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Reference-based chemical-genetic
interaction profiling to elucidate small
molecule mechanism of action in
Mycobacterium tuberculosis

A list of authors and their affiliations appears at the end of the paper

We previously reported an antibiotic discovery screening platform that iden-
tifies whole-cell active compounds with high sensitivity while simultaneously
providing mechanistic insight, necessary for hit prioritization. Named PRO-
SPECT, (PRimary screening Of Strains to Prioritize Expanded Chemistry and
Targets), this platform measures chemical-genetic interactions between small
molecules and pooledMycobacterium tuberculosismutants, each depleted of a
different essential protein. Here, we introduce Perturbagen CLass (PCL) ana-
lysis, a computational method that infers a compound’s mechanism-of-action
(MOA) by comparing its chemical-genetic interaction profile to those of a
curated reference set of 437 known molecules. In leave-one-out cross-valida-
tion, we correctly predict MOA with 70% sensitivity and 75% precision, and
achieve comparable results (69% sensitivity, 87% precision) with a test set of 75
antitubercular compounds with known MOA previously reported by Glax-
oSmithKline (GSK). From 98 additional GSK antitubercular compounds with
unknown MOA, we predict 60 to act via a reference MOA and functionally
validate 29 compounds predicted to target respiration. Finally, from a set of
~5,000 compounds from larger unbiased libraries, we identify a novel QcrB-
targeting scaffold that initially lacked wild-type activity, experimentally con-
firming this prediction while chemically optimizing this scaffold. PCL analysis
of PROSPECT data enables rapid MOA assignment and hit prioritization,
streamlining antimicrobial discovery.

For over half a century, standard chemotherapy for tuberculosis (TB)
has been a four drug, six-month regimen1. The cornerstones of this
regimen have been the RNA polymerase inhibitor rifampin (RIF) and
the cell-wall targeting prodrug isoniazid (INH). Resistance to these
drugs is on the rise, as well as increasing resistance to second-line
therapies used inmultidrug-resistant (MDR) cases. Recently, a few new
antitubercular drugs have been approved by the FDA, leading to the
introduction of a more effective regimen for the treatment of MDR-TB
that includes the ATP synthase inhibitor bedaquiline along with

pretomanid and linezolid2. Nevertheless, there continues to be a need
for novel drugs, particularly with new mechanisms of action to cir-
cumvent existing resistance mechanisms.

Many conventional antibiotic discovery efforts have historically
relied on biochemical assays to identify molecules against specific
targets of interest, but such compounds are typically inactive against
whole cells3. On the other hand, the alternative approach of whole-cell
screening for compounds that kill live cells is also challenging. One
issue is the limited sensitivity of such screens, as even potentially
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promising compounds often have very low potency before optimiza-
tion. The most significant limitation, however, is that molecules are
prioritized based on potency and chemical properties, devoid of any
biological insight that would enable prioritization based on mechan-
isms of action (MOAs) of known interest. In the case ofMycobacterium
tuberculosis (Mtb), identified small molecule candidates have thus
been biased towards a small number of MOAs4,5, despite the fact that
Mtb has approximately 600 essential genes6,7 representing a large
diversity of biological processes. Without early MOA information, not
only are subsequent extensive chemistry campaigns more challenging
because of the lack of insight from structural target engagement, but
they also often result in frustration when much later target identifi-
cation reveals anMOAof little interest. Thus, early target elucidation to
inform candidate selection andprioritizationwouldbe transformative.

We have previously reported on a novel systems chemical biology
strategy for the identification of small molecule candidates with anti-
tubercular activity that solves three problems at once: (1) it is more
sensitive and generates 10-fold more hits compared to conventional
methods screening wild-type bacteria8, (2) it finds hits that target a
variety of protein targets, potentially any of the 600 Mtb essential
proteins, and, importantly, (3) it providesMOA insight for compounds,
allowing prioritization of hits before further costly development and
target validation8. This method, PROSPECT (PRimary screening Of
Strains to Prioritize Expanded Chemistry and Targets), couples small
molecule discovery to MOA information by screening each small
molecule against a pool of hypomorphicMtb strains, each engineered
to be proteolytically depleted of a different essential protein9. The
degree to which the growth of each hypomorph in the pool is affected
by a compound is measured using next-generation sequencing to
quantify the change in abundances of hypomorph-specific DNA bar-
codes. The impact of a particular chemical perturbation on a geneti-
cally engineered hypomorphic strain manifests as a chemical-genetic
interaction (CGI). The readout for each compound-dose condition (i.e.,
screened compound at a specific concentration) is thus a vector of the
responses of the collection of hypomorphs, i.e., a vector of CGIs, which
we call a CGI profile.

Not only does the potential hypersensitivity of hypomorphic
strains enable the discoveryof active smallmolecules thatwould elude
wild-type screening, but the identity of the hypomorphs that are sen-
sitive to a small molecule can also provide information about its MOA.
In principle, in a hypomorph where the level of some essential protein
is sufficiently low, any further reduction of the protein level, even a
small one, can lead to cell death. This suggests that a hypomorph for a
given essential gene would be specifically vulnerable to compounds
that target and inhibit the corresponding gene product directly, its
pathway, or adjacent pathways that interact with it10–15. We previously
demonstrated the ability of PROSPECT to identify scaffolds to new
targets with the discovery of a bactericidal pyrimidyl-cyclopropane-
carboxamide inhibitor of the essential EfpA transporter8, with the EfpA
hypomorphic strain uniquely sensitized. However, because of the
complex genetic interactions within a cell, it is rare to be able to
identify the target directly based only on a single, most sensitized
hypomorphic strain.

There are two ways to address the challenge of inferring theMOA
of compounds from their CGI profiles. In a reference-based approach,
the CGI profiles can serve as fingerprints of chemical perturbations
without the need to understand the biology encoded in specific strain
identities; inference about an unknown compound is based on the
similarity of a CGI profile to the CGI profiles of one or more reference
compounds whose target/MOA is already known. Alternatively, in a
more daunting reference-free manner, one can try to infer the MOA
based on the biology encoded in the entire CGI profiles of a com-
pound, incorporating in some way the interactions and relationships
between genes and pathways. While a reference-free approach is hin-
dered by limited understanding of all biological interactions within the

cell, a reference-based approach is constrained by the limited avail-
ability of known compounds with annotated MOAs. The significant
value of a reference-based approach nevertheless lies in its ability to
rapidly identify (1) new scaffolds for validated, valuable targets that
can circumvent existing resistance, (2) scaffolds that work by known
MOAsof low interest thereby enabling their earlydeprioritization, and,
by the process of elimination, (3) scaffolds that work by completely
novel MOAs that are not represented in the reference set.

Here we report a reference-based approach for MOA prediction,
termed Perturbagen CLass (PCL) analysis. We curated a reference set
of 437 compounds with published, annotated MOA and known or
possible anti-tubercular activity. We applied PROSPECT to obtain CGI
profiles of all compounds in this reference set in dose-response. The
reference set datawere used to develop and optimize PCL analysis, the
performance of which was evaluated using a leave-one-out analysis
(70% sensitivity, 75% precision). We then applied PROSPECT screening
in dose-response and PCL analysis to a collection of 173 compounds
previously reported by GlaxoSmithKline (GSK) to have potent anti-
tubercular activity16,17. The fraction of compounds within this collec-
tion whoseMOAs have been annotated since their original publication
served as a test set to further evaluate the performance of the PCL
method (69% sensitivity and 87% precision). Meanwhile, on the unan-
notated part of the GSK set, PCL analysis newly assigned putative
MOAs to 60 compounds from 10 MOA classes. Across the entire GSK
set, a remarkably large fraction (38%; 65 compounds) were high-
confidence PCL matches to known inhibitors of QcrB, a subunit of the
cytochrome bcc-aa3 complex involved in respiration, including both
well-validated scaffolds as well as structurally novel inhibitors. We
validated the predicted QcrB MOA of the majority of these by con-
firming their loss of activity against mutants carrying a qcrB allele
known to confer resistance to known QcrB inhibitors and their
increased activity against a mutant lacking cytochrome bd, hallmarks
of QcrB inhibitors18. Finally, we applied PROSPECT screening in dose-
response and PCL analysis to a set of over 5000 compounds we had
previously identifiedbasedonpotencyor strain specificity fromsingle-
dose, PROSPECT screens of unbiased chemical libraries that had not
been preselected for antitubercular activity. We followed up on one of
these compounds, a novel pyrazolopyrimidine scaffold with no sig-
nificantwild-type activity in the screen, butwith a high confidencePCL-
based prediction to target the cytochrome bcc-aa3 complex. We
confirmed that the QcrB subunit of the complex is indeed the target
and achieved potent wild-type activity through chemistry efforts.
Taken together, PCL analysis can predict MOA both for pre-identified,
potent antitubercular compounds as well as for molecules from
screening of unbiased libraries that result in the identification of can-
didates initially lacking wild-type activity—but that can be subse-
quently achieved through chemical synthesis. This approach
constitutes an efficient, high-throughput strategy for yielding new,
potent antitubercular compounds with annotated MOA.

