltonian neural networks',
Lagrangian neural networks”, and symplectic networks?, which
maintain conservation laws by learning energy-like scalar quantities.
Automatic symmetry discovery methods” encourage networks to
preserve symmetries by defining generalized symmetry loss functions.
In contrast, another class of effective approaches embeds constraints
directly within the internal structure of the network®, thereby ensur-
ing strict satisfaction of these constraints. For example, Rao et al.”
encoded constraints within the network to optimize solutions for
reaction-diffusion equations. The underlying principle is that adjusting
a system’s internal structure can modify its output to satisfy required
constraints*. Furthermore, if the network connectivity itself is
designed to match the nature of the problem, the network can achieve
superior performance in specialized domains*. For instance, Zhu
et al." enforced relationships among trainable parameters to embed
the space-time parity symmetry (ST-symmetry) of the Ablowitz-Ladik
(A-L) equation into the network’s weight arrangement, enabling the
simulation of nonlinear dynamic lattice solutions. However, these
parameter-structured data-driven models rely on manual construction
based on strong prior knowledge for specific problems, resulting in
limited structural patterns and restricted applicability. Therefore,
developing algorithms for automatic identification and extraction of
network structures-reducing dependence on prior knowledge and
manual design-would significantly enhance the applicability of struc-
tured network data-driven methods.

One effective approach for extracting network structures in NN
techniques is regularization®*°, However, applying regularization in
PINNs often fails to yield satisfactory results, as shown in Fig. 1. This
is not only because PINNs are insensitive to regularization terms in
the loss function”, but also because parameter regularization intro-
duces gradient optimization directions that may conflict with
the existing physical constraint regularization in PINNs’. Such exces-
sive constraints can actually degrade the accuracy of PINNs.
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Fig. 1| The conflict between structure extraction methods and PINN. After
adding the regularization term, the loss of the PINN model increases.

Distillation learning®, as an effective dual-model training scheme,
allows two models to be trained with different loss terms, enabling the
student model to achieve accuracy comparable to the teacher model.
This provides a means to integrate both physical and parameter
regularization.

Inspired by knowledge distillation, we propose a physics structure-
informed NN discovery framework (Physics structure-informed neural
network, pronounced as Psi-NN and abbreviated as ¥-NN.) that enables
automatic identification, extraction, and reconstruction of network
architectures. In ¥-NN, physical regularization (from governing equations)
and parameter regularization are decoupled and applied separately to
the teacher and student networks, overcoming the insensitivity to reg-
ularization and potential performance degradation observed in conven-
tional PINNs. Physical information is efficiently transferred from
the teacher to the student network via distillation, preserving essential
physical constraints while expanding the representational capacity of the
student model. An optimized structure extraction algorithm then auto-
matically identifies parameter matrices with physical significance, while
maximally retaining the feature space of the student network. Finally, a
reinitialization mechanism is employed for network reconstruction,
ensuring physical consistency in the network structure while endowing
the model with applicability. By organically integrating distillation, struc-
ture extraction, and network reconstruction, ¥-NN achieves physical
consistency, interpretability, and high-accuracy predictions in struc-
tured NNs.
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Fig. 2 | The algorithm of the proposed ¥-NN model. The teacher network pre-
dicts the computational domain using the PINN approach, while the student net-
work is supervised by the teacher’s output, forming a distillation learning process.
During the training of the student network, regularization methods are used to
naturally drive the parameters into clusters that can be identified by a clustering
algorithm under the current physical constraints. Finally, based on the clustering
results, parameter matrices related to physical properties are extracted, and ulti-
matel,y the network structure is reconstructed through structure-embedding
(embed the unchanged relation matrix R into a new network).
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Fig. 3 | The pipeline of the ¥-NN method. Using Burgers equation as a sample.
Three bold arrows represent the distillation-extraction-reconstruction process.
a The whole field data was predicted by data-driven model. b The student network
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is trained with the structure generating method, using the teacher model’s output.
¢ The structure extraction and reconstruction method is applied to find an optimal
network structure for the Burgers equation modeling.

Results

Physics structure-informed neural network

To achieve an automatic, physics informed, and interpretable NN
structure extraction mechanism, the ¥-NN method consists of three
components: (A) physics-informed distillation; (B) network parameter
matrix extraction; and (C) structured network reconstruction, as illu-
strated in Fig. 2. The core idea of W-NN is to embed physical
information-such as spatiotemporal symmetries and conservation
laws-directly into the network architecture. These constraints are
encoded by the parameter matrices and reconstructed within the new
network structure, thereby endowing the network with physical rele-
vance. Further details are provided in Section 3. An ablation study of
the W-NN method is presented in Supplementary Information, vali-
dating the necessity of each component.

In the numerical experiments, ¥-NN achieves the goal of extracting
network structures from data under partially known physical laws.
The case studies demonstrate that &-NN (A) accurately solves specific
physical problems; (B) generalizes across different control parameters
within the same problem; and (C) maintains generalizability of the
reconstructed network structure across different physical problems. The
detailed case settings are provided in Supplementary Information.
The results show that ¥-NN can effectively extract high-performance
network structures in problems with partially known laws, yielding good
fitting accuracy within the problem domain. The overall workflow is
illustrated in Fig. 3, and the error results are summarized in Table 1.
Control parameter transfer refers to the case where the form of the PDE
is fixed during the inverse problem, but certain parameters (such as the
viscosity coefficient in the Burgers equation shown in the figure) are
varied.

