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Protein-level batch-effect correction
enhances robustness in MS-based
proteomics

Qiaochu Chen 1, Zehui Cao 1, Yaqing Liu 1, Naixin Zhang 1,5, Yanming Xie1,
Haonan Chen1, YuanbangMai1, Shumeng Duan1, Jiaqi Li1, Ying Yu 1, Yang Zhao2,
Leming Shi 1,3,4 & Yuanting Zheng 1,3

Batch effects, defined as unwanted technical variations caused by differences
in labs, pipelines, or batches, are notorious in MS-based proteomics data,
wherein protein quantities are inferred from precursor- and peptide-level
intensities. However, the optimal stage for batch-effect correction remains
elusive and crucial. Leveraging real-world multi-batch data from the Quartet
protein reference materials and simulated data, we benchmark batch-effect
correction at precursor, peptide, and protein levels combined across two
designed scenarios (balanced and confounded), three quantification methods
(MaxLFQ, TopPep3, and iBAQ), and seven batch-effect correction algorithms
(Combat, Median centering, Ratio, RUV-III-C, Harmony, WaveICA2.0, and
NormAE). Our findings reveal that protein-level correction is the most robust
strategy, and the quantification process interacts with batch-effect correction
algorithms. Furthermore, we extend our analysis to large-scale data from 1431
plasma samples of type 2 diabetes patients in Phase 3 clinical trials, demon-
strating the superior prediction performance of the MaxLFQ-Ratio combina-
tion. These findings support that batch-effect correction at the protein level
enhances multi-batch data integration in large proteomics cohort studies.

Batch effects refer to unwanted variations resulting from technical
factors that disturb the biological signals of interest1–3. Although the
liquid chromatography coupled to tandem mass spectrometry (LC-
MS/MS) system enables profiling of thousands of samples in large-
scale proteomics studies4–10, the long-term period—lasting for several
days, months, or even years—of data generation usually involves
multiple reagent or running batches, platform or instrument types,
operators, as well as collaborating labs11,12. Therefore, the complexity
of experimental and analytical procedures in MS-based large-scale
proteomics data may lead to batch effects confounded with various
factors of interest, thus challenging the reproducibility and reliability

of proteomics studies11. Meanwhile, MS-based proteomics utilizes the
bottom-up strategy13, in which protein-expression quantities are
inferred by a specified quantification method (QM)14–16 from the
extracted ion current (XIC) intensities17 of multiple peptides assigned
to a protein group, usually around three-to-ten peptides per protein
group. In addition, precursors are defined as peptides with specific
charge states or modifications, and are identified earlier than peptides
and proteins. Therefore, it is crucial to consider at which data level to
correct batch effects. That is, whether batch-effect correction should
be performed earlier (precursor or peptide-level) or later than protein
quantification (protein-level) before conducting the intended
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explorations on biological properties and functions at the aggregated
protein level.

Many batch-effect correction algorithms (BECAs)12,18–26 have been
proposed for removing batch effects. For example, normalization based
on means or medians within each batch has been widely used in pro-
teomicsdata preprocessing27. ComBatwasfirst used tomodify themean
shift ofmicroarraydata acrossbatchesbyanempirical Bayesianmethod,
and can be applied to proteomics data28. RUV-III-C employs a linear
regression model to estimate and remove unwanted variation in raw
intensities, thereby correcting for batch effects in proteomics data12.
Ratio of intensities of study samples divided by those of concurrently
profiled universal reference materials on a feature-by-feature basis
improves cross-batch integration formulti-omics studies1,22,26,29–32. Based
on principal component analysis (PCA), Harmony33–35 iteratively clusters
cells by similarity and calculates a cluster-specific correction factor to
remove batch effects in single-cell RNA sequencing (scRNA-seq) data; it
can also be extended to multi-omics data32. In large-scale proteomics
studies, Čuklina et al. suggested fitting a Locally Estimated Scatterplot
Smoothing (LOESS) curve within each batch to fix the injection order-
specific MS signal drifts before correcting the discrete batch effect23.
Recently, BECAs developed for large-scale metabolomics data may
generalize to MS-based proteomics. WaveICA36 (or WaveICA2.037)
extracts and removes batch effects by multi-scale decomposition with
the time trend of injection orders. Another deep learning-based BECA
named NormAE38 corrects non-linear batch-effect factors learned from
neural networks. Above all, the choice of a specific BECA from the
overwhelming possibilities is challenging for the end user as
different studies may provide conflicting recommendations due to
study constraints1.

Benchmarking studies have provided objective insights in the
selection of BECAs for data quality improvement, performing at either
the uniformed peptide or protein data level without yet considering the
impact of protein quantificationmethods from the peptide or precursor
level32,39–42. Callister et al. concluded that linear regression performed
well among four BECAs at the peptide level in three high-throughput
proteomics datasets40. Kultima et al. benchmarked 10 BECA methods
with three peptide-level datasets and recommended the use of linear
regression to fix experimental order-specific variations41. Chawade et al.
introduced Normalyzer, a tool for the selection of BECAs adapted to a
specific dataset, compatible with multi-type quantitative omics data
matrices42. Välikangas et al. expanded performance assessment from
intra-group variations to inter-group protein differential expressions,
emphasizing the effectiveness of linear regression and LOESS methods
at theprotein level39. Yu et al. comprehensively assessed sevenBECAs on
protein-level proteomics datasets based on the Quartet (中华家系1号)
reference materials32, and found ratio-based scaling to be a universally
effective BECA, especially when batch effects are confounded with bio-
logical groups of interest22,26,30,31. Arend et al. benchmarked 17 normal-
ization methods and 2 batch-effect correction methods at the
aggregated protein level, providing an evaluation tool, PRONE for the
community43.

These benchmarking analyses of batch-effect correction in pro-
teomics have broadened our knowledge in the selection of BECAs and
also the performance assessment metrics, bridging the gap of repro-
ducibility to some extent. However, the inconsistency of batch-effect
correction at thedata (i.e., peptideorprotein) levels still challenges the
harmonization of MS-based proteomics studies. Currently, there is a
lack of comprehensive benchmarking studies on batch-effect correc-
tion at the precursor, peptide, and protein levels, as well as the adap-
tation for both multi-lab and large-scale multi-batch scenarios.