Results
Curation of a reference set with annotated MOA
To learn how to best interpret the complex PROSPECT output data, we
extensively mined the published literature to assemble a reference set
of 437 compoundswith annotatedMOAs and knownor predicted anti-
tubercular activity (Fig. 1a, Supplementary Data 1). We included anti-
tubercular active molecules with MOAs with varying degrees of evi-
dence, from strongmechanistic validation to in silico protein docking.
This included established antitubercular compounds (e.g., isoniazid,
ethambutol, bedaquiline) as well as advanced (e.g., Q203 and SQ109)
and less-developed lead compounds (e.g., numerous MmpL3 and
DprE1 inhibitors, BRD4592 targeting TrpAB19, and benzofuran Pks13
inhibitors20). We also included well-characterized antimicrobials with
broad-spectrum activities including anti-tubercular activity (e.g.,
fluoroquinolones, macrolides, beta-lactams), and some with no or

Article https://doi.org/10.1038/s41467-025-64662-x

Nature Communications |         (2025) 16:9673 2

www.nature.com/naturecommunications


limited activity reported for wild-type Mtb. We also included com-
pounds that have biochemical evidence for an antibacterial target
without documentation of whole-cell, on-target activity in case activity
in hypomorphs might be observed (e.g., alloxydim and haloxyfop
herbicides putatively targeting AccD6)21,22. Finally, we included some
compounds that have MOAs validated in eukaryotic cells but are also
known or anticipated to have antimicrobial activity, particularly at
higher concentrations (e.g., camptothecin which targets human
topoisomerase I)23,24. In total, the reference set involved molecules
spanning 71 distinct MOAs, with the important caveats that molecules
with less well validated MOAs might be inaccurately or incompletely
annotated, or molecules with MOAs described in some species could
work by a different MOA in Mtb.

We performed several waves of PROSPECT screening as pre-
viously described in ref. 8 across a 10-point, 2-fold dilution series, with
each specific compound-dose referred to as a condition (Fig. 1b).
Briefly, each compound-dose condition is applied to a pool of hypo-
morphic Mtb strains, each uniquely barcoded and proteolytically
depleted of one essential protein. Strains are allowed to grow for
14 days, when barcode DNA is PCR amplified and sequenced and
barcode reads are counted to estimate occurrence of each strain in
response to compounds. Since the initial report describing PROSPECT
using pools of 100–150 barcoded, genetically engineered hypo-
morphs, we have expanded the screening pool sizes to include
between 389 and 459 hypomorphic strains per screen, representing
approximately 75% of the genes necessary for Mtb to grow in vitro6,7

(Fig. 1b, SupplementaryData 2). Additionally, seven uniquely barcoded
but otherwise unmodified H37Rv (wild-type) strains were included in
the pool as controls. After excluding strains that were not present in all
screening waves or that grew unreliably, we used 340 strains (333
hypomorphs and 7 wild-type controls) for downstream analysis (Sup-
plementary Note 2).

Growth rate metrics
Previously8 we quantified compound effect on strains using a log2-fold
change (L2FC) metric, based on the ratio of barcode counts corre-
sponding to each strain in a compound-dose condition to the counts
for that strain in the vehicle control (Supplementary Fig. 1a, Supple-
mentary Note 1). This corresponds to the condition-induced change in
the number of doublings of a strain during the 14-day assay period
(rifampin positive control estimates count at time zero). This
approach, however, presents a problem when comparing strains that
have different baseline (vehicle-control) growth rates25 as faster-
growing strains exhibit larger absolute change in the number of dou-
blings for the same relative effect (Supplementary Figs. 1d, 3a). Indeed,
the baseline growth rates of different hypomorphs spanned a range of
doubling rates, from 1.8 (RfbE) to 5.4 (Acn) doublings in 14 days, with
differences attributed to varying degrees of protein knockdown and
variable dependencies of growth on the level of each essential protein6

(Supplementary Fig. 2, Supplementary Data 2).
To address this problem, we implemented a metric of (dose-

dependent) compound-induced growth rate, GR, which measures
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Fig. 1 | PROSPECT screen on reference collection of compounds with known
antibacterial activity and annotated MOA. a Breakdown of the reference set,
which comprises 437 compounds from 71 annotatedmechanisms of action (MOAs)
that target 9 high-level processes. b Schematic of the PROSPECT (PRimary
screening Of Strains to Prioritize Expanded Chemistry and Targets) pipeline (Cre-
ated in BioRender. Lab, H. (2025) https://BioRender.com/oa7xnfj). Barcoded
hypomorph strains, depleted for one of Mtb’s essential proteins, are pooled,
incubated for 14 days in 384-well plates containing the compound library, and then
heat-killed and lysed. Barcodes are PCR amplified and amplicons sequenced to

yield barcode counts as a measure of strain census in each well. Compound-
induced Growth Rate (GR) for each strain in response to each condition is based on
the ratio of condition- and vehicle- numbers of doublings. Strain distributions are
then quantile normalized and robust z-scored across all conditions to calculate
standardized growth rate (sGR). c Example standardized growth rate (sGR)
chemical-genetic interaction (CGI) profiles across different concentrations of the
fluoroquinolone nadifloxacin for 7 wild-type (WT) H37Rv barcoded strains (black),
GyrA hypomorph (green), and 332 other hypomorphs in the pool (gray). Source
data are provided as a Source Data file.
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growth rate relative to vehicle control26. Unlike L2FC, which is the
difference in the number of doublings between condition and vehicle,
GR is a function of their ratio: GR=2

number of doublings in condition
number of doublings in vehicle � 1 (Supple-

mentaryNote 2). It therefore projects the effect of each condition onto
a scale from0 to 1, where 1 corresponds to uninhibited growth (vehicle
control) and 0 corresponds to 100% inhibition (rifampin control), to
normalize the dynamic range of strain growth rates (Supplementary
Fig. 1b). Of note, due to the stability of the DNA barcode used to
quantify census (i.e., barcodes from dead cells are also counted),
PROSPECT cannot differentiate bacteriostatic (GR =0) and bacter-
icidal effects (theoretical GR <0). By using the ratio of doubling
numbers, GR allows us to compare the effects of a compound-dose
condition on different hypomorphs irrespective of their baseline
growth rate (Supplementary Figs. 1e, 3b).

Further, to reveal themagnitude of the inhibitory effect of a given
compound-dose condition on a strain relative to the effect of all other
conditions on that strain across the entire dataset, we first quantile
normalized27 the distributions of GR scores across strains and then
standardized (z-scored) them for each strain across all conditions,
resulting in sGR (standardized GR, Fig. 1c, Supplementary Figs. 1c, f–g,
3c, d, Supplementary Note 3). The vector of sGRs for all strains in the

pool in response to a given condition (compound at a given con-
centration)makes up a chemical-genetic interaction (CGI) profile, used
in all subsequent analyses28.