Extraction of network structure from PDEs

We selected several representative PDEs-the Laplace equation, Burgers
equation, and Poisson equation-to employ baseline models with prior
hard constraints, thereby better demonstrating the generalizability of -
NN. These problems are widely used in physics. In the control group, we
use PINNs with post-processing hard mapping™”(PINN-post) as well as
standard PINNs’. The former introduces additional enforced constraints
by post-processing the network outputs, while the latter serves as a
general NN solver for PDEs. The machine used for the case studies is an
Intel 12400f CPU, RTX 4080 GPU. In all cases, the Adam optimizer” is

Table 1| Full-field L2 error comparison

Question PINN PINN-post W-NN
Laplace (1e-4) 11.59 4.017 0.7422
Burgers (1e-2) 14.47 3.014 1.287
Poisson (1e-2) 2.633 2.563 2.464
Flow p(le-4) 14.89 11.78 7.838
Flow u(1e-4) 1.981 1.904 1.854
Flow v(1e-5) 1.984 1.896 1.765

PINN-post refers to a model that applies hard-mapping functions as a post-processing step to the
results of PINN.

used for training. To ensure reproducibility, the random seed is fixed at
1234. The computational results are shown in Fig. 4.

Laplace equation. Laplace’s equation has applications in various fields,
including electric fields, heat conduction, and fluid statics®. With appro-
priate boundary and initial conditions, this equation can exhibit clear
symmetry properties, providing more distinct structural features for the
network. The Laplace equation is used to fully illustrate the imple-
mentation process of ¥-NN and to demonstrate the interpretability of the
W-NN structure.

Consider the steady-state Laplace equation in two-dimensional
coordinates x € R? with the following control PDE:

L£:=V?u=0, xe[-11 ¢))

where x = (x3, x,). The boundary conditions of the problem is:

-1+3x3, x;=-1
1-3x%, x=1
B:=u={ ¥ 1 @)
X7 —3x;, Xp=-1
X3 —-3x;, x,=1

other settings are provided in Supplementary Information.

A. Extracted structure. The ¥-NN method enables clear extraction of
network structures under the guidance of physical laws, whereas other
existing methods can negatively impact network accuracy, as detailed
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Fig. 4 | Numerical results. a Laplace equation results. b Burgers equation results.
Black dots in the exact field represent sampling points. ¢ Poisson equation results.
The first column on the left shows the mean square error (MSE) propagation, which
is used to compare the optimization speed (the decrease in error within the same
number of steps) and optimization accuracy (the final MSE value) of the

1 X1 X1

representative models; the second column on the left shows the ground truth of
the cases. The three columns on the right are the results of PINN, PINN-post, and ¥-
NN, respectively. The first row shows the model predictions, and the second row
shows the absolute error between the model and the ground truth.

in Supplementary Information. Figure 5a shows the evolution of the
first hidden layer parameters during training. As the student network
loss stabilizes, parameter convergence becomes more pronounced,
resulting in extractable network structures. This convergence phe-
nomenon is observed across different layers, and the final parameter
clustering results under ¥-NN are shown in Fig. 5b. The clustering of
biases also converges and approaches zero, reducing inter-layer bias
features and making the symmetry more evident.

Figure 5 c shows the network structure after replacing the original
parameters with the cluster centers.

Since the second hidden layer structure involves reuse, sign
reversal, and swapping, we take it as an example to describe in detail
the formation of the relation matrix R, during the “structure extrac-
tion" process and its role in the “network reconstruction” process of -
NN. The subscript indicates the second layer. First, after replacing the
trainable parameters of the student network with cluster centers, the
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Fig. 5 | Burgers case results. a The evolution of parameters under ¢-NN method.
The loss curve here serves as an indicator of residual stability rather than final
accuracy. b Cluster centers of ¥-NN in Laplace equation. The x-axis represents the
absolute value of the weights, and the y-values are given randomly in order to better
visualize the distribution. Negative values are shown as red dots, and positive

Positive values
* Negative values
N i -== Cluster centers

0.0 0.2 04 06 0.8 1.0 1.2 1i4
e-

0 1 2 3 4 1 2 3 4
1e-1 1e-6
s
y !

28 30 32 34 36 0.0 02 04 06 08 1.0 1.2 14
1e-1 1e-5

8.3125 8.3140

8.3155 1.54 1.55 1.56 1.57 1.58 1.59 1.60
1e-1 1e-3

values are shown as blue dots. The cluster distance is set to 0.1. The right column
contains distributions of biases, left column contains distributions of weights. The
first to fourth rows correspond to the clustering results of the network parameters
for the first to third hidden layers and the output layer, respectively. ¢ The structure
of student NN after parameter replacement in Laplace equation.

parameter matrix ¢, is:

- -G
= 3
2 { & o 3)

parameter matrix ¢, is constructed as a diagonal matrix with different
cluster center parameters arranged on the diagonal and denoted by
superscripts as:

¢ 0
6= 0 Clz, (4)

After flattening cs,, selecting cluster centers using one-hot vectors, and
incorporating sign relationships, the relation matrix R; is represented as:

