
Article https://doi.org/10.1038/s41467-025-64756-6

Inferring three-nucleon couplings from
multi-messenger neutron-star observations

Rahul Somasundaram 1,2,9 , Isak Svensson 3,4,5,9 , Soumi De 2,
Andrew E. Deneris6, Yannick Dietz 3,4, Philippe Landry7,8,
Achim Schwenk 3,4,5 & Ingo Tews 2

Understanding the interactions between nucleons in dense matter is an
important challenge in theoretical physics. Effective field theories have
emerged as the dominant approach to address this problem at low energies,
withmany successful applications to the structure of nuclei and the properties
of dense nucleonic matter. However, how far into the interior of neutron stars
these interactions can describe dense matter is an open question. Here, we
develop a framework that enables the inference of three-nucleon couplings in
dense matter directly from astrophysical neutron star observations. We apply
this formalism to the LIGO/Virgo gravitational-wave event GW170817 and the
X-raymeasurements fromNASA’s Neutron Star Interior Composition Explorer
and establish direct constraints for the couplings that govern three-nucleon
interactions in chiral effective field theory. Furthermore, we demonstrate how
next-generation observations of a population of neutron star mergers can
offer stringent constraints on three-nucleon couplings, potentially at a level
comparable to those from laboratory data. Our work directly connects the
microscopic couplings in quantum field theories tomacroscopic observations
of neutron stars, providing a way to test the consistency between low-energy
couplings inferred from terrestrial and astrophysical data.

Obtaining a description of strong-interaction matter based on the
underlying theory of quantum chromodynamics (QCD) is one of the
most important challenges of theoretical physics. The development of
effective field theories (EFTs) of QCD has revolutionized our under-
standing of nuclear forces1–3. By employing a separation of scales
between typical nucleon momenta and high-energy degrees of free-
dom, indicated by the breakdown scale of the theory, EFTs provide a
systematic expansion for inter-nucleon interactions which can be
improved order by order. Consequently, a natural hierarchy emerges
among the interactions between two (NN), three (3N), and many

nucleons, the strengths of which are parameterized by low-energy
couplings (LECs) that need to be determined from data or from the
underlying theory. In the absence of direct calculations of the LECs
from QCD, the LECs are commonly adjusted to reproduce nuclear
experiments. For example, LECs that govern NN interactions are fit to
NN scattering data, whereas 3N forces are fit to properties of light
nuclei. The LECs governing the two-pion exchange contribution to the
3N forces4, c1 and c3, describe pion-nucleon (πN) interactions and can
be constrained using laboratory πN scattering data to
c1 = −0.74 ± 0.02GeV−1 and c3 = −3.61 ± 0.05GeV−1 at one-sigma level;
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see Hoferichter et al.5 and Siemens et al.6 for an analysis using Roy-
Steiner equations. EFT-based interactionswith LECs calibrated thisway
have enjoyed significant success in applications to nuclear structure
and nuclear astrophysics7–18. However, an open question is which data
with A ≥ 3 one should use to infer LECs describing three-nucleon
interactions. For example, recently the calibration of certain LECs to
medium-mass nuclei, such as oxygen isotopes, has resulted in
increased success for nuclear structure phenomenology, enabling EFT-
based Hamiltonians to successfully describe nuclei up to 208Pb (see,
e.g.,Hu et al.12 andArthuis et al.19). Thesedevelopments emphasize that
it is key to identify critical experimental constraints for the calibration
of powerful nuclear interactions.

Interestingly, the microscopic interactions that govern atomic
nuclei also dictate the macroscopic properties of neutron stars. Neu-
tron stars are fascinating systems that access higher densities and
greater neutron excess than nuclei accessible in terrestrial experi-
ments. Therefore, they offer an unparalleled laboratory for nuclear
matter in regions of high density and isospin asymmetry (the ratio of
neutrons to protons)20–27. However, significant challenges arise in
modeling the equation of state (EOS) of neutron stars, such as the
involved computational cost of solving the quantum many-body pro-
blem. Initial steps have been taken to constrain 3N interactions from
astrophysical observations28–30, but none of these studies have
attempted to calibrate the nuclear Hamiltonian directly to such data.
While Maselli et al.28 and Sabatucci et al.29 explore the sensitivity of
neutron star observables to a single parameter governing the strength
of the short-range 3N contribution to the EOS, they do not solve the
quantummany-body problem at each step in the sampling but instead
make simplifying assumptions to connect the single parameter to
neutron star observables. Furthermore, these studies do not fully
model variations in the EOS from low to high densities, beyond the
nuclear regime, where the density dependence can change from that
dominatedby 3N forces. For example, phase transitions to non-nuclear
degrees of freedom are possible. Rose et al.30 use astrophysical
observations to distinguish between two Hamiltonians that model the
3N force in different ways but do not infer the LECs themselves.

Here, we develop a framework that allows us to constrain LECs
directly fromobservations of neutron stars via Bayesian inference and,
thus, explore EFT-based interactions for the densest neutron-rich
systems in the cosmos. We consider a Hamiltonian at next-to-next-to-

leading order (N2LO) in the EFT expansion and focus on the leading
(N2LO) 3N forces that provide a strong contribution to the EOS of
neutron matter. As LEC values obtained from two entirely distinct
sources (neutron star observations versus atomic nuclei) can be
checked against each other for consistency, our framework will pro-
vide a unique test for the domain of applicability of nuclear interac-
tions and of the convergence of the EFT expansion in dense matter.