PCL analysis: construction of PCLs
The basic premise behind a reference-based approach to MOA
assignment from PROSPECT data is that compounds that share a
common MOA generally elicit similar and specific patterns of strain
sensitization, as reflected in their CGI profiles8,29. This is illustrated in a
two-dimensional uniform manifold approximation and projection
(UMAP) of all CGI profiles in the reference set, where three exemplary
MOAs highlighted in color demonstrate expected MOA-specific
aggregation (Fig. 2a, Supplementary Note 3). A simple reference-
based strategy might assignMOA to a query compound by identifying
the reference CGI profile most highly correlated to any of the query
CGI profiles (i.e., 1-nearest neighbor). However, such a strategy fails to
acknowledge that not all compound-dose conditions have equally
informative CGI profiles, as seen by the scattering of someCGI profiles
of the highlighted MOAs (Fig. 2a). Specifically, there are extremely
active or completely inactive doses of reference compounds, wherein
no MOA-specific strain sensitization can be observed. To counter this,
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Fig. 2 | Perturbagen CLass (PCL) analysis for reference-based mechanism of
action (MOA) prediction. a Visualization using Uniform Manifold Approximation
and Projection (UMAP) of all reference set compound-dose chemical-genetic
interaction (CGI) profiles reveals MOA-based clustering of compound-dose con-
ditions. Three exemplary MOAs are highlighted: DprE1-DprE2 complex (purple),
HadABC (lightblue), andQcrB (green).Grey circles represent referenceCGI profiles
from all other MOAs. The UMAP representation of the data is shown here for
illustration purposes only; none of the steps in the PCL analysis method depend on
this representation. b Schematic of the results of spectral clustering of each MOA
category. Circles represent CGI profiles from two MOAs, X (blue) and Y (orange),
each yielding two clusters (connected circles) and some singleton CGI profiles.
c (left) Schematic of a high-confidence prediction region (light blue shaded circle).
The blue circles all share an MOA X, which is different from any MOA represented

by the light gray circles. The blue circles connected by lines mark the cluster for
which the high-confidence region is drawn. The radius of the high-confidence
region for a cluster is defined as the largest distance (lowest similarity) between a
CGI profile and the cluster such that all profiles contained within that radius belong
to the same MOA X. Clusters for which such a high-confidence region exists are
called Perturbagen CLass (PCL) clusters. Similarity score between a given CGI
profile and a cluster is defined as the median of the correlations between the CGI
profile and all the cluster profiles. (right) Schematic example of a non-predictive
cluster to which the most similar CGI profile is out-of-MOA. Such clusters are
considered not reliable for MOA prediction and are discarded. d Performance
statistics of PCL analysis method for MOA prediction on 337 active reference
compounds in leave-one-out cross-validation (LOOCV). Sourcedata areprovided as
a Source Data file.
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our method, PCL analysis, relies on corroboration: MOA inference is
made based on similarity of a query CGI profile to groups of at least
two similar CGI profiles of the same MOA.

To systematically identify all such groups, we applied spectral
clustering30–32 to the CGI profiles in each of the 71 MOA categories in
the reference set (Fig. 2b). Here similarity of profiles was definedby the
Pearson correlation between them (Supplementary Fig. 4, Supple-
mentary Note 7). Often, CGI profiles generated from compounds with
the same MOA fall into several clusters, separating, for example, dif-
ferent levels of compound activity (Supplementary Fig. 4b). Further-
more, some of the conditions do not cluster with any other condition -
they form singletons. We consider their CGI profiles to be less reliable
since they are not corroborated by any other compound-dose condi-
tion. Indeed, such singletons are often conditions that are either
inactive or that fully inhibit the entire pool (Supplementary Fig. 5,
SupplementaryNote 4). For this reason, in the next stepweconsidered
only clusters containing at least two CGI profiles.

Using spectral clustering, we generated 1947 clusters of two or
more CGI profiles that are similar to one another and are associated
with a particular MOA. Our reference-based approach aims to infer the
MOA of an unknown compound by examining its CGI profiles (at dif-
ferent doses) andmapping it to itsmost similar cluster. To that end, we
defined the similarity scorebetween a givenCGI profile and a cluster to
be the median of the correlations between the CGI profile and all the
profiles within the cluster (Supplementary Note 8). It is intuitively
convenient to think about similarity in terms of distance, such that
profiles that are more similar to one another are closer. Using that
language, we asked what is the radius of the largest MOA-pure region
around a cluster, i.e., which contains only CGI profiles from the clus-
ter’s MOA. We then defined the corresponding similarity score to be
the high-confidence threshold for that cluster (Fig. 2c left, Supple-
mentary Note 9), wherein if a CGI profile in question is at least as
similar to a cluster as that threshold, theMOAof the cluster is assigned
with high-confidence (Fig. 2c left). For 807 of the clusters, the closest
CGI profile was from a different MOA, and therefore these clusters
could not be assigned a high confidence (MOA-pure) region and were
discarded (Fig. 2c right). Similarly to singletons, we found that these
non-predictive clusters were typically composed of inactive doses or
doses that kill the entire pool and did not use them for further analysis
(Supplementary Fig. 5). After discarding the non-predictive clusters,
1140 clusters remained to which we could assign a non-zero high-
confidence threshold. We named these Perturbagen CLass (PCL)
clusters following Subramanian et al.33. These 1140 PCLs represented
68 MOAs out of the initial 71 MOAs in the reference set, and the
number of CGI profiles in each PCL varied from2 to 51 with amedian of
3.5 (Supplementary Fig. 6, Supplementary Data 3).

PCL analysis: MOA prediction and cross validation
Having constructed PCL clusters, we then sought to predict MOAs for
unknown compounds based on PCLs. We assigned a high-confidence
MOA prediction to a compound if one of its doses had a similarity
score to one of the PCLs which was above the high-confidence
threshold. The MOA of compounds with only below-confidence-
threshold predictions were labeled uncertain. We further defined PCL
confidence scores to estimate how likely it is that a test compound
shares anMOAwith a given PCL. PCL confidence score is defined as the
fraction of in-MOA compounds among all the reference compounds
that were at least as similar to the PCL as the test compound, with
scores ranging between 0 and 1 and a confidence score of 1 corre-
sponding to a high-confidence MOA assignment (Supplementary
Figs. 7, 8, 9, Supplementary Notes 9, 10, 11).

To estimate the performance of this MOA-prediction method, we
applied a leave-one-out cross-validation (LOOCV)34 approach, with-
holding each of the reference compounds individually when forming
PCLs and from the process of defining the confidence regions, and

then predicting the MOA of the withheld compound (Supplementary
Note 12). We then assessed the accuracy of the predictions. We
excluded from this analysis: (1) 19MOAs that were only represented by
one compound as these cannot be validated in any cross-validation
scheme, and (2) compounds with little to no activity as their CGI
profiles lack informative data for meaningful MOA predictions. We
thereforeperformed LOOCVanalysis on the 337 reference compounds
that were active (defined as at least one strain having GR ≤0.3 at the
highest tested dose) (Supplementary Note 6). Out of these 337 refer-
ence compounds, we assigned the correct MOA in LOOCV to 235
compounds, an incorrect MOA to 77 compounds, and 25 compounds
were uncertain (sensitivity = 70%, precision = 75%, F1 score = 0.72,
Fig. 2d, Supplementary Table 1, Supplementary Data 4). On the other
hand, for the reference compounds that were inactive, as expected,
MOA prediction performance was poorer (sensitivity = 34%, precision
= 26%, F1 score = 0.29, Supplementary Table 1, Supplementary Data 4,
Supplementary Fig. 10).

Of note, without the corroboration provided by spectral cluster-
ing of multiple reference CGI profiles into PCLs, applying the afore-
mentioned 1-nearest neighbor approach to the 337 active reference
compounds could only assign the correct MOA in LOOCV to 215
compounds and an incorrect MOA to 122 compounds (sensitivity =
64%, precision = 64%, F1 score = 0.64, Supplementary Table 1, Sup-
plementary Note 12). Furthermore, in the absence of clustering of
MOAs to PCLs as a critical step, i.e., naively grouping all CGI profiles
from eachMOA into one large PCL cluster, MOAprediction performed
significantly worse over the active reference compounds due to
median similarity scores being diluted by inactive compound-dose
conditions (sensitivity = 11%, precision = 69%, F1 score = 0.19, Sup-
plementary Table 1, Supplementary Note 12).

PCL analysis on annotated GSK compounds
We applied PROSPECT screening in a 10-point dose-response and then
PCL analysis to a collectionof 173 antitubercular compounds, provided
by GlaxoSmithKline (GSK), comprising of whole-cell active, non-
cytotoxic compounds identified in two previously published
screens16,17 (Supplementary Data 5). 35–42 Of note, the blinded set of 173
compounds provided by GSK included 8 compounds that overlapped
with our reference collection. These included anMmpL3 inhibitor43, an
MmpL3/EchA6 inhibitor44,45, 4 PanK and PyrG inhibitors36,37, a DHPS
inhibitor sulfaphenazole46, and a DHFR inhibitor40,47. Since the public
releases of these compound sets, they have been characterized by a
variety of methods both at the level of individual scaffolds as well as in
large scale analyses, including metabolomic profiling35, biochemical
assays36,37, screening of overexpression strains38,39, chemogenomic
predictions40, or in infectionmodels41,42, resulting in the publication of
MOAs (with varying degrees of support) for 75 of the 173 GSK com-
pounds. We used these 75 annotated compounds as a held-out test set
to further benchmark PCL analysis performance (Fig. 3a, Supplemen-
tary Data 5).