-1 0
0 -1
R,= ©)]
0 1
1 0

In this matrix, rows with the same parameters are duplicated, rows with
opposite signs are negated, and the swapping of rows 1,2 and 4,3 (which
includes both row swapping and sign reversal in this case) represents
the swapping relationship of parameters. The relation matrix R, stores
the relationships between network parameters, with each row repre-
senting a selected cluster center. Thus, in the reconstruction process of

the new network, the trainable parameter matrix of the first hidden layer
0, is constrained by R, as follows:

& 0

~a ~b

6, 0 o -6
0,=R,- | * ,|= s (6)

o 6 &

6, o

After arranging the selected non-zero trainable parameters according
to the node order, the following is obtained:

~a ~b
. -6, -6
0,=| b2 N az )
6, 6,
converting to matrix form, W, is as follows:
_ wa _ wb
w,=| "2 "2 ®)
w2 WZ

The other layers follow similarly. This structure is further represented
using low-rank parameter matrices, with weight matrices being
denoted as Wf[ where i indicates the layer, and j is the label for the
same submatrix. The bias is denoted as b. The architecture is
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expressed as follows::

a b a
o T T

-wi -wy

-Wi —wh b
w,= , b,= (10)
’ {wz wi | b

wi=[wi wi, 1)

This low-rank matrix is reconstructed through structure-
embedding (embed the unchanged relation matrix R into a new net-
work)., where the parameters of d (parameter submatrix dimension)
nodes are represented by W{ =[w%, w%, -, w1’

By expanding the expressions of the final hidden layer’s two sets
of nodes, the relationship between the two-dimensional input
X = (x3, X») and the node outputs u, and u, can be obtained:

U, (X, X,) = tanh(W‘z‘ : (tanh(wi‘ X+ WP x, + B

12)
+ WS (tanh(W? - x; — W2 . x, + b%) +b§)))
Uy (X1, X,) = tanh(W’z’ : (tanh(Wf X+ WP x, + b
13)
+ WS- (canh(Wi -x, — W) - x, + b))+ b5)) )
From the expressions of both, it follows that:
Uy (X1, X2) = Up(Xy, — X3) (14)
finally, the output expression is:
u(xy, X5) = W31, (x, X5) + (X1, X5)) 15)

where W is the parameter matrix. This expression can also be written
as:
u(xy, Xx,) = Wi (x1, X,) + ty(Xq, —X5)) 16)

Therefore, this structured method implicitly embeds the symmetry
contained in PINN-post

Previous structured PINN approaches™ require symmetry priors
and rely on manually imposing group equivariance, targeting specific
problems, while the network structure in ¥-NN is automatically
extracted from data and physical constraints, reducing reliance on
manual design and strong prior knowledge.

B. Comparison between W-NN and PINN. The results are shown in
Fig. 4a, and the full-field L2 errors are summarized in Table 1. Com-
pared to PINN, ¥-NN reduces the number of iterations required to
reach the same loss magnitude (le-3) by approximately 50%, and
decreases the final L2 error by about 95%. As illustrated in Fig. 6aand d,
PINN does not exhibit consistent symmetry during training, whereas
the structural constraints in ¥-NN, which are consistent with the fea-
tures of the PDE, enable a reduced search space and allow the solution
to be found more quickly and accurately in the early stages of training.

C. Comparison between W-NN and PINN-post. The PINN-post
incorporates spatial symmetry into the network output layer
through explicit constraints, resulting in outputs that better satisfy
symmetric physical properties-reducing the full-field L2 error by
approximately 65% compared to conventional PINN, especially within
the computational domain. However, the converged MSE of PINN-post

is higher than that of ¥-NN, indicating that the minimum loss value in
the PINN framework does not fully reflect the true accuracy of the
network, but only the average fit to the available data and PDEs. The
rate of loss reduction reflects the convergence speed: to reach a loss of
1e-3, PINN-post requires 5€3 fewer iterations than PINN.

Both W-NN and PINN-post embed spatial symmetry into the net-
work, but the key difference is that the reconstructed ¥-NN archi-
tecture inherently contains this physical property, whereas PINN-post
applies hard mapping as a post-processing step at the output layer. In
terms of computation time: the computation time for PINN-post is
32.68 minutes, longer than ¥-NN’s 29.87 minutes. Furthermore, ¥-NN
reaches a loss of le-4 with 1.5e4 fewer iterations, and its average
convergence speed is about twice that of PINN-post. The L2 error is
reduced from 1.159e-3 to 7.422e-5. As shown in Fig. 4a, the hard
mapping constraint in PINN-post does not reduce the large compu-
tational errors near the boundaries. This suggests that, due to the rich
implicit constraints in physical fields, manually embedding features via
post-processing provides only a necessary but not sufficient con-
straint, and its applicability may be limited to a certain range. In con-
trast, Y-NN discovers network structures entirely based on
observational data and PDEs, aiming to automatically embed all known
information about the physical problem into the network structure,
thereby reducing errors over a broader computational domain.

Burgers equation. The Burgers equation, as an important tool for
describing nonlinear wave phenomena, is frequently used to study
complex systems such as fluid dynamics and wave behavior®’. We
select the Burgers equation due to its pronounced shock formation
and resulting antisymmetric properties, which serve to validate (a) the
performance advantages of structured networks and (b) their applic-
ability capability across a wide range of parameter variations.