Here, we utilize the simulated dataset as well as the real-world
multi-lab datasets derived from the Quartet protein reference
materials22 as two typical benchmarking datasets for performance
assessments on three (i.e., precursor-, peptide-, and protein-level)
batch-effect correction strategies. We evaluated the data matrices at

the final aggregated protein level by using both feature-based and
sample-based metrics under two designed scenarios (balanced
and confounded), combined with three QMs (MaxLFQ, TopPep3, and
iBAQ) and seven BECAs (Combat, Median centering, Ratio, RUV-III-C,
Harmony, WaveICA2.0, and NormAE). Finally, we also tested the per-
formance of batch-effect removal on a case study with a large-scale
proteomics dataset from a type 2 diabetes (T2D) cohort. Our study
provides a comprehensive benchmarking of batch-effect correction
strategies, revealing better performances of late-data-level workflows
in MS-based proteomics.

Results
Overview of the study design
The multi-omics Quartet Project provides the community with multi-
batch datasets1,22,26,29–32,44–49 generated from four grouped reference
materials (D5, D6, F7, and M8). For proteomics, each Quartet dataset
consists of 12 MS runs from triplicates of tryptic proteins in the fixed
injection order. To test over-corrections and false discoveries, we also
generated a simulated data matrix with built-in truth comprising tri-
plicates of three biological groups distributed to three batch groups,
respectively. Considering that batch effects are usually confounded
with biological factors of interest in real-world studies, especially for
studies without full randomization or confounded by nature for
follow-up analyses, we designed two scenarios, wherein either the
known sample groups are balanced (termed Quartet-B, Simulated-B)
or confounded with (termed Quartet-C, Simulated-C) among batches.
In this study, we leveraged both the simulated dataset and six Quartet
datasets as the benchmarks for the following workflows to compare
three batch-effect correction strategies, i.e., precursor-, peptide-, and
protein-level corrections, in removing unwanted variations while
retaining robust biological signals (Fig. 1a).

We focused on the comparison of protein-quantity matrices pre-
processed by batch-effect corrections at different data levels, while
considering other potential impact factors that may alter the effec-
tiveness of removing the batch effects. Depending on whether or not
batch-effect correction occurs and the timing of that correction, our
workflow was constructed on three preprocessing strategies: batch-
effect corrections at (1) precursor, (2) peptide, and (3) protein levels,
with corresponding quantifications that aggregate data from early
levels into late levels. The preprocessing strategies were integrated
with three QMs (MaxLFQ, TopPep3, and iBAQ) and seven BECAs
(Combat, Median centering, Ratio, RUV-III-C, Harmony, WaveICA2.0,
and NormAE) on the benchmarking datasets. NormAE requires the
input of mass-to-charge ratio (m/z) and retention time (RT) for each
feature; it is theoretically available only at the precursor level in the
Quartet datasets. For the main benchmarking tests using the other six
BECAs, we generated 57 (54 corrected and 3 uncorrected) data
matrices at the aggregated protein level, 39 (36 corrected and 3
uncorrected) data matrices at the aggregated peptide level, and 7 (6
corrected and 1 uncorrected) data matrices at the raw precursor level
for each design (Quartet-B, Quartet-C, Simulated-B and Simulated-C),
respectively (Fig. 1b).

We evaluated the performance of protein profiles from two per-
spectives, feature-based and sample-based (Fig. 1c). For feature-based
quality assessment, we calculated the coefficient of variation (CV)
within all technical replicates across different batches for each feature.
The simulated datamatrix was composed of known feature expression
patterns between every two sample groups, thus enabling the assess-
ment of identified DEPs in each data matrix by the Matthews correla-
tion coefficient (MCC) and the Pearson correlation coefficient (RC).
For sample-based quality assessment, the signal-to-noise ratio (SNR)
can evaluate the resolution in differentiating known Quartet sample
groups based on PCA. Sample-based metrics also include the quanti-
fied contributions by biological or batch factors through principal
variance component analysis (PVCA).
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Furthermore, we employed a proteomics dataset (under the
ChiHOPE project, https://www.biosino.org/node/project/detail/
OEP00002924) comprising 1,431 plasma samples from type 2 dia-
betes (T2D) patients as a case study. This aimed to demonstrate the
effectiveness of batch-effect correction in large-scale scenarios (sub-
sequently termed ChiHOPE) (Fig. 1d). In this large-scale study, three
types of QC samples were profiled alongside the study samples for
batch-effectmonitoring: 16 plasma samples from a healthymale (P10),
16 plasma samples from a healthy female (P11), and 32 pooled plasma
samples from the mixture of all study samples (PM). Finally, we eval-
uated the prediction performances of both categorical variables (i.e.,
sex) and continuous variables (i.e., Age) after batch-effect correction.

In summary, we conducted a comprehensive benchmarking
study, considering multiple scenarios, BECAs, QMs, and various
assessment metrics on the optimal timing for proteomics batch-effect
correction.

Batch effects existed in uncorrected data matrices at all
data levels
To demonstrate the common occurrence of batch effects and the
necessity of batch-effect correction, we used feature-based and
sample-basedmetrics to assess batch-related variations inuncorrected
data matrices at the precursor, peptide, and quantified protein levels
(Fig. 2; Supplementary Fig. 1).