Results
Machine-learning-based inference framework
Our Bayesian inference setup to constrain c1 and c3 from astrophysical
data involves sampling over the microphysical LECs using a Markov
chain Monte Carlo (MCMC) stochastic sampling algorithm. Every
iteration of the sampler requires the solution of the many-body
Schrödinger equation, which yields the neutron star EOS. The EOS is
subsequently translated to astrophysical observables, such as radii or
tidal deformabilities, by solving the Tolman-Oppenheimer-Volkoff
(TOV) equations and the equations for a stationary quadrupolar tidal
deformation31,32. Given the large number of iterations required to
sample the posterior distribution function—Oð106Þ—this is a compu-
tationally intractable problem given that a single iteration requires
Oð102Þ CPU-h.

We overcome this challenge by employing recent advances in
machine-learning-based algorithms that act as surrogate models to
more complex high-fidelity calculations. First, for rapid calculation of
the EOS, we employ the recently proposed parametric matrix model
(PMM)33,34, which is trained on third-order many-body perturbation
theory (MBPT) calculations18 of the neutron-matter EOS. In the left
panel of Fig. 1, we show results for 70 validation samples for a PMM
trained on 30 high-fidelity MBPT calculations. We find emulator
uncertainties to be well under control, with predictions of the EOS at
nuclear saturation density nsat = 0.16 fm−3 differing from the high-
fidelity results by 0.04%on average. This emulator uncertainty ismuch
smaller than the LEC variation, indicated by the spread of samples, as
well as the uncertainty in the MBPT calculations themselves (see
Methods). We then extend these neutron-matter results to neu-
tron star matter in beta equilibrium. We model the neutron star EOS
using three different parameterizations (see Methods), the first and
simplest of which only uses the emulator results based on c1 and c3 to
characterize the EOS up to 10nsat.

Fig. 1 | Validation results for our machine-learning-based emulators. In both
panels, the color of the curves corresponds to the percentage uncertainty in the
emulators' prediction. a Shows 70 results for the neutron-matter EOS up to 2nsat
predicted by a PMM built using a training set of 30 different samples. At nuclear
saturation density, individual validation uncertainties Δsat are below 0.3%, with the
average uncertainty being 0.04%. b Shows ~60,000 tidal deformability-mass

curves predictedby an ensemble of 50 neural networks trained on the 5-parameter
EOSmodel. The uncertainty at 1.4M⊙,Δ1.4, is atmost 2.5%with an average of 0.02%.
We note that less than 0.1% of EOSs have emulator uncertainties of around 2%,
making these very rare occurrences. Source data for this figure are provided as a
Source Data file.
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The nucleonic description of dense matter eventually breaks
down, and exotic phenomena such as QCD phase transitions in high-
density matter might appear. Therefore, in the following, we assume
the validity of the EFT expansion up to 2nsat18,35,36, and hence, the LECs
c1 and c3 determine the EOS only up to this density. An important
aspect of our framework is to find a suitable parameterization and
marginalization over uncertainties in the high-density EOS. Here, we
use two different models based on the speed of sound that allow for a
physics-agnostic extension of the EOS above 2nsat37. These models
employ either 5 or 7 parameters, including the two LECs. Comparing
thesemodelswith the 2-parametermodel illustrates the importanceof
the marginalization over the high-density EOS.

For a given EOSmodel, we use an ensemble of neural networks to
predict the tidal deformability of neutron stars38. Results obtained
from validating our emulator on ~60,000 samples are shown in the
right panel of Fig. 1 for the 5-parameter model, but the emulator per-
formance is similar for the other EOS models. We find that both the
PMM and neural-network emulators provide highly accurate and rapid
emulation of the underlying complex calculations that are required to
compute neutron star properties starting frommicroscopic LECs. The
use of machine-learning algorithms in this manner is a key part of our
analysis that allows us to sample complex posterior distribution
functions in our astrophysical Bayesian analysis framework.

Inference based on GW170817 and NICER data
We condition the LECs c1 and c3 on the LIGO/Virgo Collaboration’s first
GWobservation of a binary neutron starmerger, GW17081739,40, as well
as X-ray observations of three pulsars made by NASA’s Neutron Star
Interior Composition Explorer (NICER) mission: PSR J0030+045141,42,
PSR J0740+662043,44, and PSR J0437–471545. For these observations, we
employ likelihood functions of the source parameters (neutron star
masses, binary tidal deformabilities, radii, etc.) that are proportional to
the posteriors computed in Abbott et al.40 for GW170817, and Riley
et al.41, Salmi et al.46, and Choudhury et al.45 for the three NICER
observations. With wide uniform priors between zero and twice the
mean of their laboratory values on the LECs c1 and c3, the posterior
conditioned on GW170817 is sampled using MCMC, and the posterior
samples are weighted according to the product of the NICER like-
lihoods. Each likelihood evaluation is carried out by evaluating our two
emulators consecutively, thus converting microscopic LECs to mac-
roscopic neutron star observables.