We made high-confidence predictions for 60 (80%) of these 75
characterized compounds, assigning an MOA consistent with the
publishedMOA for 52 of them (69% sensitivity, 87% precision) (Fig. 3a,
b). Among the compounds correctly assigned were published folate
inhibitors including several diaminotriazines47 and a sulfaphenazole.
We also correctly identified agyrase inhibitor48, DprE1 inhibitor38, and a
known thiazole pyridine PyrG/PanK inhibitor. Importantly, although
the folate and PyrG/PanK inhibitors are structurally related to com-
pounds in the reference set, these MOA predictions were made blin-
ded to chemical structure.

MmpL3, a mycolic acid transporter, is the target of several
recently reported inhibitors with a broad range of pharmacophores49.
These inhibitors possess properties that appear to vary based on the
scaffold, including the ability to kill non-replicating Mtb and dissipate
the proton motive force39,49,50, and some have been shown to have

Article https://doi.org/10.1038/s41467-025-64662-x

Nature Communications |         (2025) 16:9673 5

www.nature.com/naturecommunications


secondary targets45,51–53. We made high-confidence predictions for 7 of
11 published MmpL3 inhibitors, but correctly identified only 3; inter-
estingly, 3 of the 4 incorrect calls were high-confidence predictions to
a different cell-wall MOA, alanine racemase (Alr) inhibition, which

might suggest a genetic interaction between MmpL3 and Alr. Alter-
natively, many of the Alr-annotated inhibitors in the reference set were
annotated as such based on biochemical evidence54–56; in the context
of whole cells, these Alr reference compounds may have additional
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targetswhich couldpossibly includeMmpL354,56. Taken together, these
discordant calls illuminate potential challenges in assigning cell wall
MOAs, underscoring the interdependence of cell-wall synthetic pro-
cesses. Alternatively,misannotation of compounds in the reference set
could likewise lead to discordance. Thus, the quality of the reference
set annotation can pose challenges particularly when annotations in
the reference set are weak at best, incorrect at worst.

QcrB has also been a frequently identified target of potent, non-
toxic molecules identified through whole-cell screening efforts. Thus,
perhaps unsurprisingly, 42 of the 75 now annotated and published
compounds have been validated as QcrB-targeting scaffolds (see
Supplementary Data 5), including imidazopyridines44,57–59,
quinolinyloxyacetamides60,61; piperazines62; triazolopyrimidines63;
quinazolines64; and one phenoxyalkylbenzimidazole65. PROSPECT and
PCL analysis made accurate high-confidence QcrB predictions for 39
(93%) of these. Despite having only two of these six scaffolds in the
reference set, we were able to correctly assign MOA to compounds of
the remaining four chemical classes, thus demonstrating the power of
PCL analysis to accurately predict MOA directly from PROSPECT
screening data.

PCL analysis on unannotated GSK compounds
Even a decade after their initial publication, most of the GSK com-
pounds (the remaining 98 out of the 173) have not yet had a confident
MOA assignment in the published literature. Application of PCL ana-
lysis to these compounds thus has the potential to annotate the
unexplored target space of this important collection. PROSPECT
screening and PCL analysis resulted in high-confidence MOA calls for
60 (61%) of these 98 compounds (Fig. 3a, b). Compared to the pub-
lished, annotated compounds, the smaller fraction of high-confidence
predictions for these unannotated compounds (61% vs 80%) likely
reflects their potential enrichment for compounds with novel MOAs
that are not represented in the reference set. Thus, an important
corollary to PCL analysis is that the absence of high-confidence pre-
dictions can be used to identify molecules with potentially novel
activities.

Among the 60 new, high-confidence predictions made, 10 unique
MOAs were represented. Most of these new PCL-based MOA predic-
tions fall within three major processes: cell wall synthesis, DNA repli-
cation/nucleotide metabolism, and respiration (Fig. 3b,
Supplementary Fig. 11a). The cell-wall predictions included new,
putative, InhA inhibitor scaffolds, novel Alr inhibitors (with the afore-
mentioned caveat regarding the uncertainty of MOA annotation of Alr
reference compounds), along with a DprE1/DprE2 inhibitor and a GlgB
inhibitor. The DNA replication/nucleotide metabolism-related com-
pounds included thiazoles which are predicted to share a target with
the GSK set-derived reference thiazoles previously reported to
target PyrG and PanK. Additional compounds predicted to target
DNA replication/nucleotide metabolism include one PyrG/PanK tar-
geting sulfonamide, an isoquinoline gyrase inhibitor, and a TopA
inhibitor.

RespirationMOAs were themost frequently predicted among the
60 high-confidence predictions, with 33 structurally diverse com-
pounds predicted to target either QcrB (24) or displaying phenazine-
like activity (9). Inhibiting the critical processof respirationhasbeenof
growing interest66. Of note, the respiration inhibitors identified in this
analysis underscored the critical principle underlying PCL analysis:
MOA assignment is based on correlation with a canonical CGI profile
pattern and does not require the sensitization of the direct target of a
compound. In the case of QcrB inhibitors, the assignment is based on a
strong interaction between isoprenoid biosynthesis and sensitivity to
respiratory inhibition, with marked sensitization of strains hypo-
morphic for Dxr and IspD, two essential enzymes67 that execute the
first two committed steps in the isoprenoid biosynthetic pathway68

(Fig. 3c). Isoprenoids are required for the synthesis of menaquinone

and heme a69, two molecules critical to the electron transport chain
(ETC)70. In addition, the MenC hypomorph, also impaired in mena-
quinone synthesis71, is highly sensitized, alongwith EntC, which plays a
role in both menaquinone synthesis and iron acquisition. Enzymes in
heme synthesis (HemB and HemL) are also sensitized. Together, this
suggests that bottlenecks in the de novo synthesis of menaquinone
and heme, twocentralmolecules in the electron transport chain, result
in sensitization to QcrB inhibitors. Notably, hypomorphs depleted for
components of cytochrome bcc were not among the strains that dis-
played hypersensitivity to known QcrB inhibitors (Fig. 3c). In fact, the
QcrA and QcrB hypomorphs ranked among the 15% least sensitized
strains in a large PCL defined by known QcrB inhibitors. Interestingly,
however, these cytochrome bcc hypomorphs were highly sensitized to
disruptors of membrane potential or cAMP levels (Supplementary
Fig. 11b).

PCLs derived from phenazine-like molecules including clofa-
zimine (Fig. 3c) also showed sensitization of the Dxr and IspD
hypomorphs. The precise mechanism of action of clofazimine and
other phenazines has been debated; although interference with
NADH dehydrogenase activity has been reported72,73, phenazines
have been shown to retain activity in Mtb strains lacking Ndh-274.
The sensitivity of the Dxr and IspD hypomorphs in PROSPECT
suggests that interference with the reduction of menaquinone by
NDH is likely a critical feature of phenazine activity. Despite sharing
some important common features, the behavior of the rest of the
strains in the pool, in particular the MenC and EntC hypomorphs,
enable the successful separation of phenazines from QcrB inhibi-
tors using PCLs.

Experimental validation of PCL respiration predictions for
unannotated GSK set compounds
To obtain experimental validation of the PCL respiration predictions,
we measured MIC (minimum inhibitory concentration that inhibits
90% of bacterial growth) against two non-PROSPECT mutants com-
monly used to confirm QcrB inhibition (Fig. 3d, Supplementary
Fig. 11c)18. One mutant was a cydA loss of function mutant, which is
expected to show enhanced sensitivity to QcrB inhibitors due to the
ability of cytochrome oxidase (cydA) to compensate for QcrB
inhibition18. The second mutant carries a QcrB A317T allele that has
been shown to confer resistance to a broad range of QcrB inhibitors18.
Thus, hypersensitivity of the cydA mutant and resistance of the
qcrBA317T mutant to a compound would indicate QcrB as the target.
Activity in these two strains also served to differentiate QcrB inhibitors
from other respiration inhibitors, like phenazines such as clofazimine,
which show no such corresponding shift in activity against the two
mutants.