In the inverse problem, the viscosity coefficient in the Burgers
equation is replaced by an unknown parameter A;, and the governing
PDE becomes:

L:=u, —uu, —Mu,, =0, xe[-L1, te[0,]] 17)

A. Extraction result and performance comparison. In the ¥-NN
extraction process, taking the third hidden layer as an example, the
parameter variations are shown in Supplementary Information (Fig. 6).
The extracted low-rank parameter matrices are:

we wb b’

wy=|" Ll b= (18)
wi —W7 —b,
Wi —-w§ 0

w,=|w} S 1, by=1|b5 19)
ws wh 3

wi=[ws wi -wi], b,=0 (20)

Similarly, the relationship between the two-dimensional input
X = (x1, X2) and the node outputs u,, uy, u. of the final hidden layer can
be obtained:

U, (X, X,) = tanh(W‘z‘ : (tanh(wf X+ WP x, + b))
(1)
~W§ - (canh(W -x; — WY - x; - b))
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Fig. 6 | Prediction comparison by iterations. a, d, PINN predictions; b, e, PINN-
post predictions; ¢ and f, ¥-NN predictions. The optimization tendency of different
models. In the figures of the first row, the red dashed line represents the true value
of u as x;, varies when x; = 0.8. Each green-blue gradient curve represents the

network output at training steps from 1000 to 5000, with an interval of 300. In the
second row of figures, the results at several training steps are plotted on a two-

dimensional coordinate plane to illustrate the symmetry breaking in PINN during
the iterative process, as well as the symmetry preservation in PINN-post and ¥-NN.

Table 2 | Burgers equation control parameter comparison

Model Truth PINN PINN-post Y-NN
v; - i(le-2) 1 2.820 1.898 1.465
v, - (le-2) 4 6.625 4.960 4.084
Vs - (le-2) 8 9.705 0.885 6.673
Uy, (X, X;) = tanh(W’Z’ : (tanh(Wf X WP x, + b9
(22)
+ WS- (canh(WS -, — WY -x, — b))+ B3) ) )
u.(x;, x,)= tanh(Wg . (tanh(Wf X WP x, — B9
(23)
+ W5 . (tanh(W® - x; — W? . x, +bf)+b§)))
From the expressions of the three, it follows that:
lim u,(x;, —x3)= —u,(x;,x
B0 41X, 2) (X1, X2) (24)
Up(X1, Xp) = U(Xy, — X3) (25)
The expression of the final output u(x;, x,) is:
u(xy, Xx3)= W4 -ty (xy, )+ W5 - (1,01, X3) — t.(X1,X,)) (26)

where W, W’; are parameter matrices.

Therefore, the first half of u, W - u,(x;,x,), contains the sym-
metry of PINN-post under the condition lim , while the second half,
b{—0

Wé’ - (Up(X1, X5) U (X, X,)), directly contains the symmetry of PINN-

post. Additionally, the properties of u, in the second hidden layer also
indicate that the emergence of symmetry does not strictly depend on
the number of network layers.

The trend of the loss function is shown in Fig. 4b. The recon-
structed structured network of W-NN exhibits significantly faster
iteration speed during training compared to PINN and PINN-post,
achieving a minimum loss function accuracy of le-5, which is lower
than the other two models.

The full-field L2 errors are summarized in Table 1. Both PINN-post
and ¥-NN achieve lower errors than PINN, demonstrating the effec-
tiveness of embedding equation features into the network structure for
improving fitting accuracy. As shown in Fig. 4b, after shock formation at
t > 0.4, both PINN and PINN-post exhibit large error distributions,
whereas ¥-NN uniformly reduces errors on both sides of the shock.
Furthermore, PINN-post, due to its post-processing symmetry, enforces
a symmetric error distribution across the shock but does not reduce the
actual error. The structure discovery capability of ¢-NN provides a more
precise and matching feature space, resulting in the lowest error.

For the inverse problem, in addition to reconstructing the entire
field, another key task is to estimate the unknown parameter 4; in Eq.
(17), with the true value A; = 0.01/m. The final results are given in
Table 2, where W-NN achieves the closest value to the ground truth.
The evolution of this parameter during training is shown in Fig. 7. Since
A;isincluded in the trainable parameter vector of the NN, these curves
can be interpreted as optimization trajectories®; a shorter path indi-
cates a clearer search direction and faster convergence. Thus, the
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convergence. The structural features discovered by ¥-NN reduce the output space

Iterations
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and make it easier to find the correct solution. Moreover, the network structure
found in v; = %9 can successfully generalize to v, = 2 and v = 2%, yielding good
results.

structural features discovered by ¥-NN reduce the output space and
make it easier to find the correct solution.

B. W-NN structure performance in different parameter cases. The
viscosity term v to be solved in the inverse problem is represented by
the unknown parameter A;. This allows us to validate the applicability
capability of the structure reconstructed for a specific problem under
different parameters. We conducted experiments using the same ¥-
NN-reconstructed structure without modifying other configurations,
specifically at v, = 0.04/m and v; = 0.08/m. The computational results
are shown in Fig. 7, where the ¥-NN method maintains shorter paths
across different parameters. Shorter path across different parameters
indicates that ¥-NN has a more efficient optimization process in
parameter space®. The final prediction results are summarized in
Table 2, with values closest to the ground truth.