Fig. 1 | Overview of the study design. a Two benchmarking datasets: Quartet and
simulated datasets; each point represents for the triplicates of the sample group;
there are a total of 72, 36, 27, 21 samples in Quartet-balanced (Quartet-B), Quartet-
confounded (Quartet-C), Simulated-balanced (Simulated-B), and Simulated-
confounded (Simulated-C) scenarios. b three batch-effect correction strategies

combinedwith scenarios, quantitationmethods (QMs) and batch-effect correction
algorithms (BECAs). c feature-based and sample-based quality assessment metrics.
d A case study: the large-scale T2D-cohort datasets and the metrics for prediction
performance assessments. Created in BioRender. Zheng, Y. (2025) https://
BioRender.com/089aon4.
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Fig. 2 | Batch effects existed in uncorrected data matrices at all data levels.
a scatter plots of principal component analysis (PCA) results of the uncorrected
precursor-, peptide-, and protein-level data matrices after MaxLFQ protein quan-
tification; shaped by the raw batch; colored by the sample type. b bar plots of
signal-to-noise ratio (SNR) performance in uncorrected data matrices across all
three data levels under four designed scenarios; colored by the data level; faceted
by the scenario. c bar plots of principal variance component analysis (PVCA)

performance in uncorrected data matrices across all three data levels under
Quartet-balanced (Quartet-B) (left) and Simulated-balanced (Simulated-B) (right)
scenarios; presented asmean values ± s.d. colored by the data level; faceted by the
scenario. All data points are plotted individually. For each bar plot: Precursor-level
(n = 1), Peptide-level (n = 3), Protein-level (n = 3). All statistics are based on analysis
replicates (by quantitation methods). Source data are provided as a Source
Data file.
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Without batch-effect correction, poor quantity consistency was
observed within the same sample group across different batches
(Supplementary Fig. 1a). Specifically, mean CV increased from the
precursor level (Quartet-B mean± sd: 0.70 ±0.45; Quartet-C mean ±
sd: 0.53 ± 0.41) to the protein level (Quartet-B mean ± sd: 1.38 ± 0.80;
Quartet-C mean± sd: 0.95 ± 0.66) in Quartet data matrices (Supple-
mentary Fig. 1a). As expected, simulated data CV demonstrated a
stepwise increase with introduction of a biological factor and random
noise (WithBiol), followed by a scaling factor (WithScal), and finally a
batch factor (WithBatch) added to the initial gamma-distributed
matrix (Supplementary Fig. 1b). In contrast to Quartet's complex
design, simulated dataset exhibited CV decrease from precursor to
protein level (Supplementary Fig. 1c). Fold changes for known features
were calculated at each level in simulated data, and features with fold
changes opposite to expected values or with negligible differences
were classified as false discoveries. Most uncorrected data matrices
affected by batch effects yielded near-zero MCC values (Supplemen-
tary Fig. 1d, e). Notably, onlyMaxLFQ extracted biological information,
improving MCC from −0.04 to 0.41 (Supplementary Fig. 1e).

Using SNR and PVCA metrics based on PCA, we elucidated how
batch effects dominated data variability. The step-by-step simulation
demonstrated how technical factors progressively outweighed biolo-
gical signals (Supplementary Fig. 2). Before correction, samples clus-
tered by batch rather than biological group at all three data levels
(Fig. 2a; Supplementary Fig. 3). Thus, uncorrected data matrices could
not distinguish biological groups, exhibiting near-zero or negative SNR
values, while MaxLFQ improved SNR from −0.51 (Simulated-B) and
0.36 (Simulated-C) at theprecursor level to 2.49 (Simulated-B) and3.19
(Simulated-C) at the protein level (Fig. 2b). PVCA revealed the domi-
nant variance contributor. Given Quartet's complex batch sources,
data acquisition mode, and laboratory emerged as dominant factors
over biological factors (Fig. 2c; Supplementary Fig. 4a). In simulated
data, batch factor contribution decreased from precursor to protein
levels, while sample factor contribution increased (Supplemen-
tary Fig. 4b).

Protein-level correction exhibited robust reproducibility and
reliability
We then conducted quality assessment of the profiles using feature-
based metrics, focusing on intra-sample-group reproducibility and
inter-sample-group reliability of quantified proteins across different
batches. From precursor- to protein-level corrected data, we observed
a consistent decrease in the overall CVs in all designed scenarios.
Specifically, in the Quartet-B scenario, the CV median dropped from
1.34 (uncorrected) to 0.40 (protein-corrected) after MaxLFQ quantifi-
cation (Fig. 3a), and similarly when quantified by iBAQ or TopPep3.
This finding suggested that batch-effect removal at higher data levels
improved reproducibility within the same sample groups. Most BECAs
exhibited a similar pattern except WaveICA2, which demonstrated the
least effective CV performance. The BECARatio, when corrected at the
protein level, yielded the lowest overall CV (mean± sd: 0.31 ± 0.32)
(Supplementary Fig. 5a).

In simulated scenarios, we compared the fold changes (Group2/
Group1 and Group3/Group1) after correction to true values and
calculated the MCC metric for each corrected combination. Among
the three QMs, iBAQ and TopPep3 did not improve MCC perfor-
mance, whereas BECAs combined with MaxLFQ displayed a sig-
nificant increase in MCC, particularly at the protein level under
balanced design. Notably, MaxLFQ-quantified and peptide-level
corrected data matrices achieved the highest MCC (mean ± sd:
0.56 ± 0.20) under confounded design (Supplementary Fig. 5b).
Most BECAs could effectively enhance MCC values at the protein
level following MaxLFQ quantification, with RUV-III-C demonstrat-
ing the best performance across all three data levels (Fig. 3b).
Additionally, under confounded designs, Ratio and ComBat also

obtained high MCC values (0.68 and 0.67, respectively) at the pep-
tide level. Scatter plots further elucidated the accuracy of corrected
values, indicating that RUV-III-C introduced the least over-
correction variability (Fig. 2c).

Nevertheless, batch-effect correction at the protein level was
robust to most BECAs; the accuracy of expression patterns could be
optimized through a specific combination of QM and BECA.