The marginalized two-dimensional posterior distribution on c1
and c3 is shown in Fig. 2. We find essentially no influence of the neu-
tron star observations on the parameter c1 since the effect of c1 on the
EOSof neutronmatter is subdominant compared to that of c347. On the
other hand, given the GW and X-ray observations, we see a clear pre-
ference for less repulsive 3N forces. We attribute this to c3 being
negatively correlated with the pressure inside neutron stars13. Since
GW170817, as well as the X-ray observation of PSR J0470 favor more
compact neutron stars, this translates to smaller pressures in neu-
tron star interiors. The upper bound of the posterior is set by the prior
boundary at c3 = 0GeV−1; however, this boundary is physically moti-
vated since positive values of c3 correspond to an attractive 3N force,
which would lead to the collapse of neutron matter. Although the
posteriormedianof c3 = −2.52GeV−1 deviates from the laboratory value
of c3 = −3.61 ±0.05GeV−1, the laboratory and astrophysical determina-
tions are consistent at the 90% confidence level, albeit with the latter
constraint currently having large uncertainties. Existing neutron star
observations donot offer high-precisionconstraints on the LECs, given
the significant statistical uncertainties present in these observations.

Constraints from next-generation GW observatories
In the next decade, two upcoming next-generation ground-based GW
detectors are expected to begin operations, namely the Einstein
Telescope (ET) in Europe48,49 and Cosmic Explorer (CE) in the United

States50,51. Thesedetectorswill provide a sensitivity that is improved by
an order ofmagnitude over current GWdetectors. Consequently, they
are expected to observe Oð100Þ events with signal-to-noise (SNR)
ratios above 100 per year52–57. Here, we demonstrate how such obser-
vations, at the level of populations of events, can provide stringent
constraints on 3N couplings.

We simulate a population of neutron star merger events that can
potentially be observed within a year-long observing run by a network
of three next-generation detectors. Our detector network consists of
two CEs, each with a 40 km arm length, and one ET with its fiducial 10
km triangular design. For our population model, we assume a uniform
distribution in the range 1–2 M⊙ for the component masses and a
random pairing into binary systems. Furthermore, we assume a con-
stant local merger rate of 170 Gpc−3 yr−1, which is consistent with the
merger rate inferred in Abbott et al.58, and a uniform distribution of
sources in co-moving volume. This results in a total of approximately
400 events within a redshift z of 0.2 observed by the detector network
within one year. A lower merger rate would only affect our results by
increasing the time required to observe the same number of events.
There are many additional events with z > 0.2 that are detected with
lower SNR; however, here we focus on the loudest signals in the
detected population. The underlying EOS explored by our population,
i.e., the EOS that relates the component masses of our simulated bin-
aries to the corresponding component tidal deformabilities, is gener-
ated from our 5-parameter model with c3 = −3.68GeV−1, which is in
agreement with the laboratory value at the 90% confidence level6.

From the detected events in our simulated population, we select
theN = 20highest-SNR events to analyze. Thismost informative subset
is large enough that its chirp masses span the entire range allowed by
thepopulationmodel,with at leastone event in everychirpmass binof
width 0.1M⊙. This choice amounts to a selection cut at an SNR of about

Fig. 2 | Constraints from GW170817 and NICER data. a Shows the posterior
distribution function of the LEC c1. c Shows the posterior distribution function of
the LEC c3. a, c Results are shown for the 2- (blue), 5- (orange), and 7-parameter
(green) models. The quoted errors are for the 7-parameter model evaluated at the
90% confidence level. b Depicts the correlation between c1 and c3 and displays iso-
probability contours at the 68% and 90% confidence levels. The laboratory values
for c1 and c3 from pion-nucleon (πN) scattering experiments are shown in gray.
Source data for this figure are provided as a Source Data file.
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225. Because the SNR depends primarily on the chirp mass, whose
distribution is independent of the EOS in our assumed population
model, this selection cut does not bias the recoveryof EOSparameters.
GW selection effects can thus be neglected in our inference.

The evolution of the uncertainties in c3 as a function of the
number N of observed events, represented at the 90% confidence
level, is shown in Fig. 3. The N events are analyzed using a Bayesian
hierarchical approach59,60 forN = 1, 3, 5, 10, 15, and 20, within the Fisher
matrix approximation61,62. For N = 20, the analysis is repeated using
parameter estimation on zero-noise injections63,64. The zero-noise
realization of Gaussian noise is, in the statistical sense, the most likely
realization56 and, furthermore, the effect of any non-zero Gaussian
noise generally weakens drastically with the SNR. The result matches
well with the corresponding Fisher matrix result (see Fig. 3). This is
consistent with other findings in the literature, see, for example,
Vallisneri65, which demonstrate that, for a four-dimensional Fisher
matrix analysis, an SNR above 20 is typically sufficient for robust
parameter estimation. We find that a single event among the 20
loudest ones observed by next-generation GW detectors in a year
decreases uncertainties by only, on average, a factor of two compared
with uncertainties obtained frompresent astrophysical data. However,
as the number of detections increases, we find that the statistical
uncertainties in c3 decrease approximately as 1=

ffiffiffiffi
N

p
, and thus converge

remarkablywell to the injected value.We seehow inferenceperformed
at the level of populations of events can potentially provide high-
precision constraints on nuclear interactions within a year, competi-
tive with and complementary to terrestrial laboratory data. These
constraints would improve further if events with lower SNR are also
considered. In contrast, the constraints couldweaken in the same time
frame if, for example, the observedmerger rate is lower thanexpected.