Poisson equation. Poisson’s equation plays a crucial role in various
computations, including heat conduction, electromagnetism, and
gravitational fields®. Here, we select a Poisson problem in a unit square
domain with a smooth source term f(x;, x,) that contains four
increasing frequencies. This choice allows us to demonstrate the
applicability and performance of the ¥-NN method across different
parameters. High-frequency physical systems often exhibit inherent
symmetric structures®. To address this, we employ ¥-NN to discover
and leverage the symmetric patterns present in the problem, effec-
tively alleviating the challenges associated with high-frequency char-
acteristics and enhancing modeling efficiency and accuracy.
Specifically, Poisson’s equation satisfies the constraint:

A (hlr h2) e H:

Ty 06, 35) = (=1, (1)

(29)
Ty ()= () Tef

where 7%, 7% are the group actions on domain X and codomain Y,
respectively.

Similarly, we construct a low-frequency solution to the PDEs (27)
with the source term f = 0, ensuring the permutation property of the
solution. The permutation property can be simplified using the per-
mutation equivariant group H,=7, as V h € H:

Tﬁ’([f(xl,xz) =(=X3, —Xy1)

7y, w=(-1'"u

(30)

The constructed solution is u =x? — x3. The low-rank parameter matrix
extracted for this low-frequency function is:

we o bt
wi=| ' b=l 31
01 Wl _bl
Wa wb a
Wz{ ’ i]r bz{ %} (32)
w; W; )
w,=[w; wi|, b;=0 (33)

L:=Vu=f(x;,xy), Xx;,X;€[0,1] 27) Similarly, the relationship between the two-dimensional input
X = (x1, X2) and the node outputs u,, u, of the final hidden layer can be
. obtained:
where the source term is given by:
U, (X1, X,) = tanh(W$ - tanh(WY - x; +bY)
4 (34)
oy, X,) = %Z(—l)(k + 12K sin(kmx; )sin(kTx,) 28) +W3 - tanh(W{ - x, - bf) +b§)
k=1
u,(x;,x,) = tanh (W’; -tanh(W{ - x; +b7)
The source term exhibits permutation equivariance, which can be SWO - tanh(We - x, — b — b“) 35)
reformulated with the equivariant group H=7, x Z, formed by the 2 172 2
2-order cyclic group Z, : {0, 1}. The 2 transformations can be stated as
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From the expressions of both, it follows that:

U, (X1, X3) = — Up(—X3, — Xy) (36)
Since the expression of the final output u(x;, x,) is:
u(xy, Xx3) = W3 - (t,(x1, Xp) + (X1, X)) (37)

this result contains the symmetry defined in (30).

In order to match the network structure results with the char-
acteristics of the high-frequency solution, by setting the sign of the
values in B, to be the same, we can obtain:

i,(x;,x,) =tanh(W$ - tanh(W{ - x; + bY)

+ W5 tanh(W¢ - x, +b) +b§> ©8)
i, (X, X;) = tanh(W‘z’ -tanh(W? - x, + b) 39)
+ W} - tanh(W$ - x, + b)) + b3)
from which we have:
U, (X1, X;) = Wy(Xp, Xy) (40)
thus, the final expression:
u(xy, %) = W5 - (8,061, X,) + (X1, X)) (41

which satisfies the symmetry of the high-frequency solution.

Moreover, the structure can be adjusted by sign to satisfy other
forms of symmetry. For example, after (36), adjusting the sign of the
weights in the last hidden layer can yield:

u, =W5 - (U, — tp)=t,y(x1, ) + Ua(—X1, —X5) (42)
that is, the Poisson equation result can be adjusted by sign to satisfy
the central symmetry u,(x;, X2) = t,( — X3, — X).

The numerical results are shown in Fig. 4c. The iteration step
size used in this problem is 1le-3, which is reduced to 0.2 times the
original value at steps 5e3 and 1.5e4. The W-NN re-constructed NN
outperforms both PINN and PINN-post models in terms of speed and
accuracy. Their L2 errors are summarized in Table 1. All three models
exhibit peak errors along the line x, = —x; + 1, but ¥-NN maintains a
lower overall error, particularly at the boundaries. In contrast, the
other models in the control group show large gradient errors at local
boundaries, highlighting ¥-NN’s superior performance in high-
frequency fitting.

Steady flow passing a circular cylinder

Re-constructed structured NNs by ¥-NN not only perform well in their
specific problems but also exhibit good applicability across different
problems with similar characteristics. Here, we utilize the structures
reconstructed from the Laplace problem and the Burgers equation to
validate this applicability.

In the field of fluid mechanics, the two-dimensional incompressible
laminar cylinder flow case® can be used as a complex case with multiple
outputs and multiple constraints to test the performance of ¥-NN under
multiple output conditions. The outputs selected in this case contain two
completely opposite symmetries at the same time, which better reflects
the transfer ability of ¥-NN structures. The control equations are:

Ly:=u,+v,=0,

y (43)

L, =p(uuy +vuy) +p, — p(ux +u,y)=0 (44)
L3 =p(uvy +ovy)+py — pUX +0,y)=0 45
the inlet flow rate is:
u(0,Y)=4U e (H — y)y/H’ (46)
that is:
B: =u(0,y) — 4Upq(H — y)y/H* =0 (47)

The specific settings are shown in Fig. 8a. The results are manifested in
Fig. 8, with the loss iteration curve shown in Fig. 8b. The ¥-NN method
demonstrates superior performance in both convergence speed and
accuracy, especially around the cylinder. The final L2 errors are sum-
marized in Table 1.