We tested 29 of the unannotated GSK compounds that PCL ana-
lysis newly predicted to target respiration against these twoQcrBMOA
identifyingmutants: 23 newly predicted QcrB-targetingmolecules and
6 newly predicted phenazine-like molecules. 83% (19/23) of the puta-
tiveQcrB inhibitors indeedexhibited shifts in sensitivity in the cydA::Tn
and qcrBA317Tmutants aswould be expected forQcrB inhibitors. Newly
identified QcrB inhibitors included two new scaffolds, napthalene
carboximides (NC; 2 compounds) and triazolothiadiazoles (TTDZ; 3
compounds) (Fig. 3e, f), along with 14 new structural singleton com-
pounds (Supplementary Fig. 11a). The validated singletons include
TCMDC-142962 (GSK1107112A), a compound previously shown to bind
and inhibit both EthR and InhA40, although neither of these activities
was sufficient to account for its whole-cell activity. PROSPECT and PCL
analysis thus correctly assigned the MOA of these 19 unannotated
compounds despite their lack of structural similarity to any of the
known QcrB inhibitors in the reference set (Supplementary Data 6,
Supplementary Note 13).We also tested Q203 and 32 of the previously
annotated GSK QcrB inhibitors that all showed the expected shifts in
MIC to the mutants (Supplementary Fig. 11c).
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Conversely, for the available compounds predicted to a
phenazine-like PCL, neither mutant showed >2X MIC shift relative to
H37Rv (Fig. 3d), as is observed with clofazimine (Supplementary
Fig. 11c), consistent with the PCL-analysis predictions. Overall, the
phenazine-like predicted compounds included 2 structural groups,
diphenylamines (DPA) and 2-anilopyridines (2-AP) (Fig. 3g, h) and
3 singletons (Supplementary Fig. 11a, Supplementary Data 5).

Prioritization and validation of a novel QcrB inhibitor from
primary PROSPECT screening data
We had previously performed primary, single-dose (50 µM) PRO-
SPECT screens of ~104,000 total compounds from unbiased che-
mical libraries, i.e., collections that had not been preselected for
anti-tubercular activity8. We selected 5146 compounds based on
potency and/or evidence of strain specificity in their CGI profiles.
Many of the selected compounds were without initial wild-type
H37Rv activity. We then performed PROSPECT in 10-point dose
response on this set, as described above for the reference set, and
applied PCL analysis to predict MOA. To demonstrate the utility of
our method for prioritizing molecules of interest with no wild-type
activity, we picked a wild-type-inactive compound from this set that
had a high-confidence MOA prediction to QcrB, BRD4310, a pyr-
azolo[3,4-d]pyrimidine (Fig. 4a). The CGI profiles of BRD4310 mat-
ched with high confidence to 3 QcrB PCLs at 3 different doses
(Supplementary Fig. 12a). We thus chose this compound for a
detailed validation of our PCL-derived QcrB prediction from
screening of unbiased chemical libraries.

The dose-response PROSPECT data for BRD4310 showed
minimal wild-type activity at concentrations below 50 µM (Fig. 4b).
However, medicinal chemistry efforts generated an analogue,
BRD4310a, with a low MIC value (5.7 μM) against wild-type Mtb
strain H37Rv (Fig. 4a, Supplementary Note 14). BRD4310a demon-
strated activity against M. bovis bacille Calmette–Guerin (BCG), and
M. marinum, but not M. smegmatis, M. fortuitum, or M.abscessus or
gram-positive Staphylococcus aureus and Enterococcus faecalis or
gram-negative Klebsiella pneumoniae, Escherichia coli, and Pseudo-
monas aeruginosa (Supplementary Fig. 12b). BRD4310a was bac-
teriostatic in H37Rv (Supplementary Fig. 12c) with an MBC90

(minimum bactericidal concentration) 16-fold higher than the MIC,
consistent with QcrB inhibition. Similarly, BRD4310a had an 8-fold
lower MIC against the cydA transposon insertion mutant relative to
wild-type H37Rv, again consistent with cytochrome bcc-aa3 inhibi-
tion (Fig. 4c).

We confirmed that QcrB is indeed the target of BRD4310a using
genetic and functional studies. We generated spontaneous resistant
mutants to BRD4310a (frequency of ~10−8). Whole-genome sequencing
(WGS) of four independent clones revealed missense mutations in the
qcrB gene (Fig. 4d). Specifically, resistant mutant (RM) 1 and 2 har-
bored Y161C and M310T mutations, respectively, yielding a 4-fold and
8-fold increase in MIC, compared to the parental strain. RM3 and RM4
had mutations resulting in an A317T amino acid change often descri-
bed to confer QcrB inhibitor resistance. RM4 had an additional L176P
change which has also been found to confer resistance to the QcrB
inhibitor Q203, resulting in a significantMIC shift ( >12-fold) compared
to the wild-type parent75. Indeed, all BRD4310a-resistant strains
showed various levels of cross-resistance to Q203 (Supplementary
Fig. 12d). Expression profiling of Mtb exposed to BRD4310a also con-
firmed a gene expression pattern similar to Q203 exposure (Fig. 4e,
Supplementary Fig. 12e) with upregulation of the cydoperon (log2-fold
change [log2FC] ≥2, adjusted P-value [Padj] of ≤0.05), indicating com-
pensation by cytochrome bd of the electron transport chain. Finally,
we confirmed that BRD4310a indeed triggered rapid intracellular ATP
reduction, similar to the effect of exposure to Q203, as expected for a
QcrB inhibitor (Fig. 4f). Taken together, the microbiological, genetic
and functional data confirmed the identification using PCL analysis of a

novel pyrazolo[3,4-d]pyrimidine scaffold targeting QcrB directly from
PROSPECT screening of an unbiased library, initially without potent
wild-type activity but subsequently achieved by chemical
optimization.

Discussion
PROSPECT is a systems chemical biology strategy that expands the
target space and chemical diversity of antimicrobial discovery by
substituting a single wild-type strain with a pool of genetically engi-
neered hypomorphs in high-throughput whole-cell screening. Here we
present PCL analysis, a method for MOA inference directly from pri-
mary PROSPECT screening data. Being reference-based, this method
enables the identification of MOA for compounds that act at estab-
lished targets or pathways while highlighting compounds with novel
MOAs because their CGI profiles deviate from all patterns within the
reference set. We assembled a reference set of compounds with
known, annotated MOA. Within each MOA in the reference set, we
identified PCLs, namely groups of similar CGI profiles, to which we
compared CGI profiles of unknown compounds to predict their MOA.
When we applied PCL analysis to this reference set in a leave-one-out
cross-validation setting, we estimated the sensitivity and precision of
PCL analysis predictions to be 70%, and 75%, respectively. When
applied to an external test set of published, annotated GSK com-
pounds, the sensitivity and precision were 69% and 87%, respectively.
We also made high-confidence MOA predictions for 61% of the
remaining high value, potent and non-toxic GSK compounds that were
previously unannotated compounds and experimentally confirmed
with 83% accuracy a large subset of predicted QcrB inhibitors. Finally,
we also described one compound, BRD4310, that was identified from
PROSPECT screening of an unbiased library (i.e., not biased for anti-
tubercular activity) which was inactive against wild-type Mtb but was
identified because of the greater sensitivity of PROSPECT over wild-
type screening. As PCL analysis predicted the scaffold to target QcrB,
we demonstrated the ability to chemically optimize the scaffold for
wild-type activity while biologically confirming the PCL prediction.
Taken together, this study is proof of concept for a high-throughput
strategy to yield new, potent antitubercular compounds with anno-
tated MOA that might otherwise elude discovery, with early MOA
prediction to guide hit prioritization.

As with any reference-based analysis35,76, PCL is limited by the
attributes of the reference set, including the breadth of mechanistic
diversity, the density of compounds representing any given MOA, and
the diversity of scaffolds sharing an MOA. In assembling the reference
set, we favored published compoundswith supporting biological data.
However, we also included some compounds with less confidentMOA
annotation, including some with computationally predicted MOAs, to
expand the breadth of MOAs and scaffolds represented, cognizant of
the varying degrees of confidence one can have for any given anno-
tation. Accordingly, the accuracy of PCL prediction was much greater
for the subset of our reference set (170 compounds) with strong
published evidence i.e., whole-cell mechanistic support and known
antitubercular activity (90% precision, 88% sensitivity in LOOCV) than
for the subset (73 compounds) where evidence for their MOA anno-
tation was limited to target-based enzymatic assay or computational
docking or mechanistic support only in other organisms with no
reported whole-cell antitubercular activity (33% precision, 27% sensi-
tivity) (Supplementary Table 4, Supplementary Data 4). Populating the
reference set with enough compounds within individual MOAs and
representatives of different MOAs is important for both positive
association — identifying a PCL similar enough to a test CGI profile to
define a confident prediction— but also for defining the boundaries of
confidence, since the denser the mechanism space, the better the
resolution and the more accurate the predictions. The ability of PRO-
SPECT and PCL analysis to predict MOA will only improve as the
reference set expands to include compounds with new MOAs, new
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scaffolds that work by existing MOAs, and improved annotation of
existing molecules.