MaxLFQ unmasked biological signals in protein-level batch-
effect correction
The signal-to-noise ratio (SNR), a metric defined in the multi-omics
Quartet Project, was employed to assess both the ability to dis-
criminate among different sample groups (specifically D5, D6, F7, and
M8) and the technical variations within the same biological group. For
sample-based performance assessment, we extended the application
of SNR from Quartet to simulated scenarios50. Our findings revealed
that protein-level corrected data matrices achieved the highest overall
SNR values compared to peptide- or precursor-level corrected data
across all designed scenarios. This improvement was especially strik-
ingunder balanceddesigns (medians: from−0.02 to 12.32 inQuartet-B;
from 3.77 to 4.91 in Simulated-B) (Fig. 4a). Furthermore, RUV-III-C,
ComBat, and Ratio applied at the protein level yielded high SNR values
(mean± sd: 18.14 ± 8.38, 12.07 ± 6.16, and 11.27 ± 6.74, respectively)
(Supplementary Fig. 6a), and MaxLFQ outperformed the other two
QMs in SNR when combined with protein-level corrections (Supple-
mentary Fig. 6b). Next, we displayed detailed SNR values for every
combination under each design (Fig. 4b; Supplementary Fig. 7). Most
BECAs applied toMaxLFQ-quantified protein-level data exhibited high
SNRs, especially under balanced designs (Fig. 4b; Supplementary
Fig. 7b). Consistently, MaxLFQ-quantified protein-level corrections
using RUV-III-C, ComBat, and Ratio achieved higher SNRs than other
BECAs under all designed scenarios. The robustness of MaxLFQ in
protein-level batch-effect removal was confirmed by the fact that 80%
of combinations of QMs and BECAs (20 out of 25) reached the highest
SNR values (Fig. 4b; Supplementary Fig. 7). In PCAplots,most BECAs at
MaxLFQ-quantified protein-level data enabled samples to cluster by
true biological groups (Supplementary Fig. 8).

PVCA was used to quantify the contribution of biological and
technical factors to data variability. As shown, technical factors were
effectively reduced by batch-effect correction at the protein level,
alongside increasing effects from the sample factor. Under con-
founded scenarios, however, batch-sample interactions were slightly
enhanced, albeit remaining relatively low (Supplementary Fig. 9).
Summary PVCA results under the simulated confounded scenario
illustrated the robustness of MaxLFQ when combined with various
correction levels, QMs, and BECAs. Consistent with the previous
findings, RUV-III-C, ComBat, and Ratio at the MaxLFQ-quantified level
ranked highest among all BECAs (Fig. 4c).

Overall, MaxLFQ-quantified protein-level batch-effect corrections
surpassed other combinations in sample-based metrics.

Quantification interacted with correction from precursor to
protein levels
Feature-based and sample-based quality assessments suggested that
correction at the precursor- or peptide-level did not effectively remove
batch effects in most combinations. Therefore, we traced back to
precursor and the peptide data levels and reassessed all metrics at
both the corrected (post-correction) and aggregated (post-quantifi-
cation) data levels (Fig. 5). At all three data levels, the correction step
effectively reduced overall CVs under balancedor confoundeddesigns
(Supplementary Fig. 10a), while this reduction could be neutralized or
reversed after quantification, particularly under balanced designs
(Fig. 5a). This reversal was also observed for SNR performance, which
increased after correction but decreased after quantification (Sup-
plementary Fig. 10b; Fig. 5b).
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Strikingly, examination of FN, FP, TN, and TP counts revealed that
correction alone did not significantly increase true discoveries or
decrease false discoveries, especially under balanced designs (Sup-
plementary Fig. 10c). In contrast, quantification increased TN and TP
counts stepwise from precursor to protein levels, most pronounced at
aggregated levels. Conversely, false discoveries showed an ascending
trend in FNs with higher aggregation (Fig. 5c). In confounded

scenarios, peptide-level corrections yielded the highest true dis-
coveries and lowest false discoveries after to protein-level aggregation,
consistent with previous observations (Fig. 3b). PVCA results further
suggested quantification amplified batch effects (Fig. 3c), despite
reduction at corrected levels (Supplementary Fig. 10d).

In summary, while correction effectively mitigates batch effects,
quantification plays a critical, complex role in shaping final data
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quality, particularly influencing true discoveries and potentially rein-
troducing batch-related variability.

Ratio provided the best prediction performance in large-
scale data
Finally, we tested protein-level batch-effect correction on large-scale
ChiHOPE proteomics data (Fig. 6). The batch effects contained multi-
sourced technical noise, manifesting as both injection order-specific
MS signal drift and discrete whole-batch shifts. Across all samples,
peptide intensities showed discontinuities at instrument cleaning
timepoints (dividing the samples into three batches) and exhibited
decaying trends with injection order within batches (Supplementary
Fig. 11). QC samples (PM, P10, and P11) revealed similar drift patterns to
study samples. Discrete batch effects were confirmed by PCA (Sup-
plementary Fig. 12a, b). Substantial batch effects obscured biological
differences of interest, emphasizing the need for effective pre-
processing before downstream analysis. Based on previous conclu-
sions, we tested BECAs with/without LOESS correction at MaxLFQ-
quantified protein level, confirming fundamental batch-effect removal
with LOESS. This was supported by true-label clustering in UMAP
(using PCs explaining 80% variance) with minimal residual batch
effects (Supplementary Fig. 12).

To investigate whether data after protein-level batch-effect
corrections allow better prediction of biological groups, we tested
all protein profiles from the ChiHOPE cohort using Random Forest.
Categorical sex groups and continuous age values served as classi-
fication and regression endpoints, respectively. And the negative
control endpoints were set by randomly shuffling the sex or the age
corresponding to the samples. We divided each protein profile into
training or validation set according to the inclusion time of the total
750 subjects in the clinical trials and performed 5-fold cross vali-
dation within the training set (757 samples from 394 subjects), then
we locked the final evaluation results on the validation set
(674 samples from 356 subjects). We calculated MCC and R² values
to evaluate the performance of the sex and the age prediction,
respectively, in the external validation set. As expected, the negative
control datamatrix was unpredictable with theMCC or R² near zero,
while the uncorrected and LOESS-corrected alone data matrix
remained weak prediction performances with MCC lower than the
0.3 threshold (Fig. 6a). All protein-level batch-effect corrections
improved prediction performance (Fig. 6a; 6c), demonstrating the
robustness ofMaxLFQ quantification. ComBat andMedian centering
increased the number of FP features in sex prediction (Fig. 6b). For
more complex endpoints like age, all corrected data matrices
achieved slightly higher R² values than uncorrected/LOESS-alone
data (Fig. 6c, d). Among BECAs, Ratio preserved maximal data
variability for prediction, achieving highest MCC (0.41) and R²
(0.19). Furthermore, BECAs after LOESS (LOESS-dependent) con-
tributed to significantly higher MCC performances of the corrected
data matrices (Supplementary Fig. 13).