Figure 3 also demonstrates the importance of themarginalization
over uncertainties in the high-density EOS, implemented in our fra-
mework in the 5- and 7-parameter models. We find excellent

agreement between the results obtained from these two models.
However, the very simple 2-parametermodel—which does not account
for such uncertainties—is in significant tension with the injected value,
as it converges toward an incorrect c3. This underscores the impor-
tance of allowing for general high-density extensions in order to avoid
systematic uncertainties in the inference of LECs.

Discussion
In this paper,we introduce a framework that allows for the inference of
couplings describing microscopic 3N interactions from astrophysical
observations of neutron stars. Naively, one would assume that the
complex multi-physics calculations required to compute neutron star
observables starting from microscopic Hamiltonians are too compu-
tationally expensive to allow for a full stochastic sampling of the
posterior distribution. We have overcome this challenge by enhancing
our Bayesian inference approach with machine learning. In particular,
we employ two machine-learning methods—the parametric matrix
model33,34 and the ensemble neural-network method38,66—that cir-
cumvent this challenge by drastically speeding up our likelihood
evaluations.

The inference of LECs from neutron star observations provides
several benefits. While LECs can be adjusted to data on atomic nuclei
or scattering, our novel approach makes it possible to constrain
interactions using the densest and most neutron-rich system in the
cosmos. Furthermore, it is possible that improved nuclear interactions
involve not only higher orders in the EFT expansion, but the addition
of new degrees of freedom, such as the Δ resonance67 or hyperons68.
Even existing EFTs that include such degrees of freedom suffer from a
lack of experimental data for their calibration and verification. For all
these cases, astrophysical data provide a viable option for the cali-
bration of the LECs.

While we have chosen to study only the 3N LECs c1 and c3, our
framework is applicable to any sector of the Hamiltonian, provided
that it correlates sufficiently well with the EOS of neutron-rich matter.
This enables consistency checks between constraints from neu-
tron star observations and fromnuclear experiments, which provides a
nontrivial verification of the EFT expansion and its applicability to
calculations of neutron star observables. Our framework also enables
sensitivity analyses of neutron-rich matter that will allow for the
identification of the most important LECs in chiral Hamiltonians for
neutron star observables. In Fig. 3, the extracted value of c3 is in good
agreementwith laboratory data by choice. Sucha resultwith actualGW
data would demonstrate consistency of the EFT approach between
nuclei and densematter. However, a hypothetical convergence of c3 to
a value incompatible with laboratory data—similar to the result for the
2-parameter model—might indicate the breakdown of the EFT and the
appearance of new physics in neutron stars. Our framework also per-
mits us to compare different implementations of EFTs as well as var-
ious many-body methods for strongly correlated quantum systems.
With the advent of next-generation neutron star observations in the
near future, we therefore expect our framework to be a key tool for
inferring LECs and improvements to the EFTs themselves. Our work
thus also demonstrates the importance of building a global network of
next-generation ground-based gravitational-wave observatories.

Methods
High-fidelity EOS model
We require EOS models, connecting the nuclear Hamiltonian to neu-
tron star structure, to generate training data for the machine learning-
based algorithms employed in our Bayesian inference framework. In
this work, we keep theNNpart of theHamiltonianfixed using theN2LO
NN interactions of Entem, Machleidt, and Nosyk (EMN) with cutoff
Λc = 450MeV69, as this part is very well determined fromNN scattering
experiments. At N2LO, a given nuclear Hamiltonian for neutron matter
is then parameterized by the values of the LECs c1 and c3. To generate

Fig. 3 | Evolution of the obtained constraints on c3. We show the prior on c3
(purple) as well as the present astrophysical constraints, which include GW170817
and the NICER X-ray observations of millisecond pulsars but exclude simulated
data from next-generation GW observatories. The inferred c3 for our population
study is then shownas a functionof the number of events observed by a network of
next-generation GW detectors for the 2-parameter (blue), 5-parameter (orange-
dashed), and 7-parameter (green) EOSmodels. We observe that the constraints are
well converged at 20 observations. For the 7-parameter model, the diamond error
bar is obtained by analyzing 20 observations using parameter estimation on zero-
noise injections, whereas the circle error bars are obtained within a Fisher matrix
approximation. We compare the resulting constraints to the injected value and to
the uncertainties in the laboratory result from πN scattering (black). All error bars
represent 90% confidence levels. Source data for this figure are provided as a
Source Data file.
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the EOS from this Hamiltonian, the first step is to solve themany-body
Schrödinger equation. Here, we use MBPT at third order16,18 to calcu-
late the energy per particle of neutron matter between 0.12 fm−3 and
0.32 fm−3 in steps of 0.04 fm−3 for 100 randomly selected sets of LEC
combinations. For symmetric nuclear matter, which is not as impor-
tant but is needed to include the small fraction of protons, we use
empirical properties. We estimate the uncertainty of the MBPT
approach by comparing the difference in results at the second and
third orders. The average (maximum) size of the third-order MBPT
correction is 252 (790) keV across all densities and for all LEC combi-
nations, which ismuch smaller than the overall range of the energy per
particle; see Fig. 1. The correction generally increases with density
away from saturation density. Based on this, we conclude that the
MBPT calculations are sufficiently converged so as not to significantly
impact our results. For thiswork,we use anMBPTcode that is basedon
3N operators in a single-particle basis, as in Drischler et al.16. This
makes it computationally feasible to perform the calculations required
for training our emulators.