Although the current screening pool covers most of the essential
gene space (i.e., potential targets) inMtb, it is not yet comprehensive.
Thus, some known targets (e.g., InhA) or potential novel targets may
not be represented by a corresponding hypomorph in the screening
pool. Also, even if present, the direct molecular target of a compound
is not always the most sensitized hypomorph due to factors including
variable target vulnerability6, variable levels of knockdown between
strains, or the existence of highly vulnerable nodes in pathways
upstream of the targeted process. Nevertheless, even in such cases,
PCL analysis can assign MOA to molecules based on high CGI profile
correlationwith theCGI profilepatterns of knowncompoundswith the
same target, rather than on individual strain behaviors. In fact, in some
cases, non-target sentinel strains can drive CGI profile correlations and
thus play central roles in identifying an MOA, rather than the actual
corresponding target hypomorph. For example, the sensitivity of the
Dxr and IspD hypomorphs to respiration inhibitors including QcrB
inhibitors likely reflects the importance of isoprenoids at multiple
steps in the electron transport chain, including a potentially compe-
titive interaction at QcrB.

We applied PROSPECT with PCL analysis both to evaluate com-
pounds with known potent wild-type antitubercular activity and to
screen an unbiased library to discover new scaffolds, either with or
without wild-type activity. In the first case, we evaluated compounds
that had emerged from two screening campaigns at GSK, which eval-
uated collectively 2.25 million compounds and resulted in the prior-
itization of 227 compounds based on potency and lack of
cytotoxicity16,17. Here, in a single screen and analysis of the 173 available
compounds, we made high-confidence MOA predictions for 120 of
them. Over a third of the compounds have had their MOAs published
with independent elucidation since their release a decade ago, and
these MOA assignments are largely concordant with our PCL
predictions (87%).

Meanwhile, PCL analysis made novel MOA predictions for 60
compounds that previously lacked annotation, covering 10 different
MOAs. These novel assignments revealed 19 new structurally diverse
QcrB inhibitors that we subsequently experimentally validated, 9
molecules that behaved similarly to respiration-linked phenazines, 2
new sulfonamide adducts predicted to target DHPS, 9 compounds
predicted to target DNA replication/nucleotide metabolism, and 16
predicted cell-wall active compounds. Of note, these PCL-based MOA
predictions were made blinded to chemical structure; the broad
structural diversity of the novel, validatedQcrB inhibitors underscores
the value of chemical-genetic interaction-based MOA prediction, as
these predictions would not have been possible based on chemical
similarity alone77. Indeed, as a naive baseline comparison to PROSPECT
and PCL analysis, if MOA was simply inferred post hoc based on
highest Tanimoto similarity to the reference set it would have only
correctly assigned 35 of the 75 annotated GSK compounds, 1 of the 19
newly predicted and validated QcrB inhibitors, and failed to predict
BRD4310 to inhibit QcrB (Supplementary Table 2, Supplementary
Data 6, Supplementary Note 13).

These new predictions for previously unannotated GSK com-
pounds now offer the opportunity to direct more focused study to
more definitively elucidate the MOAs of specific compounds and
perhaps pave the way for the development of these potent anti-
tubercular compounds. Despite their working by established MOAs,
these molecules are structurally distinct from the reference com-
pounds upon which their predictions are based (Fig. 3e-h, Supple-
mentary Fig. 11a, Supplementary Data 6), suggesting that in some
cases, they couldpotentially overcomeexisting antibiotic resistance to
reference inhibitors. Alternatively, PCL analysis can rapidly associate a
hit compound with an MOA that may be of less interest, enabling its
rapid de-prioritization and investment of effort elsewhere. Finally, an

important corollary is that PCL analysis also enables the recognition of
compounds that do not act like any of the compounds in the reference
set, and thus potentially work by novel mechanisms that may be of
significant interest.

Among the 173 GSK compounds that were available for testing,
PCL analysis predicted a remarkably high number of them to be QcrB
inhibitors (65; 38%). While an enrichment for QcrB inhibitors is not
altogether surprising given the number of different QcrB inhibitors
that have now been reported from both within and outside this set
(reviewed in ref. 78), this systematic analysis provides dramatic sup-
port for the anecdotal observationof thehigh rate of discoveryofQcrB
inhibitors emerging from whole-cell screening on a case-by-case basis
in the literature. The well-established approaches to MOA identifica-
tion for whole-cell active molecules targeting QcrB, including the
multiple QcrB mutant alleles conferring broad resistance to structu-
rally diverse inhibitors, could possibly contribute to a biased, unu-
sually high number of literature reports of new QcrB inhibitors, given
the confounding prerequisite of target elucidation typically required
for publication. This work however, unencumbered by this pre-
requisite, suggests a true enrichment of QcrB inhibitors among mod-
erate to highly potent whole-cell active compounds ( < 10 µM)with low
toxicity, the criteria for inclusion in the GSK published sets. While the
moderate chemical diversity of the analyzed 173 GSK compoundsmay
also dampen the dramatic statistics— 112 compounds share significant
structural similarity to at least one other compound in the set,
resulting in 29 structural groups79 ranging in size from 2 to 16 (Sup-
plementary Data 5) with 61 structural singletons — the over-
representation of QcrB inhibitors (22 of these 91 chemotypes)
nevertheless holds. It should be noted that media conditions in the
original GSK screen and PROSPECT were somewhat favorable for the
discovery of compounds with this MOA, as neither assay included
glycerol as a carbon source, which has been shown to limit the activity
of QcrB inhibitors80.

It then remains an interesting question as to why there is such a
high prevalence and diversity of QcrB-inhibiting scaffolds discovered
with whole-cell activity, which may point to some fundamental che-
mical biological principles of the vulnerability and druggability of
protein targets. The case studyofwhole-cell screening for antibacterial
activity in a bacterium with potentially 600 possible essential targets
and the apparent bias for a small number of specific targets (e.g., QcrB,
MmpL3, DprE1) calls for understanding the vulnerability of these tar-
gets as thebasis for this bias. In the caseofQcrB, the underlying basis is
made even more intriguing by the cross-resistance to numerous,
structurally diverse compounds conferred by the same, small handful
of resistance mutations. At an even higher level, that this systematic
study predicts with high confidence that 69% of the 173 analyzed
molecules work by known MOAs (i.e., there are pre-existing, known
molecules that work by the same MOA) reinforces the need to
understand this repeated, preferential discovery of inhibitors of the
same targets and pathways over others, particularly in the context of
the desire to find inhibitors with novel MOAs.

Finally, by applying PCL analysis directly to PROSPECT screening
data of an unbiased library, we identified a new pyrazolo[3,4-d]pyr-
imidine scaffoldworking by an establishedMOA (QcrB inhibition). The
initial molecule had limited wild-type activity at the screening con-
centration of 50 µM but clear, discernible activity against the Dxr and
IspD hypomorphs, even at sub-micromolar concentrations, thereby
enabling not only the identification of an active molecule that would
have eluded discovery by conventional wild-type screening, but also
early, direct assignment of a putative MOA that can be integrated into
hit prioritization. In contrast, conventional whole-cell screening stra-
tegies frequently assignMOA late, often only after extensive chemistry
efforts to synthesize even more potent molecules have been invested
to enable target identification. Inmany cases, this effort has resulted in
disappointment when the target is eventually revealed to be of low
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interest, or the target is never identified. Here, we advanced the
potency of this scaffold to achieve low micromolar wild-type activity
while confirming the predicted PCL target, thus showing again that the
greater sensitivity of PROSPECT for compound activity can sig-
nificantly expand the active chemical space to yield new lead anti-
tubercular compounds that would not have been discovered by any
conventional strategy, with accurate early MOA prediction.

By providing insight into MOAs directly from primary screening
data, PROSPECT with PCL analysis is poised to fundamentally change
antibiotic discovery by enabling the early integration of biological
insight with varying degrees of resolution, ranging from actual target
prediction to simply recognizing the novelty of its MOA, with the tra-
ditionalmetrics used to prioritize candidates emerging from screening
campaigns, such as potency and chemical features. Even while better
computational methods are needed to address the challenge of MOA
predictions in the case of molecules with completely novel mechan-
isms in a reference-free manner, PROSPECT with PCL analysis can
nevertheless rapidly identify new scaffolds with known MOAs and
address the problem of rising antibiotic resistance in the face of an
inadequate antimicrobial development pipeline.