Discussion

This paper presents a novel physics structure-informed network
extraction method, termed ¥-NN. First, ¥-NN employs a three-step
distillation-structure extraction-reconstruction framework to auto-
matically discover and extract network structures consistent with
physical constraints from limited sampled data, thereby linking phy-
sical information in PDEs with network architecture. This approach
overcomes the reliance on prior knowledge and manual design in
traditional structured PINN construction, enabling automated struc-
tural embedding. Second, ¥-NN integrates knowledge distillation and
parameter regularization-based sparsification through a staged train-
ing strategy, introducing a new method for automatic structure
extraction and reconstruction, and expanding the application of dis-
tillation and regularization in physics-based modeling. Unlike neural
architecture search methods focused on hyperparameter
optimization®*, ¥-NN emphasizes the automatic identification and
representation of physical features among trainable parameters, sur-
passing the limitations of conventional structured sparsity and
achieving structured embedding of physical information. The extrac-
ted network structures not only demonstrate strong physical rele-
vance and applicability in numerical experiments, but are also
supported by parameter convergence theorems and mathematical
proofs, ensuring theoretical rigor and interpretability. Numerical
results show that ¥-NN achieves significantly improved fitting perfor-
mance and reduced model complexity and computational cost com-
pared to conventional PINNs and post-processed models (PINN-post).

Moreover, ¥-NN offers a new perspective for network transfer
learning. In the case of the Poisson equation, for example, by simpli-
fying the original problem into low- and high-frequency components
and further increasing complexity based on the extracted structure, ¥-
NN can efficiently regress from low-frequency to high-frequency
solutions. During low-frequency simplification, the ¥-NN structure
remains interpretable, effectively reducing problem complexity and
prioritizing computational efficiency. This structural transfer process
provides an effective and flexible approach for extracting simple fea-
ture structures and performing complex regression across different
problems, achieving low resource consumption and high computa-
tional accuracy.

W-NN encodes the symbolic relationships of PDEs through net-
work connectivity. While ¥-NN effectively discovers interpretable
structures from partially known problems, it still has some limitations
that require further investigation:

1. The ¥-NN method has been validated on physical problems with
known forms of PDEs, and the extracted physical features
demonstrate a certain degree of generalizability (for example, in
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Fig. 8 | Flow case results. a Cylinder flow setting®. The cylinder center O, is located at (0.2, 0.2)(m) and the radius is 0.05 m. b Flow field loss comparison. ¢ Flow field
pressure results and error. d, u (x-axis velocity) results and error. e, v (y-axis velocity) results and error.

the Poisson equation case, adjusting the sign of hidden layer
parameters can achieve central symmetry or anti-symmetry).
However, scenarios involving real observational data or genuinely
uncertain or incomplete physical constraints may entail more
complex parameter-feature relationships, such as time translation

symmetry or rotational invariance at arbitrary angles. These
properties are often associated with conservation laws via
Noether’s theorem®, and may require more sophisticated net-
work architectures or additional exploration in parameter space.
We will investigate these potential applications in future research.
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2. Since the calculations in Theorems 1 and 2 are based on the
properties of MLPs, the current Distillation-Extraction-
Reconstruction framework of the ¥-NN method has been validated
using a three-layer fully connected multilayer perceptron (MLP)
architecture. The construction of structures involving sign trans-
formations (such as symmetry transformations) relies on the odd
symmetry of the tanh activation function, while for permutation
transformations (e.g., in the Poisson equation case), this property is
not required. However, for more expressive architectures in
specialized domains, such as Transformers® for sequential data,
the multi-module and attention mechanisms make it difficult to
establish a direct one-to-one correspondence between network
parameters and physical features. Nevertheless, these models have
the potential to be integrated with the distillation-extraction-
reconstruction framework, which will require the development of
new structure extraction and reconstruction methods tailored to
the characteristics of each architecture. We will explore the
integration of different network architectures with the ¥-NN
framework in future work to broaden its applicability.

Methods

W-NN method consists of three main components: distillation,
structure extraction, and network reconstruction. The distillation
process enables the transfer of physical information without addi-
tional intervention, decoupling the optimization of physical and
parameter directions by separating the high-order derivative losses
from the PDEs. The structure extraction method then automatically
identifies low-rank parameter matrices with physical consistency
while preserving physical information. Finally, the low-rank para-
meter matrices are reconstructed to form network structures with
physical relevance.

Physics-informed distillation

Regularization, as an effective approach for parameter sparsification,
cannot be efficiently applied in PINNs*"*°, Moreover, parameter reg-
ularization introduces gradient optimization directions that may
conflict with the existing physical constraint regularization in PINNs’,
and these excessive constraints can actually degrade the accuracy of
PINNs'. This makes it challenging to discover network structures
related to physical constraints. To address this issue, it is necessary to
appropriately decouple the processes of physical constraint enforce-
ment and parameter sparsification. In classification tasks, distillation
learning® has proven to be a successful multi-model training strategy,
enabling the student network to be trained without compromising the
fitting accuracy of the teacher network. Therefore, we introduce a
specialized distillation mechanism that allows learning bias and reg-
ularization to coexist.