Using an MBPT calculation of the EOS of neutron matter, we
compute the EOS for neutron star matter in beta equilibrium up to
2nsat (10nsat) using themetamodel ofMargueron et al.70,71 for our 5- and
7- (2-) parameter models. The metamodel provides a smooth density-
functional-based interpolation between the discrete density-grid
points of the MBPT calculation and allows for a straightforward
extrapolation from the EOS of neutron matter to the EOS of matter in
beta equilibrium, including leptons. The model parameters of the
metamodel are the so-called nuclear empirical parameters (NEPs) that
govern the density dependence of the EOSs of neutron matter and
symmetric matter via a Taylor expansion about nuclear saturation
density, see Margueron et al.70 for more details. Here, we fix the iso-
scalar NEPs to be Esat = −16MeV, nsat = 0.16 fm−3, Ksat = 230 MeV, and
Qsat = Zsat = 0MeV, i.e., we do not consider variations in the EOS of
symmetric matter in this work. On the other hand, the iso-vector
parameters arefit to theMBPT calculationof the energyper particleup
to 2nsat in neutron matter. For the 5- and 7-parameter models, the fit
includes the iso-vector parameters Esym, Lsym, Ksym, and Qsym, i.e., all
the iso-vector NEPs excluding Zsym, which is fixed at 0MeV, in order to
reliably reproduce theMBPT calculation. We found that the difference
between the MBPT calculation and the metamodel result, averaged
over density and different LEC samples, is ~10 keV. For the 2-parameter
model, the NEP Qsym is fixed to Qsym = 500MeV, which results in a
slight loss in the quality of the fit but allows for an extension of the
neutron-star EOS up to 10nsat using the metamodel alone while
ensuring that the symmetry energy remains positive up to this density.
Finally, for all three of our EOS models, the crust EOS of Douchin and
Haensel72 is added below 0.08 fm−3 following the approach of Koehn
et al.73.

For the 5- and 7-parameter models, we account for phenomena
beyond the EFT breakdown scale—such as the appearance of non-
nucleonic degrees of freedom at high densities—by extending the EOS
above 2nsat using the speed-of-sound parameterization15,37. This para-
meterization is agnostic towards the composition ofmatter; themodel
parameters are the values of the squared speed of sound, defined on a
discrete density grid. For the 5- (7-) parameter model, we use three
(five) grid points located at [3, 5, 7]nsat ([3, 4, 5, 6, 7] nsat). Then, for a
given set of sound speeds on the specified grid, the full sound-speed
curve is obtained by interpolating linearly between the grid points. In
both models, the speed of sound at n > 7nsat is taken to be a constant
equal to its value at 7nsat. The full density-dependent speed of sound
can then be integrated to obtain the pressure, energy density, and
baryon chemical potential15,37.

Using the neutron star EOS generated in this manner, we obtain
the neutron star radius R and tidal deformability Λ as a function of the
neutron star mass by solving the TOV equations and the equation for
the quadrupolar tidal perturbation31,32.

Machine learning the EOS model
The sequence of steps required to convert a set of EOS parameters to
neutron star observables, such as the tidal deformability, is computa-
tionally expensive and requires Oð102Þ CPU-h for a single evaluation.
This is prohibitively expensive given that the total number of iterations
required in this work isOð109Þ. We overcome this bottleneck by using
machine-learning approaches to emulate the two steps necessary to
obtain the high-fidelity EOS model and connect it to neutron stars.

The first and most expensive step of generating an EOS model is
the computation of the neutron matter EOS using MBPT. To emulate
this computation, we use the PMM33,34 that combines ideas of both
machine learning and reduced-ordermodeling. In our implementation
of the PMM, the energy per particle in neutron matter at a given
density is represented by the lowest eigenvalue of a 2 × 2 matrix M
given as

M=M0 + c1M1 + c3M3, ð1Þ

whereM0 is a diagonal matrix,M1 andM3 are symmetric matrices, and
c1 and c3 are the two LECs of interest. While the dependence of M is
inspired by the theory of reduced-order modeling and the affine
structure of chiralHamiltonians, thematrix elements ofM0,M1, andM3

need to be learned from data. To achieve this, we sample 100 different
LEC combinations from their uniform prior distribution and calculate
the EOS of neutron matter using MBPT. Then, we divide the set of
100 samples into 30 training and 70 validation samples, and fit the real
matrix elements ofM0,M1, andM3 at each density such that the lowest
eigenvalues of M agree with the MBPT results for the training set.
Results from validating the PMM on the remaining 70 samples are
shown in Fig. 1. To verify the accuracy of our PMM in the posterior
parameter space, we averaged the emulator uncertainty using only
those samples that lie within the span of the posterior on c3 and found
an average of 0.03%. The average (maximum) deviation between the
PMM and the MBPT calculation, averaged over density and the 70
validation samples, is 15 keV (158 keV).