Methods
Bacterial strains and culture conditions
Mtb H37Rv and derivative strains were cultured in Middlebrook 7H9
liquidmediumsupplementedwith 10%oleic albumindextrose catalase
(OADC), 10mM sodium acetate and 0.05% Tween 80. Anhydrote-
tracycline (500 ng/ml), hygromycin (50 µg/mL), and/or streptomycin
(20 µg/mL) were used when required. For solid medium, Middlebrook
7H10 agar medium supplemented with OADC and 0.5% glycerol was
used. The hypomorph strains were generated using a protein degra-
dation system that has been reported9. The cydA::Tn was isolated from
an arrayed PhiMycoMar-generated transposon library; the MycoMar
transposon is inserted at the TA following codon G12 in cydA. For
Supplementary Fig. 12, the following strains were used: M. bovis
bacillus Calmette–Guérin Pasteur,M. marinum strain M,M. smegmatis
mc2155,M. abscessus ATCC 19977,M. fortuitum ATCC 6841, Escherichia
coli MG1655, Pseudomonas aeruginosa (PAO1), Staphylococcus aureus
Newman, Klebsiella pneumoniae ST258 and Enterococcus faecalis
RB02781.

PROSPECT screening of compound libraries
PROSPECT screening8 is a 14-day outgrowth assay in 384-well plates,
using Middlebrook 7H9 supplemented as described above, with dex-
trose and acetate serving as primary carbon sources. Prior to the
screening, each of the hypomorphic strains is grown independently to
mid-log phase in anhydrotetracycline (ATc) so that SspB is repressed9.
On the day of screening, the cultures are washed and resuspended in
an ATc-free medium to induce the hypomorphic phenotype and
combined at an overall A600 of 0.0075 prior to transfer into assay
plates. On every assay plate, columns 2 and 23 contained alternating
DMSO (vehicle control) and 256nM or 498 nM rifampin (positive
control), whereas rows A, B, O, and P and columns 1 and 24 were left
empty. Assay plates were cultured for 14 days at 37 °C. Assay plates
were heat-killed at 80 °C for 2 h, the bacteria lysed, and the barcodes
were amplified for Illumina sequencing. PCR libraries were combined,
SPRI purified, and sequenced at the Broad Institute Genomics Platform
using Illumina HiSeq 2500 at an average sequencing depth of at least
500 reads per strain per well.

The primary, single-dose screen that initially identified BRD4310
used a pool of 155 strains, including a single barcoded H37Rv control.
Screening of the reference set, the blinded GSK compounds, BRD4310
in dose-response, and the rest of our compound libraries occurred
over six separate waves of screening using larger pools of 396 up to
466 strains including 7 barcoded variants of wild-type H37Rv. Two
spiked-in barcodes were included that serve as controls. One spike-in

(tag-8090, i.e., Lysis-control)was includedduring the cell lysis step at a
concentration of 0.172 pg/mL in the 20% (v/v) aqueous DMSO that was
added to eachwell prior to heating at 98 °C for 10min. The other spike-
in (tag-1180, i.e., PCR-control) was added at 0.354 pg/mL to the pre-
pared PCL Q5 Master Mix for inclusion at the PCR step.

Data processing and analysis of PROSPECT data
Following next-generation sequencing, strain barcode counts were
deconvoluted from raw FASTQ files using the ConCensusMap script8.
To correct for technical variability arising from PCR primers and bat-
ches, counts were log2-normalized based on themedian abundance of
spike-in control barcodes. Log2-fold change (L2FC) for each strain
relative to vehicle controls was then calculated using the Con-
censusGLM package in R. Growth rate (GR) scores were calculated
from L2FC values by normalizing to onboard positive (rifampin) and
negative (vehicle) controls, as adapted fromHafner et al.26. Tomitigate
PCR jackpotting effects, GR values > 5 were scaled down using log10-
scaling. Strains that exhibited slow growth (L2FC in rifampin > −1),
unreliable growth (GR > 20), or that were not present in all screening
waves were filtered, yielding 340 strains for downstream analysis. To
enable comparison across all strains and conditions, GR values were
standardized by first performing quantile normalization and then
calculating a robust z-score to generate the standardized growth rate
(sGR) using the CmapM MATLAB package (https://github.com/cmap/
cmapM26,27,33,82). The resulting sGR profiles were used for all further
analyses. To visualize the relationships between conditions, the
reference set sGR profiles were embedded in two dimensions using
UMAP implementation in the R package UMAP, based on the Pearson
distance between conditions. Full methodological and theoretical
details are provided in Supplementary Notes 1–5.

Reference set assembly
The reference compound set was assembled based on published
reports (Supplementary Data 1). Literature evidence for com-
pounds’ mechanisms of action was reviewed in PubChem83, CAS
SciFinder84, and DrugBank85 and updated up to the point of PCL
analysis tomaintain themost accurate and up-to-date reference set.
Due to limited commercial availability, analogs of the exact mole-
cules shown and discussed in some publications were instead
acquired and used as reference. MOA was annotated as specifically
as possible to target protein where published evidence existed for
specific inhibition and in other cases to multi-subunit protein
complex (e.g., 50S ribosomal subunit, 30S ribosomal subunit) and
biochemical pathway in TB (e.g., purine metabolism and pyrimidine
metabolism for nucleoside analogs with multiple proposed
enzymes that they can competitively inhibit). The reference set
included some compounds with published activity against more
than one protein which were included in more than one annotated
MOA reference group in the PCL analysis. Strength of evidence for a
particular MOA differed between compounds from protein targets
validated via co-crystal structures, strains with mutations in the
target protein conferring resistance, enzymatic inhibition in bio-
chemical assays, computational docking, and target evidence so far
only in other bacteria or eukaryotic cells which could reasonably
limit our ability to predict some annotated MOAs in this assay.

Screening compounds
Compounds from the reference set were tested in PROSPECT in
duplicate in a 10-point series of concentrations ranging from0.1 µM to
50 µM with 2-fold dilution. When required, highly potent compounds
had their dose series adjusted based on their MIC. Compounds kindly
provided by GSK were first tested in dose response in a 7-day out-
growth assay using an H37Rv strain constitutively expressing GFP86.
Based on these data, compounds were screened in PROSPECT across
an 8-point two-fold dilution series (in duplicate) tailored to start at 2X
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the observed MIC for each compound. For compounds that did not
show clear wild-type activity under our conditions, the dilution series
started at a maximum concentration of 50 µM. BRD4310 was screened
in duplicate in an 8-point two-fold dilution series with the maximum
concentration of 50 µM.

Clustering of sGR profiles and PCL similarity scoring
Briefly, to cluster sGR profiles and define predictive similarity scores
(see SupplementaryNotes 7–8 for full details), we first applied spectral
clustering in MATLAB (https://www.mathworks.com/help/stats/
spectralcluster.html31,32,87,88) to the standardized growth rate (sGR)
profiles within each MOA category. A nearest-neighbor graph was
constructed for each MOA based on Pearson correlation, and the
number of clusters, k, was automatically estimated using an eigengap
heuristic on the graph Laplacian. The spectralcluster functionwas then
used to partition the graph into k clusters.We defined and calculated a
PCL similarity score between each test CGI profile and each cluster
from unsupervised, spectral clustering as the median of the Pearson
correlation coefficients between the test CGI profile and all reference
set CGI profiles within the cluster. Clusters whose highest similarity
scoring, reference set CGI profile shared the same annotated MOA as
the cluster members (i.e., one of the cluster CGI profiles themselves or
a CGI profile from a compound in the same MOA but from a different
cluster) were kept for use in making MOA predictions and defined
as PCLs.

MOA prediction using PCLs and validation
We approachedMOAprediction as amulti-class classification problem
using a one-vs-rest (OvR) strategy. To predict the MOA of unknown
compounds, we trained a one-vs-rest (OvR) classifier for each PCL
cluster, using reference compounds annotated with the same MOA as
positive examples and all others as negatives. Each classifier mapped a
reference compound dose profile’s similarity score to the PCL to a
confidence score representing the positive predictive value (PPV) of
MOA assignment at that threshold using the perfcurve function in
Matlab (https://www.mathworks.com/help/stats/perfcurve.html89–91).
For unknown compounds, CGI profile similarity scores were used to
linearly interpolate and estimate PCL confidence scores from the
reference set mappings. MOAs were predicted based on the highest-
confidence PCL across all profiles, using a majority-rules vote across
doses to break ties. High-confidence predictions (PCL confidence
score = 1) were distinguished from lower-confidence or uncertain calls.
The performance and robustness of this entire framework were rig-
orously evaluated using leave-one-out cross-validation (LOOCV),
where each reference compound was excluded in turn and MOA pre-
dicted using PCL clusters and their classifiers trained only on the
remainder.MOApredictionswere compared against each compound’s
annotatedMOA to calculate micro-averaged precision, sensitivity, and
F1 score. We further benchmarked our approach by comparing its
performance to simplermethods, suchas usingwholeMOAs insteadof
clusters from spectral clustering, applying a single ROC-derived simi-
larity threshold for all PCLs, or using a 1-nearest-neighbor classifier.
Full methodological and theoretical details are provided in Supple-
mentary Notes 9–12.