We recommend protein-level batch-effect correction inMS-based
proteomics with MaxLFQ quantification and Ratio BECA to maximize
biological signal extraction while minimizing technical noise.

Discussion
To provide evidence on the impact of the timing of protein quantifi-
cation relative to batch-effect correction, we performed a compre-
hensive benchmarking study using both the Quartet multi-batch
datasets and the simulated datasets with ground truth and tested the
combinations between three PQMs (MaxLFQ, iBAQ, and TopPep3) and
seven BECAs (Ratio, Median centering, RUV-III-C, ComBat, Harmony,
WaveICA2.0, and NormAE) on two designed scenarios (balanced and
confounded). We embedded both feature-based (CV and MCC) and
sample-based (SNR and PVCA) QC metrics in our quality assessment.
Before batch-effect correction, datamatrices at all three levels showed
overwhelming batch effects, which confused biological signals with
technical noise. Our findings show thatmost protein-level batch-effect
corrections effectively remove unwanted technical variations, retain-
ing the reliable true discoveries and maximizing sample character-
istics. Performance across multiple combinations demonstrated that
the MaxLFQ-quantified protein-level correction strategy is more
robust than precursor- or peptide-level corrections under most situa-
tions, even though protein quantities are inferred from precursor and
peptide intensities. The extension to large-scale data confirmed
improved prediction capability after protein-level batch-effect cor-
rection, demonstrating the MaxLFQ-Ratio combination achieved the
best performance for both categorical (sex) and continuous (age)
endpoints, suggesting broad applicability across proteomics datasets.

Multi-dimensional metrics provide a comprehensive under-
standing of batch-effect correction performance across factors. We
used the SNR metric to assess both the discrimination of samples and
the robustness of replicates. This PCA-rooted metric, quantifies
expected grouping information, enabling generalized comparability
across diverse datasets22,26,29–32. SNR extends from Quartet and simu-
lated datasets to large-scale datasets with accompanying injections of
known QC samples alongside study samples. Additionally, MCC
assessed fold-change accuracy after correction, providing a feature-
based evaluation perspective. While 80% of batch-effect corrections
yielded higher SNR values at the protein level with MaxLFQ quantifi-
cation, RUV-III-C uniquely removed batch effects across all three data
levels in simulated data incorporating true negative control features.
Meanwhile, LOESS enhanced MS signal drift removal in large-scale
data, consistent with previous research23. These results suggest that
each BECA's underlying assumptions contribute to scenario-specific
performances. Large-scale data revealed that blindly pursuing batch-
effect correction inadvertently diminishes true biological variability, as
Ratio achieved the best prediction performancedespite residual batch
effects. The superior MCC performance of ratio-based BECAs was also
reported in MAQC-II microarray studies50.

The quantification process affects batch-effect correction per-
formance. Previous studies have corrected batch effects at the peptide
level7,8,23,51, whereas others correct at the protein level32,52–54. Čuklina
et al. proposed peptide-level correction before protein quantification
to avoid alteringfinal protein abundances23. However, batcheffects are
reportedly more severe at the peptide level than at the protein level55,
suggesting reduction after protein quantification, a finding supported
by our results (Fig. 2b, c). Phua et al. also found no superiority in

Fig. 3 | Protein-level correctionexhibited robust reproducibility and reliability.
a box plots of the coefficient of variation (CV) of proteins across different designed
scenarios; the P values were calculated using unpaired two-tailed student’s t tests,
****P < 0.0001, **P < 0.01, *P < 0.05; exact P values rounded to two significant
figures (when not less than 0.0001) are provided above each comparison; colored
by the correction level; faceted by the scenario; horizontal lines indicate the
median; box boundaries indicate the interquartile range (IQR); whiskers represent
values within 1.5× IQR of the first and third quartiles; data points beyond the end of
the whiskers are plotted individually. Detailed n statistics are provided (Supple-
mentary Table 2). b bar plots of the Matthews correlation coefficient (MCC) values
in simulated data; colored by the correction level; faceted by the BECA (by column)

and the scenario (by row); data points are plotted individually; the dashed lines
represent theMatthewscorrelation coefficient (MCC) value in the uncorrected data
matrix. c scatter plots of fold changes (FCs) in the tested (uncorrectedor corrected)
data matrices and the preset true FCs; the axes are log2 scaled; the solid lines
represent fitted curves from linear regression along with the Pearson correlation
coefficient (R) and the corresponding P value rounded to two significant figures;
95% confidence interval (grey ribbon) are displayed. All statistics are based on
independent biological replicates (by sample groups) and analysis replicates (by
BECAs) beforeor afterMaxLFQquantification. Sourcedata are provided asa Source
Data file.
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peptide-level correction using guided PCA evaluation32,56. Unlike pre-
vious benchmarking studies focusedon single-level correctionwithout
integrating quantification39–41, we explored optimal correction levels
and demonstrated interactions between QMs and BECAs across data
levels. Our results suggest that quantification increases true features
and decreases false positives (FPs), improving overall MCC despite
increased false negatives (FNs). This may stem from inherent

averaging: a protein group assemblesmultiple peptides, and a peptide
matches precursors with distinct charges and modifications. Aggre-
gating precursor/peptide data to the protein level improves overall
data stability by smoothing the variability of individual peptides.
However, when correction is performed at precursor/peptide levels,
residual artifacts may be amplified during quantification (Fig. 5d),
diminishing correction effectiveness (Supplementary Fig. 10d).
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Therefore, quantification before batch-effect removal facilitates more
accurate evaluation and correction, enhancing downstream analysis.