The second step is to solve the TOV equations and the equation
for the quadrupolar tidal perturbation in order to calculate neu-
tron star observables. This process takes only Oð1Þ seconds for each
EOS sample. This computational cost, while far cheaper than theMBPT
calculations, remains a significant hurdle in Bayesian inference fra-
meworks. To overcome the hurdle, we follow the approach of Reed
et al.38 and use an ensemble of feed-forward neural networks66 to
emulate solutions to the stellar-structure equations. To generate
training and validation data, we first sample a set of 200,000 model
parameters from their uniform priors and generate the neutron star
EOS for each EOS model. During this process, we employ the PMM to
calculate the corresponding EOSs of neutron matter for the various
draws for c1 and c3 and use the meta- and sound-speed models for the
neutron star EOSs. For each of the 200,000 EOS models, we solve the
TOV equations using a high-fidelity solver. The resulting data is then
used to train the neural-network emulator, since each sample corre-
sponds to awell-defined input (the EOSmodel parameters) and output
(the neutron star tidal deformabilities). In this work, the neural-
network emulator is onlyused topredict theΛ-M curve andnot theM-R
curve. The latter does not require an emulator, as we perform sig-
nificantly fewer calculations of this quantity.

We evenly split our set of 200,000 samples into training and
validation data and discard all samples that do not reach 2M⊙, i.e., the
neural-network emulator is trained to predict the Λ-M curve only for
those EOS parameters for which the maximum mass MTOV ≥ 2M⊙. For
all EOSmodels, the network architecture is such that it accepts the EOS
parameters as input via the input layer, and then outputs theΛ-M curve
on a grid of 30 points uniformly spaced between 1–2 M⊙. We use five
hidden layers to emulate the 5- and 7-parameter models, whereas we
use two hidden layers for the 2-parameter model. All hidden layers
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consist of 64 nodes. Similar to Reed et al.38, we use an ensemble of 50
(5) neural networks for the 5- and 7-parameter (2-parameter) models,
with all neural networks trained independently and the final output
obtained by averaging over all neural networks in the ensemble.

Validation results for our neural-network-based emulation are
shown in the right panel of Fig. 1. However, since the validation data is
computed using the PMM emulator and not high-fidelity MBPT cal-
culations, the results of Fig. 1 capture only the accuracy of the neural-
network emulator alone and not the full compound emulation uncer-
tainty that also includes the PMM. Therefore, in Fig. 4, we have com-
puted the compound uncertainty using the 70 MBPT samples that
were not used when training the PMM. Each of these samples was
extended to higher densities using the 5-parameter model, and the Λ
−M sequence was subsequently obtained using our high-fidelity TOV
solver. We have checked that our results do not change if the 2- or
7-parameter models are used instead. The error in the predicted tidal
deformability at 1.4M⊙, Δ1.4, while somewhat larger than in Fig. 1, is
sufficiently small for our machine-learning-based analyses to remain
unbiased. Quantitatively, an event with an SNR of ~4000—far higher
than any event considered here—would be required for the average
compound error of 0.2% to be detectable with 90% confidence.

Since the emulator is trained on only those EOS parameter values
that satisfy MTOV ≥ 2M⊙, and therefore capable of making predictions
only for those samples, we require an additional machine-learning
tool, trained and validated on the same sets as above, to identify
whether a sampled set of EOS parameters satisfies this criterion. We
train an ensemble of ten neural networks to perform this binary clas-
sification, where each network accepts the EOS parameters as input
and outputs the probability that the required constraint is satisfied.
The final classification is obtained by averaging over the outputs of all
ten neural networks. We found that for the 5-parameter and
7-parameter models, our classifier successfully identifies samples that
satisfy MTOV ≥ 2M⊙ with an accuracy of 99.9%. In the very few cases
where the classifier fails, themaximummass is usually very close to the
2 M⊙ threshold, and the emulator nevertheless provides a reasonable
emulation. The 2-parameter model does not require such a classifier
since themaximummass constraint is satisfied for all values of c1 and c3
by construction (because the density dependence of the symmetry
energy for the 2-parameter model is stiff enough to support 2
M⊙ stars).

Bayesian analysis of GW170817 and X-ray pulse-profile data
To obtain the posterior P(θ∣d) presented in Fig. 2, we use Bayes’ the-
orem:

PðθjdÞ / LðdJ0030jθÞLðdJ0740jθÞLðdJ0437jθÞLðdGW170817jθÞ
� �

πðθÞ: ð2Þ

Here, θ is a set of EOS parameters, π(θ) is the corresponding prior,
and the likelihood function is obtained as the product of the
likelihoods for different sources of data d: the NICER observations of
PSRs J0030, J0740, and J0437, as well as the gravitational-wave
observationGW170817.Wedonot consider the event GW190425 given
its low SNR74 and negligible impact on the EOS (see, e.g.,
Dietrich et al.21).

As priors, we use uncorrelated uniform distributions for all EOS
parameters. For c1 and c3, the uniformpriors span the range between 0
and twice the laboratory value obtained using the Roy-Steiner
analysis6. For the speed-of-sound parameters, the uniform priors
span the range between0 and the speedof light c. Before analyzing the
gravitational-wave and NICER data, we additionally impose the con-
straintMTOV ≥ 2M⊙ as a hard cut, i.e., π(θ)∝Θ(MTOV(θ) − 2M⊙), whereΘ
denotes a step function. This prior constraint accounts for the radio
observations of heavy pulsars with masses around 2M⊙

75–77 and is
implemented implicitlywhen training the neural-network emulator for
the stellar-structure equations.