Selection and sequencing of resistant mutants
The generation of BRD4310a-resistant mutants was adapted from a
previously established method19. Briefly, the log-phase H37Rv cultures
were plated onto 7H10 agar plates containing 2×, 4×, and 8× MIC.
Approximately 108 CFU of Mtb was spread per plate. After 6 weeks of
incubation at 37 °C, the colonies were picked and grown in 7H9 med-
ium containing 2xMIC of BRD4310a. The cultures were retested inMIC
assay to confirm the resistance. Genomic DNA of the BRD4310a-
resistant mutants was isolated. Paired-end libraries were prepared
using Illumina Nextera XT DNA library preparation kit and sequenced

on Illumina HiSeq platform. Sequencing reads were mapped to the
AL123456 reference genome and single nucleotide polymorphisms
(SNPs) were called using Pilon92. Only SNPs unique to the resistant
strains and absent from the parent strains are reported. Themutations
identified in qcrB by whole-genome sequencing were subsequently
confirmed by Sanger sequencing.

Determination of minimum inhibitory concentration (MIC) and
minimum bactericidal concentration (MBC90)
Bacteria were grown to mid-log phase, then 100 µL of mycobacteria
culture diluted to OD600 0.0025 was dispensed into each well on 96-
well flat-bottom plates containing an 8-point, two-fold dilution series
of compound,with concentrations tailored to the knownactivity of the
compound, delivered to assay plates in a constant 1 µL volume of
DMSO. The assayplateswere incubated for 7-day at 37 °C. The effect of
the compound-dose condition on the bacteria was assessed byOD600
using a Spectramax M5 plate reader. MIC values were defined as the
drug concentration that inhibited 90% of bacterial growth relative to
control wells. MICwas assessed by fitting a 4-parameter curve to dose-
response data after normalization to on-plate controls (DMSO = no
inhibition, 100 nM rifampin = 100% inhibition, n = 6 per plate for each
control). All compound dilution series were assayed on two replicate
plates, and dose-response curves were fitted to the normalized repli-
cate data points. In testing against qcrBA317T and cydA::Tn mutants,
apparent MICs were occasionally outside of the range of concentra-
tions tested; because available compound volumes were limited, in
these cases, the log2-fold change shown in Fig. 4 represents a mini-
mum estimate, using the maximal concentration tested as the MIC for
the calculation of the MIC shift for the qcrBA317T mutant or the mini-
mum concentration tested for the cydA::Tnmutant. For determination
of bactericidal activity, aliquots of similarly cultured bacteria were
plated onto 7H10 agar plates to determine colony-forming units (CFU)
at the time points indicated, and colonies were counted after 3 weeks
of growth.

RNA isolation
H37Rv cultures were grown to an OD600 of 0.4. Compounds were
added as indicated: 20 nMQ203and25μMBRD4310a.DMSOwasused
as a vehicle control. Culture samples were harvested in triplicate at the
appropriate time points. 2ml of culture were pelleted, and the
supernatant was decanted. The cell pellet was resuspended in 0.5mL
of TRIzol (Invitrogen) and stored at −80 °C overnight. RNA was pur-
ified using Direct-zol RNA Kits (Zymo research) and quantified with
Nanodrop spectrophotometer (ThermoFisher).

RNAseq experiment
Illumina cDNA libraries were generated using amodified version of the
RNAtag-seq protocol and sequenced on an Illumina NovaSeq
platform93. Sequencing reads from each sample in a pool were
demultiplexed based on their associated barcode sequence using
custom scripts (https://github.com/broadinstitute/split_merge_pl). Up
to 1 mismatch in the barcode was allowed provided it did not make
assignment of the read to a different barcode possible. Barcode
sequences were removed from the first read as were terminal G’s from
the second read that may have been added by SMARTScribe during
template switching. Reads were aligned to NC_000962 using Burrows-
Wheeler Alignment and read counts were assigned to genes and other
genomic features using custom scripts (https://github.com/
broadinstitute/BactRNASeqCount). Differential gene expression ana-
lysis of H37Rv was conducted with DESeq2 with compound condition
relative to time-matched vehicle controls.

ATP assay
Bacterial ATP was measured using the BacTiter-Glo Microbial cell via-
bility assay (Promega). Briefly, in 96-well plate varying concentrations
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of compounds were dispensed, then 100 µL of H37Rv culture was
added to each well. The assay plates were incubated at 37 °C for 24 h.
BacTiter-Glo reagent was added to each well and incubated further in
the dark for 10min. The luminescence was recorded using the Spec-
tramax M5 plate reader.

Statistics & reproducibility
No statistical methods were used to predetermine sample size. The
experiments were not randomized, and investigators were not blinded
to allocation during experiments and outcome assessment.

For each screening wave independently, strains that grew slowly
(did not achieve at least one doubling over the 14-day assay) or unre-
liably (any conditions with GR > 20) were identified and filtered out
from further analysis.Of the 387 strains thatwere included in the strain
pool across all six screeningwaves, 42 strains werefiltered out for slow
growth in at least one of the screeningwaves and 5 strainswerefiltered
out for high GR; the 340 strains that passed quality control in all six
screeningwaveswere used in downstream analysis. Otherwise, no data
were excluded from the analyses presented.

Sample sizes (n = 2) for screening were chosen as standard for
high-throughput compound screening as a balance of cost and accu-
racy. The PROSPECT screening assay was previously optimized to
allow 2 replicates to provide statistical power as described in Johnson
et al. 2019. Primary data were generated in at least duplicate and were
shown to give similar results (Supplementary Fig. 5b, Supplementary
Note 4). Results were confirmed using orthogonal methods, which
demonstrated the reliability of the primary data as described. Follow-
upmechanismof action studieswere replicated at least 3 times. Due to
limited compound availability, testing of GSK compounds against
cydA::Tn and qcrBmutants was performed in duplicate. All attempts at
replication were successful.

Investigators were not blinded during data collection or analysis
for reasons of feasibility. Compounds in our study were assigned ID
numbers, essentially blinding their identity until after collection and
analysis was complete. All PCL-based MOA assignments were based
exclusively on CGI profiling and were blinded to compound structure
or other associated information. Follow-up communication with GSK
unblinded the chemical identities of the compounds and allowed for
literature review of reported mechanistic activities. For MIC assays, to
eliminate errors introduced during compound dilution, assays using
differentMtb strains were performed on the same day, using the same
DMSO-based compound dilution series. Due to limited compound
availability, MIC assays to investigate potential GSK QcrB-targeting
compounds were performed once, in replicate, as described. In cases
where the curve fit MIC fell outside of the range of concentrations
assayed, the minimal or maximal assay concentration was used to
calculate themagnitude of theMIC shift; in these cases, the actual shift
is likely greater than the shift indicated in Fig. 3d.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The standardized growth rate (sGR), Pearson correlation to reference
CGI profiles, average rank of Pearson correlation across reference CGI
profiles, reference CGI profile PCL cluster membership, PCL similarity
score, and PCL confidence score data for reference CGI profiles, the
GSK set, and BRD4310 are available online on Code Ocean within the
published code capsule at https://doi.org/10.24433/CO.3013890.v1
and have been deposited in Figshare: https://doi.org/10.6084/m9.
figshare.28373561. The reference set and GSK compound MOA anno-
tations are available within Supplementary Data 1 and Supplementary
Data 5, respectively. RNA-seq and resistant mutant whole-genome
sequencing datasets were deposited in the Sequence Read Archive

(SRA) operated by the National Center for Biotechnology Information
(NCBI) under BioProject accession number: PRJNA1328039. Source
data are provided with this paper.

Code availability
ConcensusGLM is available on GitHub at https://github.com/
broadinstitute/concensusGLM. CmapM is available on GitHub at
https://github.com/cmap/cmapM. CmapR is available through Bio-
conductor and on GitHub at https://github.com/cmap/cmapR. Com-
puter code for running each step of the reference-based PCL analysis is
available on Code Ocean (https://doi.org/10.24433/CO.3013890.v1)
and GitHub (https://github.com/broadinstitute/Mtb_PROSPECT_PCL_
analysis). Other computer code is available from the corresponding
author upon request.
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