Li et al.*® improved the distillation method for regression pro-
blems originally proposed by Muhamad et al.*, and found that self-
distillation can extract and utilize the rich physical information con-
tained in datasets generated by PINN. Inspired by this, we extend the
distillation approach to a physics-informed distillation framework,
enabling the separation of learning bias while transferring physical
information across networks with different architectures.

Consider a PDE with temporal coordinate ¢ and spatial coordi-
nates x € R", whose solution is denoted as u(t,x) ¢ R*:

Lut,x)=0, xeQ, te[0,T] (48)

Teacher and student networks are defined as:
Nr(x,t; 0T)=u~7' (49)
Ns(x, t;05)=ug (50)

where @ is the vector of trainable parameters in the network, and the
output u is the predicted solution to the PDE (48), with subscripts
denoting teacher T and student S, respectively.

To achieve physics-informed supervision, the teacher model is
trained following the PINN framework, with details provided in Sup-
plementary Information.

Essentially, the student model is designed to replicate the outputs
of the teacher model*®. The distillation loss function is given by:

_ 1 & ~i =2 51
MSET—M—TiX:;luT—usl (5D
where Mr denotes the number of configuration points for the
computational field.

Consequently, as a staged training strategy (First, the teacher
network is used to predict the computational field, and then the stu-
dent network is trained to learn the results of the teacher network.),
the teacher network bears the learning bias of physical information
containing high-order gradient terms (like second-order or higher-
order derivatives in PDEs), while the student network is allowed to shift
towards the gradient direction of parameter regularization. To train
and extract meaningful network structures from the student network,
further parameter analysis techniques are required.

Structure extraction method

Regularization has been widely used as an effective parameter sparsi-
fication technique in network pruning and structural simplification
methods*?, effectively optimizing network structures by reducing
complexity*. However, extracting physically meaningful and general-
izable network structures-such as translation equivariance in con-
volutional networks or rotational invariance-requires a deeper
understanding of parameter relationships**?. To address this, ¥-NN
refines the student network’s parameter matrices through a specia-
lized clustering approach.

Our structure extraction is based on L2 regularization (parameter
smoothing), whose mathematical essence can be derived using the
Lagrange multiplier method, promoting parameter convergence
within the same layer, as shown in Supplementary Information. The L2
regularization is only applied to the student network, while the teacher
network does not use L2 regularization. First, consider L2 regulariza-
tion on the student network parameters:

L
QB5)= > w,116,113 (52)
(=1

where L is the number of layers in the network, w; is the regularization
weight, and ; is the nonlinear affine transformation parameters of the
I-th layer. Under L2 regularization, the parameter vector is stretched
along its principal eigenvector direction, thereby enhancing major
features while suppressing minor ones®.

For the evolution trend of parameters under L2 regularization, we
have the following theorem:

Theorem 1. For n trainable parameters 6,, 65, ..., 8, in the same hidden
layer, if they play equivalent roles in the network, they will converge
under L2 regularization.

Theorem 2. For n trainable parameter values |6;|, |04, ..., |0,| in the
same hidden layer, if parameter symmetry exists among them, they
will converge under regularization.

The proofs are provided in Supplementary Information. Based on
the effect of L2 regularization on parameter values (see Appendix D for
details), to ensure that parameters representing similar correlations
within each neuron share the same value and to further compress the
NN, hierarchical agglomerative clustering (HAC)** is performed on the
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absolute values of the weights in each layer. HAC does not require a
preset number of clusters and can adaptively retain the necessary
cluster centers; it also generates a hierarchical dendrogram, allowing
for the selection of an appropriate clustering level through evaluation.
We use Euclidean distance to measure the distribution of the data.
Details of the clustering algorithm are provided in Supplementary
Information.

For the weights 6, in the [-th layer, we first compute their absolute
values:

6> =10, (53)

Next, we treat 07"5 as feature vectors and apply the HAC clustering
algorithm. The clustering process is given by:

{C1,Cy, ..., Cx} =HAC(E™, K) (54)
where Kis the number of clusters and C; denotes the k-th cluster. After
clustering, the absolute values of the weights in each cluster C; are
replaced by the cluster center 1.

1
== 0, 55
ICkl omzeck ! (35)
Finally, the updated weights /" are given by:
0" =sgn(@,) p if 6,,¢€C (56)

In this way, the n-dimensional trainable parameter vector 6, in the [-th
layer is reduced to a K-dimensional vector of cluster centers and a two-
dimensional sign vector, achieving maximal structural refinement.

After clustering and replacement, the network exhibits a new
ordered matrix structure, which may still contain some parameter
redundancy and reuse, requiring further analysis. Due to the nature of
clustering, using only structured sparsity*® may overlook the rela-
tionships between parameters of adjacent hidden layers, thereby fail-
ing to identify physically relevant network structures encoded in these
parameter relationships. Therefore, instead of pure low-rank decom-
position, we adopt a hybrid compression strategy that combines low-
rank constraints with structured parameter sharing. Essentially, this
approach compresses and simplifies the weight matrix through para-
meter sharing and structured design, mapping the high-dimensional
weight matrix to a low-dimensional structured subspace. Specifically,
W-NN not only reduces the rank of the parameter matrix, but also
avoids overly complex network structures by identifying redundant
reuse in the form of repeated submatrix basis vectors. The detailed
analysis is presented in Section 3.