Referencematerials or QC samples enable determination of batch
effect causes32 and evaluation of correction against known biological
groups. In benchmarking, Ratio and RUV-III-C (using Quartet/QC
samples) performed well. As RUV-III-C requires negative control fea-
tures as input--generally unavailable in real-world large-scale cohort
studies--we identified inputs using two-way ANOVA across batches.
While RUV-III-C learns batch-effect patterns from negative controls,
Ratio gently corrects batch effects and maximizes prediction cap-
ability by taking accompanying QC samples as a global reference
across various batches16.

This study has several limitations. First, we combined technical
factors as overall batch effects without detailed exploration of specific
data acquisition modes (e.g., DDA/DIA) or platforms. For example,
untargeted (DDA and DIA) and targeted strategies may exhibit distinct
patterns in batch-effect correction and quantification. Second,
protein-level correction is limited when BECAs require early-stage
information (e.g., NormAE needs precursor-level m/z and RT); further
exploration is needed at levels earlier than precursors (e.g., raw
spectra). Third, we assessed prediction performance using random
forest for sex/age endpoints; testing additional endpoints with more
deep learning models would strengthen batch-effect correction eva-
luation. Finally, it remains unclear whether we would obtain the least
batch effect and the most biological information of interest if we
correct batch effects at each data level and then aggregate together.

In summary, this study provides practical guidance for choosing
effective batch-effect correction strategies for MS-based proteomics
data. In large-scale proteomics studies, multi-sourced batch effects
often confound biological factors of interest. Thus, effective removal
requires comprehensive consideration of protein quantification
method and BECA combinations. Our findings demonstrate that
protein-level correction is generally effective, and MaxLFQ-Ratio
achieves optimal performance in both correction and prediction tasks.

Methods
Datasets
Quartet multi-lab datasets. We used six raw datasets generated from
the Quartet reference materials as the multi-lab benchmarking
datasets22,29, which are available at the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the iProX partner
repository57,58 with the dataset identifier PXD045065. Notably, Quar-
tet Human Proteome Peptide ReferenceMaterials have been approved
as the First Class of National Reference Materials (GBW 09908–GBW
09911), by State Administration for Market Regulation (SAMR) of
China. All MS raw files were preprocessed by MaxQuant (v2.1.3.0) with
the default parameters to obtain the peptide-to-protein identifications
(searched against Uniprot human protein database updated on
2022.08.08) and the peptide intensities. DAT1 toDAT3were generated
in the DDA strategy and were searched directly. DAT4 to DAT6 were
generated in a DDA-library-based DIA strategy, i.e., the spectrum
libraries were constructed through the data generated by the pre-
fractioned samples in each batch by theDDA strategy, then theDIAMS

files were analyzed by MaxDIA embedded within the MaxQuant
software.

In the Balanced design, each Quartet dataset was generated by a
triplicate of four types of samples (D5, D6, F7, and M8), thereby
composing the combined data matrix with balanced design, i.e, the
biological groups are balanced within each batch and between every
two batches. In order to design a data matrix in the confounded sce-
nario, we selected one type of sample in each data set: from DAT1 to
DAT6, corresponding to D5, F7, M8, D5, F7, and M8, respectively. In
this case, the biological signals were thoroughly confounded with the
batch factor. Each dataset contains triplicates of D6 to enable the use
of the ratio-based batch-effect correction method.

Simulated datasets. We generated simulated data following the
methodology described by Hui et al.59, and the detailed parameters in
this study were provided in Supplementary Methods. For samples and
batches, the dataset contained three batches (Batch1, Batch2, and
Batch3), each comprising triplicates of three sample groups (Group1,
Group2, and Group3), totaling 27 samples in the balanced design. In
the confounded design, we excluded Group2 from Batch1 and Group3
from Batch2, resulting in sample groups confounded with the batch
factor. Each dataset included triplicates of Group1 to enable ratio-
based batch-effect correction and MCC evaluation based on known
fold changes. For features, we first determined feature proportions
impacted by batch, sample group, and interaction effects using two-
way ANOVA on Quartet datasets. We then simulated 4950 precursors
matched to 3000 peptides and 300 proteins: 200 affected by both
sample group (“biological”) and batch (“technical”) factors, 96 by
batch alone, and 4 “housekeeping” proteins.

Large-scale ChiHOPE dataset. We took the plasma proteomics data
in the Chiglitazar perturbed Human multi-Omics ProfilE (ChiHOPE)
project as a case study. The publicly available ChiHOPE resource
encompassesmultiple omics data types for 835 patients with T2D. Our
proteomics study utilized a subset of this larger cohort, comprising
750 patients (274 females and 476 males, aged from 23 to 70 years)
who had plasma samples available for proteomic profiling. From these
patients, we analyzed a total of 1431 samples from 1419 unique plasma
specimens (12 technical duplicates) collected at baseline and 24weeks.
Three types of quality control samples (PM, P10, and P11) were injected
in each batch along with study samples. Specifically, PM was mixed
plasma samples from the study samples. P10 and P11 were collected
from a healthy man and a healthy woman, respectively. All Ethical
approvals were obtained from the Ethical Committees of the study
centers (CMAP60, n = 26; CMAS61, n = 33). All procedures which per-
formed in the study involving human participants were in accordance
with the ethical standards of the institutional and/or) National
Research Committee, and with the Declaration of Helsinki and its later
amendments or comparable ethical standards. All participants pro-
vided written informed consent.