In order to evaluate Eq. (2), we first sample the distribution
LðdGW170817jθÞπðθÞ using MCMC78. The relevant likelihood is given by

LðdGW170817jθÞ=
Z

dm1dm2LðdGW170817jm1,m2,Λ1ðm1,θÞ,Λ2ðm2,θÞÞ

×πðm1,m2Þ:
ð3Þ

The prior on the component masses is taken to be uniform in the 1–2
M⊙ range. We do not perform a parameter estimation for
GW170817 starting from the GW strain data, as sampling over the LEC
parameters would dramatically increase the computational cost of
such an analysis, and instead take the likelihood
LðdGW170817jm1,m2, ~ΛÞ—where ~Λ is the binary tidal deformability—to be
proportional to the posterior computed in Abbott et al.40. We use a
Gaussian kernel density estimator (KDE) to construct the probability
density function from the samples calculated in Abbott et al.40. The use
of a KDE might introduce uncertainties as the probability density
function is not always reconstructed accurately by this method.
However, we did not see any significant change in our results when the
bandwidth of the KDE was varied to within 30%. This is consistent with
the general findings in the literature that KDE-induced uncertainties
are subdominant for events that are onlymoderately informative, such
as GW17081759,79. At each iteration of the MCMC sampler, the factor
Θ(MTOV(θ) − 2M⊙) is evaluated by the neural-network classifier, and the
dependence of the binary tidal deformability ~Λ on θ in the above
equation is determined by the emulator of the TOV equations.

To account for the NICER observations, the samples obtained
from the MCMC sampling above are given a weight proportional toQ

iLðdijθÞ, where i indexes the pulsar. The individualNICER likelihoods
are given as

LðdijθÞ=
Z

dMLðdijM,RðM,θÞÞπðMÞ, ð4Þ

where the prior π(M) is taken to be uniform between 1 M⊙ and the
maximal TOV mass MTOV. The function R(M, θ) is determined by sol-
ving the TOV equations using a high-fidelity solver. We approximate
the likelihood functions LðdijM,RÞ to be proportional to the M-R
posteriors for PSRs J003041, J074046, and J043745, respectively, and we
use the hot-spot models corresponding to the main result in each

Fig. 4 | Compound emulator uncertainty. The figure shows the accuracy of our
emulators, where the validation is performedusingbothhigh-fidelity solvers:MBPT
and the full TOV solver. The quoted average error for 1.4M⊙, 〈Δ1.4〉 =0.2%, is an
estimate of the total compound emulator uncertainty, including both the PMMand
the neural network, instead of only the latter. Source data for this figure are pro-
vided as a Source Data file.
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publication. Note that this approximation is not strictly valid for J0740
because a Gaussian prior on the pulsar’s mass, informed by radio
observations, was used to obtain the M-R posterior in Salmi et al.46.
Consequently, the existence of heavy pulsars is effectively accounted
for twice in our analysis: first by applying a hard cut inπ(θ) and then by
the term LðdJ0740jM,RÞ. However, since the Gaussian prior on the
pulsar’s mass used in Salmi et al.46 lies above 2 M⊙ at the 68% CL and
our hard-cut term is constant in this region, we conclude that the
double counting of the pulsar’s mass measurement has only a minor
effect on our results. Ourmain results for themarginal posteriors on c1
and c3 obtained in this manner are shown in Fig. 2.

Recently, the NICER collaboration published a reanalysis of PSR
J0030 using additional data80. In Figs. 5 and 6, we present results on c1
and c3 using two results of this reanalysis: one with the hot-spotmodel
ST+PDT with mass and radius of about [1.4M⊙, 11.5 km] (reanalysis I)
and the other with the hot-spot model PDT-U with a mean at about
[1.7M⊙, 14.5 km] (reanalysis II). While the results of reanalysis I are in
agreement with Fig. 2, reanalysis II leads to a notable difference in the
posterior on c3. However, when considering the 90% CL given in Fig. 3
for the present astrophysical data, this only changes the allowed c3
range from [−6.15, −0.31] GeV−1 to [−6.75, −0.94] GeV−1.

Hierarchical analysis of next-generation events
For our study of the impact of next-generation gravitational-wave
networks, we analyze the N loudest simulated events in a hierarchical
approach using Bayes’ theorem59,60, i.e.,

PðθjdÞ /
YN
i= 1

Z
dm1, idm2, iLðdijm1, i,m2, i, ~Λiðm1, i,m2, i,θÞÞπðm1, i,m2, iÞ

" #
πðθÞ:

ð5Þ

In such an approach, EOS parameters are simultaneously informed by
all of the events, and the full multidimensional posterior is calculated
to properly account for correlations between the various inferred
parameters. While one in principle also has to infer the parameters of
the source population simultaneously with θ, we here circumvent
this issue by choosing the priors on the component masses π(m1, m2)
to be the same as the distribution used to generate the population
of events, i.e., a uniform distribution in the range 1–2 M⊙ for both m1

andm2. Because the populationmodel is fixed and independent of the
EOS, the GW selection bias towards detecting more massive systems
has no impact on the recovery of the EOS parameters and can be
neglected59.