Different from structured pruning nodes (i.e., complete network
substructures of weight-activation-weight), the main goal of ¥-NN in
the parameter matrix extraction process is to identify parameter
relationships. To maximize the refinement of parameter relationships,
W-NN retains the sign features of parameters and refines the clustering
objects to the trainable parameter values between each pair of nodes.
On this basis, ¥-NN can transcend traditional sparse strategies that
merely merge repeated nodes, resulting in parameter matrices with
physical relevance.

Network reconstruction

The core objective of the network reconstruction stage is to enhance
the applicability capability of the network while preserving physical
relevance. By structurally reconstructing the extracted parameter
relationship matrix, ¥-NN yields a NN architecture that not only
incorporates physical constraints but also adapts to new problems.
Unlike approaches that rely solely on parameter pruning or zeroing, ¥-
NN reconstruction emphasizes not just parameter compression, but

more importantly, the preservation and explicit representation of
physical relationships among parameters. As a result, the recon-
structed network both reflects underlying physical laws and enables
structural transferability and applicability across different problems.

Specifically, we first evaluate the clustered parameter matrix and
sparsify redundant or insignificant parameters by zeroing them out,
thereby improving parameter efficiency. For the salient parameter
subsets (such as cluster centers), we perform reinitialization to restore
their trainability. Meanwhile, the structural relationship matrix R is
used to enforce consistency of numerical relationships and physical
constraints among nodes in the reconstructed network. This approach
ensures that the network retains sufficient degrees of freedom for
learning while preserving the extracted physical structure.

The relation matrix R encodes the structural relationships among
trainable parameters, with each row essentially derived from a trans-
formed one-hot vector. Specifically: (1) If two sets of parameters are
identical, the corresponding rows in R are the same, indicating para-
meter sharing; (2) If the parameters have equal magnitudes but
opposite signs, the corresponding row elements in R are -1, repre-
senting a sign-reversal relationship; (3) If there is a permutation rela-
tionship between parameters, the relevant rows in R are swapped
accordingly, reflecting parameter permutation. Thus, the elements of
R are typically -1, O, or 1, corresponding to inverse, unrelated, and
direct relationships, respectively. In this way, R systematically
expresses structural information such as parameter sharing, sign, and
arrangement, and is used during the structure reconstruction stage to
constrain the parameter representation of the new network, thereby
achieving structured embedding of physical information. A concrete
example of the formation and reconstruction process of the relation
matrix is provided in the Laplace case study.

This method preserves the iterative fitting capability of the new
network and embeds the physics structure into the neural network via
the relation matrix R, thus balancing physical consistency with model
expressiveness. In this way, ¥-NN'’s network reconstruction not only
achieves parameter compression and preservation of physical rela-
tionships but also significantly enhances the network’s applicability
and interpretability through a structured adaptive fusion mechanism.

Whole implementation

Through the complete process of distillation, structure extraction, and
network reconstruction, the ¥-NN method ultimately achieves the
intrinsic design of network structures with physical constraints. Pseudo-
code is provided in Supplementary Information to illustrate the entire
implementation process. The key steps are summarized as follows:

1. Distillation: In the distillation stage, the choice of teacher network
is not unique and depends on the characteristics of the problem.
When sufficient understanding of the physical problem exists and
a state-of-the-art (SOTA) model is available, selecting the SOTA
model is preferable, as its outputs more accurately reflect the true
physical scenario. This more precise reconstruction incorporates
richer physical information into the generated data, facilitating
the extraction of structures that are more physically relevant for
the student model. However, when the understanding of the
physical problem is limited or an SOTA model is not applicable,
more general networks such as PINN or PI-CNN (Physics-informed
Convolutional Neural Network®) can be used as the teacher
network. In this paper, PINNs are used as the teacher network.

2. Structure extraction: The extraction method not only preserves
the learned physical structure but also greatly simplifies the
network architecture. During extraction, due to the convergence
of structural parameters, the HAC clustering algorithm com-
presses parameter vectors into smaller cluster center vectors,
thereby transforming physical features into network parameter
matrices and ensuring the physical relevance of the network
framework.
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3. Network reconstruction: In the reconstruction process, ¥-NN
maximally retains the original parameter relationships while only
reinitializing the trainable parameters, resulting in a final network
structure that incorporates physical relevance. This approach
allows the W-NN structure to fully utilize trainable parameters,
enhancing parameter efficiency and enabling applicability across
a broader problem space.

Essentially, the &-NN method can be regarded as a specialized
form of regularization-integrating physical constraints directly into
the internal network structure to produce problem-specific archi-
tectures. ¥-NN offers several advantages: (A) intrinsic structural
features-by constraining the structure of the parameter matrix, the
model is guided to learn patterns consistent with specific physical
laws, ensuring that outputs naturally satisfy physical constraints; (B)
interpretability-the combination of submatrices reveals the under-
lying composition of input features, providing mathematical con-
sistency; and (C) parameter efficiency-parameter sharing reduces
model complexity and improves parameter utilization.

Data availability
The sample data used in this study are available in the Github database
under accession code https://github.com/ZitiLiu/Psi-NN.

Code availability

All code accompanying this manuscript is publicly available*¢.
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