The samples were measured by data-independent acquisition
(DIA) mode in an EASY-nLC 1200 ultra-high-pressure system coupled
to a Q Exactive HF-x. All 1,431 peptide samples were injectedwith two

Fig. 4 | MaxLFQ unmasked biological signals in protein-level batch-effect cor-
rection. a box plots of the signal-to-noise ratio (SNR) values across different
designed scenarios; faceted by the scenario; the P values were calculated using
unpaired two-tailed student’s T tests, ****P < 0.0001, **P < 0.01, *P < 0.05; exact P
values rounded to two significant figures (when not less than 0.0001) are provided
above each comparison; horizontal lines indicate the median; box boundaries
indicate the interquartile range (IQR); whiskers represent values within 1.5× IQR of
the first and third quartiles; data points beyond the end of the whiskers are plotted
individually; For each box plot: Uncorrected (quantification method (QM) n = 3;
total data point n = 3), Precursor-corrected (batch-effect correction algorithm
(BECA) n = 6, QM n = 3; total data point n = 18; except Quaret-balanced (Quartet-B)

scenario where BECA n = 7, QM n = 3; total data point n = 21), Peptide-corrected
(BECA n = 6, QM n = 3; total data point n = 18), Protein-corrected (BECA n = 6, QM
n = 3; total data pointn = 18).bbarplots of the SNRvalues in theQuartet-B scenario;
colored by the correction level; faceted by the correction level (by column) and the
quantification method (by row); data points are plotted individually; the dashed
lines represent the SNR value in the uncorrected datamatrix. c bar plot of principal
variance component analysis (PVCA) results of each correction level-BECA-QM
combination; the bars are colored by the label of random effects; the cells lying on
the x-axis are colored by the detailed combination. All statistics are based on
independent biological replicates (by sample groups) and analysis replicates (by
BECAs and by QMs). Source data are provided as a Source Data file.
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Fig. 5 | Quantification interacted with correction from precursor to protein
levels. Plots of the coefficient of variation (CV) (a) and signal-to-noise ratio (SNR)
(b) performances of corrected data matrices across different data levels. c plots of
the number of false negatives (FNs), false positives (FPs), true negatives (TNs), and
true positives (TPs) of corrected data matrices across different data levels. d plots
of the principal variance component analysis (PVCA) results of corrected data
matrices across different data levels. All plots are colored by before (pink) or after

(light green) the aggregated quantification step. All plots are fitted with loess
curves, with grey ribbon shaded areas indicating the standard error (se) in 95%
confidence interval; the data points in the center area represents for mean values
individually. All statistics are basedon independent biological replicates (by sample
groups) and analysis replicates (by batch-effect correction algorithm (BECAs) and
by quantification methods (QMs)). Source data are provided as a Source Data file.
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Fig. 6 | Ratio provided the best prediction performance in the large-scale data.
The prediction performance on the sex classification. a bar plot of the Matthews
correlation coefficient (MCC); the dashed lines represent the threshold of MCC
value at 0.3; data points are plotted individually. b bar plots of the number of false
negatives (FNs), false positives (FPs), true negatives (TNs), and true positives (TPs);
data points are plotted individually. The prediction performance on the age
regression. c bar plot of the R square values; data points are plotted individually.

d scatter plots of predicted age to the true age; the solid lines represent fitted
curves from linear regression alongwith the Pearson correlation coefficient (R) and
the corresponding P value rounded to two significant figures; 95% confidence
interval (grey ribbon) are displayed. All evaluations are on the validation set after
the 5-fold cross validationwithin the training set. All plots were colored by the label
of data matrix. Source data are provided as a Source Data file.
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PM samples, one P10 sample, and one P11 sample in each 96-well
plate, and 1495 runs of MS files were generated. The MS files were
searched against UniProt human protein database (updated on
2019.12.17) using FragPipe (v12.1) with MSFragger (2.2)62. DIA data
were analyzed using DIA-NN (v1.7.0)62,63. The default settings were
used for DIA-NN. The identified precursors were quantified by the
average of chromatographic fragment ion peak areas across all
reference spectra libraries. The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium (https://
proteomecentral.proteomexchange.org) via the iProX partner
repository57,58 with the dataset identifier PXD068273.

Protein quantification
The analysiswas carried out using functions implemented inR (version
4.4.1) and R Studio (2024.09.0 + 375).

MaxLFQ. MaxLFQ64 is a protein quantification method by delayed
normalization andmaximal peptide ratioextraction. It retains peptides
with at least two pair-wise ratios and optimizes protein quantities with
the least overall variation. In this paper, we used the R package diann
(v1.0.1)63 to allow for the separate MaxLFQ-based protein quantifica-
tion. This method is applied to the Quartet multi-lab datasets and the
external T2D dataset.

IBAQ. The protein quantification method iBAQ sums up all peptide
intensities per sample for each protein group, despite whether the
intensities are missing across samples14. This method is applied to the
Quartet multi-lab datasets.

TopPep3. TopPep3 is based on the observations that the two most
intense transitions of the three best flying peptides per protein
generated optimal results15. This method is applied to the Quartet
multi-lab datasets by averaging the three most intense peptides per
protein.

Batch-effect correction
For Balanced and Confounded designs, we directly applied seven
BECAs to the raw datamatrix. For the large-scale dataset, we first fitted
a LOESS curve for the log-transformed intensity values of each protein,
and estimated the impact of the injection order on the MS signal drift.
The estimated impactwas subtracted from the intensity values of each
feature. Then the data matrix was passed to the typical batch-effect
correction workflow. The analysis was carried out using functions
implemented in R (v4.4.1) and R Studio (2024.09.0 + 375).

ComBat. ComBat is a commonly used batch-effect correctionmethod
in quantitative omics. It is based on a Bayesian framework to optimize
the mean and the variance for batch-effect correction20. The ComBat
function in the sva (v3.52.0) package was applied to the normalized
data across batches after log transformation and per-sample normal-
ization of total intensities.

Median centering. In this paper, median centering is the approach
that scales the medians per batch to the same, and is mild for data
matrices with a high proportion of missing values. This method is
applied to the Quartet multi-lab datasets after log transformation and
per-sample normalization of total intensities, and to the external T2D
dataset after per-feature per-batch LOESS fixing.

Ratio. In the Quartet project, a ratio-based scaling is recommended to
enable the comparability across multiple batches at the relative
quantitation level22,26,29–32. In this paper, the data matrix corrected by
the ratio method is achieved by subtracting the means of D6 samples
(or Group1 samples in simulated datasets, or PM samples in ChiHOPE

study) in each batch after log transformation and per-sample nor-
malization of total intensities.