The single-event likelihoods Lðdijm1, i,m2, i, ~ΛiÞ are computed
within the Fisher matrix approximation61,62,81, which is valid for high-
SNR events, using the TaylorF2 waveform model82,83 and the next-
generation detector network described in themain text. This results in
uncorrelated Gaussian likelihoods on the chirp masses, symmetric
mass ratios, and the binary tidal deformabilities. Given that the
quietest event inour sample has anSNRof about 225,wedonot expect
the results of our inference—performed at the level of a population of
events—to be impacted significantly by the Fisher matrix approxima-
tion. In order to verify this, we re-computed all 20 single-event like-
lihoods (proportional to the single-event posteriors) with Bayesian
parameter estimation63. For each event, a zero-noise injection was
created, and the binary parameters were recovered using the hetero-
dyne likelihoodmodel84 implemented in PYCBC64. In Fig. 3, we see that
the results obtained using the Fisher matrix approximation (circle) are
very similar to those obtained using parameter estimation on zero-
noise injections (diamond) for the 7-parameter model at N = 20. This
indicates the validity of employing the Fishermatrix approximation for
the 20 single-event likelihoods.

Fig. 5 | Updated constraints from NICER reanalysis I. a Shows the posterior
distribution function of the LEC c1. c Shows the posterior distribution function of
the LEC c3. b Depicts the correlation between c1 and c3 and displays iso-probability
contours at the 68%and 90% confidence levels. These distributions are obtained by
applying constraints from GW170817 and results from the recent reanalysis of
NICER X-ray observations of PSR J003080. Here, we use the mode with mass and
radius of ~[1.4M⊙, 11.5 km], i.e., using the hot-spot model ST+PDT. Source data for
this figure are provided as a Source Data file.

Fig. 6 | Updated constraints from NICER reanalysis II. a Shows the posterior
distribution function of the LEC c1. c Shows the posterior distribution function of
the LEC c3. b Depicts the correlation between c1 and c3 and displays iso-probability
contours at the 68%and 90% confidence levels. These distributions are obtained by
applying constraints from GW170817 and results from the recent reanalysis of
NICER X-ray observations of PSR J003080. Here, we use the mode with mass and
radius of ~[1.7M⊙, 14.5 km], i.e., using the hot-spot model PDT-U. Source data for
this figure are provided as a Source Data file.
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As in the analysis of GW170817 and the NICER data, the prior π(θ)
is taken to be uniform on all the EOS parameters, along with the con-
straint thatπ(θ) ∝Θ(MTOV(θ)−2M⊙). The posterior distribution defined
in Eq. (5) is sampled using MCMC for different values of N, with the
relation between ~Λ and θ in all 20 single-event likelihoods being eval-
uated by the neural-network emulator.

In Fig. 3, our results for the three EOS models are shown for
N = 1, 3, 5, 10, 15, and 20. Themarginal posteriors on c3 are obtained by
integrating Eq. (5) over all EOSparameters except c3.We average over a
largenumber of orderings of ourN events, i.e., for a givenN, theMCMC
sampling of Eq. (5) is repeated for 100 different permutations of N
events drawn from our pool of 20 events. Upon performing this
average, we find that the statistical uncertainties of the posteriors
approximately obey a 1=

ffiffiffiffi
N

p
behavior, similar to the findings of Landry

et al.59 and Kunert et al.85.
We found that, even at N = 20, the marginal posterior on c1 is

uninformative and is fully determined by the prior in the case of the
5- and 7-parameter models. This highlights that c1 cannot be con-
strained from astrophysical data, even with next-generation detec-
tors, given the lack of sensitivity of the EOS of neutron matter to c1.
For the 2-parameter model, we found a small but noticeable shift of
the posterior towards smaller values of c1. However, this is a con-
sequence of the limitations of the 2-parameter model and further
highlights the importance of the marginalization over the high-
density EOS.

Finally, we note that our constraints on c3 are sensitive to the
assumed value of the EFT breakdown density. In Fig. 7, we have re-
computed our constraints by decreasing the breakdown density from
2nsat to 1.5nsat. The employed high-density model is similar to the
7-parameter model, but with an additional parameter for the squared
sound speed at 2nsat. We find that, when only 20 events are used, the
marginal posterior on c3 significantly broadens, compared to the case
with a breakdown density of 2nsat. However, the constraint tightens as
more events are added. When analyzing almost all 400 events
observed within one year, we find that the posterior shows a remark-
able convergence towards the 2nsat result. This indicates that a lower
value of the EFT breakdown density still allows for significant con-
straints on c3, only with more events required, and that no major
qualitative shift in EFT behavior occurs between the two breakdown
densities. This approach can potentially allow us to constrain the
breakdown density in future work.

Data availability
The posterior samples for GW170817 used in our analysis can be found
at https://dcc.ligo.org/LIGO-P1800061/public87. The mass-radius pos-
teriors from the NICER analyses are available at https://zenodo.org/
records/338644988 (PSR J0030, 2019), https://zenodo.org/records/
823900089 (PSR J0030, 2024), https://zenodo.org/records/682753790

(PSR J0740), and https://zenodo.org/records/1270317545 (PSR J0437).
The datasets generated in this study, including all posterior samples
and emulator training/validation data, have been deposited in this
Zenodo repository91. Source data are provided with this paper.

Code availability
The package GWBENCH81 used to construct the Fisher matrix like-
lihoods can be found at https://gitlab.com/sborhanian/gwbench. The
injection and parameter estimation-based recovery runs were per-
formed using PYCBC64, a publicly available software package that can
be found at https://github.com/gwastro/pycbc. All codes developed
for the analyses in this paper can be found in this GitHub repository92.
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