RUV-III-C. RUV-III-C is a batch-effect correction method that removes
unwanted variation from complete intensities per batch in the data
matrix12. It requires sample label information and negative control
features for the estimation and removal of the unwanted variation. In
the Quartet datasets, we performed two-way ANOVA analysis at the
precursor, peptide, or protein level, and selected quantified pre-
cursors, peptides or protein groups with no significance across all
samples or an interactive effect between the sample and the batch, but
significant across the batches. All ANOVA results can be reproduced by
the scripts. In the simulateddatasets, 96batch-effect-onlyproteins and
their matched precursors and peptides were input to RUV-III-C as
negative controls. The RUVIII_C function in the RUVIIIC (v1.0.19)
package was applied for batch-effect correction.

Harmony. Harmony is an iterative algorithm for robust, scalable, and
flexible integration of single-cell datasets, effectively removing batch
effects. It projects cells into a shared low-dimensional embedding (e.g.,
PCA space), grouping cells by biological state rather than by technical
variations. Batch-effect correction was applied using the Harmony-
Matrix function in the harmony (v1.2.3) package.

WaveICA2.0. WaveICA 2.0 is an improved version of the WaveICA
method specifically designed to remove both inter-batch and intra-
batch effects in untargeted metabolomics data without requiring
explicit batch information. The WaveICA_2.0 function in the
WaveICA2.0 (v0.1.0) package was applied for batch-effect correction.

NormAE. NormAE is a deep learning-based method for batch-effect
correction in untargetedmetabolomics data. It leverages the power of
autoencoders to learn and remove technical noise while preserving
underlying biological signals. This method was used for batch-effect
correction following the instructions at https://github.com/luyiyun/
NormAE.

Quality assessment metrics
We used four quality assessment metrics, classified into feature-based
and sample-based categories, to evaluate the reproducibility, distin-
guishability, and reliability of the data matrix. All quality assessments
were performed at the quantified protein level. The analysis was car-
ried out using functions implemented in R (version 4.4.1) and R Studio
(2024.09.0 + 375).

Coefficient of Variation (CV). The coefficient of variation, defined as
the ratio of standard deviation to themean, was calculated per feature
within the same sample groups in each design, i.e., 18 replicates from
six batches for each of D5, F7, and M8 in the Quartet balanced design.

Mathew’s Correlation Coefficient (MCC) and Relative
Correlation (RC). In simulated datasets, we utilized the known fold
change of each feature to calculate the MCC value. The positive and
negative features were defined by whether their fold change (FC)
values were out of (positive) or between the range of 1/1.2~1.2 (nega-
tive). If the FC values were in the same direction as the known values
(Group2/Group1 andGroup3/Group2), then the corresponding feature
is labeled as a true feature; otherwise, as a false discovery. With the
number of TPs, TNs, FPs, and FNs, we can calculate the Mathew’s
Correlation Coefficient (MCC) values by the following formula (1):

MCC=
TP � TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP+ FPð ÞðTP+FNÞðTN+FPÞðTN+FNÞ
p ð1Þ
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Relative correlation was defined as the Pearson correlation coef-
ficient between the tested and true FC values, computed as follows:

RC=

Pn
i= 1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i= 1ðxi � �xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i= 1ðyi � �yÞ2
q ð2Þ

where n is the total number of features, xi is the log2 transformed fold
change of the ith feature in the test data matrix. yi is the log2-trans-
formed fold change of the reference value during data simulation.

Signal-to-Noise Ratio (SNR). The Quartet project defines a metric
named signal-to-noise ratio (SNR) based on the known sample
labels22,26,30–32. The distance is determined as the weighted Euclidean
distance between any two samples x and y in the space formed by the
first and second principal components after principal components
analysis (PCA):

dist x, yð Þ= W1 PC1, x � PC1, y

� �2
+W2 PC2, x � PC2, y

� �2
� �1

2 ð3Þ

Then, Signal was defined as the root mean square (Root Mean
Square, RMS) of the distance between two samples with different
biological labels:

Signal =

PK
u≠v

PNu
i = 1

PNv
j = 1dist ui, vj

� �2

C2
N �PK

k = 1C
2
Nk

0
B@

1
CA

1
2

ð4Þ

where ui and vj represent the replicate i with the sample group u and
the replicate j within the sample group v. Nu and Nv are the total
number of replicates in the sample group u and the sample group v. N
is the total number of samples.

Noise was defined as the RMS of the distance between two repli-
cate samples with the same biological label:

Noise=

PK
u= 1

PNu
i≠jdist ui,uj

� �2

PK
u = 1C

2
Nu

0
B@

1
CA

1
2

ð5Þ

Finally, the SNR is defined as the ten-fold common logarithm of
the squared ratio of Signal to Noise:

SNR= 10log10
Signal
Noise

� �2

ð6Þ

Prediction model
For the large-scale dataset, we performed the sex classification and the
age regression tasks using a RandomForestmodel implemented in the
scikit-learn library (v1.7.0) within Python (v3.13.5). The total of
750 subjects were divided into a training set (394 subjects) and a
validation set (356 subjects) basedon their inclusion time in the clinical
trials. A 5-fold cross validation was conducted within the training set
(757 injected samples), and the final performancewas evaluated on the
validation set (674 injected samples).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The statistical data generated in this study have been deposited in the
Figshare database at https://doi.org/10.6084/m9.figshare.29567366.
v2. TheprocessedQuartet and simulatedproteomicsdata are available

in the Figshare database at https://doi.org/10.6084/m9.figshare.
29567333.v2. The processed ChiHOPE proteomics data are available
at https://doi.org/10.6084/m9.figshare.30028336. All performance
assessment results generated in this study are provided in the Source
Data file. The raw Quartet and ChiHOPE proteomics data used in this
study are available in a ProteomeXchange partner database under
accession code PXD045065 and accession code PXD068273. Source
data are provided with this paper.

Code availability
The code used to perform the analyses and generate results in this
study is publicly available, and has been deposited in a GitHub repo-
sitory at https://github.com/QiaochuChen/proteomics-batch-effect-
correction-benchmarking, under MIT license. The specific version of
the code associated with this publication is archived in Zenodo and is
accessible via https://doi.org/10.5281/zenodo.1703253165.
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