
Article https://doi.org/10.1038/s41467-025-64785-1

Temporal fingerprints for identity matching
across fully encrypted domains

Shahar Somin 1,2 , Keeley Erhardt1,3, Tom Cohen1,3, Jeremy Kepner1 &
Alex ‘Sandy’ Pentland1

In the digital age, coordinated inauthentic behavior threatens societal stability,
markets, and security. Advances in generative AI amplify these threats, enabling
effortless content creation, amplifying actors’ influence. Detection is hindered
by cross-domain activity, where pseudonymous profiles operate across
encrypted platforms, and by privacy constraints limiting content analysis. In
this study, we propose a robust and scalable cross-domain identity matching
framework, based on bursty dynamics, independent of content or interaction
data. It outperforms state-of-the-art temporal and structural approaches,
remains resilient to incomplete data, and correctly identifies 35% of profiles
after 52 weeks. It scales effectively, attaining AUC 0.78 when matching iden-
tities across 500marketplaces with over 250k daily traders. By framing identity
matching within the “network of networks” perspective, we demonstrate how
coordinated behavior propagates across domains. This dual methodological
and theoretical contribution paves the way for innovative strategies to combat
digital threats in an increasingly complex and adversarial landscape.

In an era characterized by digital ubiquity, the nature of human
interaction has undergone a profound transformation. Historically,
our interactions, whether social or commercial, relied on physical
encounters, bound to a singular persona—our physical identity. How-
ever, with the emergence of online digital platforms, the vast majority
of our activities occur online, facilitating the use of different profiles
for diverse objectives and platforms. The rapid advancements in
generative artificial intelligence (AI) and large languagemodels (LLMs)
have further impacted our digital environments, making content
creation effortless and instantaneous. In this digitally dispersed and
under-regulated landscape, malicious or deceptive use of multiple
online identities hasbecomea growing concern. Indeed, governments,
corporations, and nations alike face serious threats as entities exploit
anonymity and platform diversity to manipulate narratives, influence
public opinion, and disrupt markets, posing risks to societal stability,
economic integrity1, and national security2–4. Detecting and mitigating
such threats across platforms presents considerable challenges, as
malicious activity is often concealed and fragmented across pseu-
donymous identities. Addressing these challenges requires robust

methodologies for linking profiles associated with the same real-world
entities across domains, referred to as the identity matching problem
(Network alignment or user identity linkage are terminologies often
used for this problem as well).

Extensive research efforts have demonstrated that content and
personal attributes, such as age, gender or usernames are effective for
matching profiles across domains. These approaches include both
supervised5–9 and unsupervised10–13 models. However, content-based
models face significant challenges nowadays. First, thewidespread use
of generative AI enables creating numerous variations of the same
narrative effortlessly, making it increasingly difficult to detect content
originating from the same individual. Additionally, the increasing shift
toward encrypted platforms often restricts access to user-generated
content and private attributes, especially across different platforms,
further limiting the effectiveness of these models.

Furthermore, even in anonymized settings, notable cross-domain
identity matching capabilities have been achieved by exploiting the
network of interactions14–23 or individual metadata, such as profile
trajectories24. However, such structure-based models face several
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limitations. Different platforms often exhibit distinct types of con-
nections, leading to unique structural patterns that may hinder the
effectiveness of these methods. Additionally, the sheer volume of
structural information, especially when considering k-hop neighbors
and the dynamic nature of connections, makes comprehensive data
collection a difficult task. Even when structural data is completely
available, running such models at scale is computationally expensive
and even infeasible at times.

Building on the concept of “network of networks”25–27, wepropose
that distinct domains are implicitly connected through profiles con-
trolled by the same entity. These hidden connections enable external
events to propagate like shock waves, influencing actions across
otherwise disconnected platforms. The temporal traces left by these
actions, such as the timing of phone calls, digital transactions, or social
media activity, offer measurable indicators of the underlying connec-
tions, bridging the gap between implicit links and explicit observable
data. Bursty patterns of human behavior28, represented by the gap
between consecutive activities of the individual (inter-event times),
offer a distinct perspective of human dynamics, emphasizing the fre-
quency of activity, rather than precise timing of individual events.
These distributions were previously encountered in many and diverse
types of activities, including individual mobility patterns, e-mail com-
munications, instant messaging, web browsing, and mobile phone
calls29–34.

In this study, we demonstrate that beyond conforming to a heavy-
tailed distribution, bursty patterns are uniquely personal and can
effectively characterize an individual, even upon acting across differ-
ent platforms. Interestingly, these patterns provide a distinctive sig-
nature, better than the network of interactions and the actual timing of
activity, enabling the detection of multiple profiles corresponding to
the same individual, across different encrypted domains. We demon-
strate the bursty model’s performance on two use-cases: across dif-
ferent financial platforms and across different social platforms. First,
we show that ourmodel outperforms various state-of-the-art temporal
and structural models, presenting an average area under the receiver
operating characteristic (ROC) curve (AUC) of 0.86, across two
examined financial marketplaces. We further demonstrate its high
stability over time, enabling the correct identification of 35%of profiles
even after an entire year, by examining at most 10 candidates for each
profile. This suggests that the temporal fingerprints last not only
across domains but also for long periods of time. We additionally
evaluate the model’s scalability, applying it across 500 different mar-
ket places, encompassing the activity of over 250k daily traders. The
identity matching problem across these domains presents a notably
low baseline, as merely 3 out of 1000 randomly selected profile pairs
actually correspond to the same individual. Nevertheless, our metho-
dology achieves an average AUC of 0.78 and precision of 96% for the
top-100predictions. Finally, we show that themodel is generalizable to
other types of domains, establishing an AUC of 0.63 for matching
identities across Twitter, Telegram and Instagram data, and achieving
AUCs of 0.77 and 0.89 for matching identities across different sub-
reddits and across different Telegram channels, respectively.

As the digital world enables the effortless creation of different
content based on the same narrative content-based identity matching
models become increasingly hindered. In parallel, the growing adop-
tion of privacy-preserving measures further restrict access to identi-
fying content. Accurately matching identities across platforms under
these constraints becomes more challenging, but is inherently essen-
tial for uncovering patterns that extend across fragmented digital
environments. By leveraging bursty individual patterns, our model
provides a robust solution for linking identities within and across
encrypted and content-restricted domains. Additionally, compared to
other state-of-the-art temporal and structural methods with sig-
nificantly higher computational complexity, our approachoffers a vital
advantage in enabling fast and accurate detection at scale. By enabling

accurate identity matching across domains, even when content and
network structure are absent, the proposed methodology provides a
critical building block for detecting coordinated behavior across
fragmented systems. Coupled with the suggested broader perspective
on the mechanisms driving cross-domain coordination, this work lays
a robust foundation for advancing threat detectionmethodologies in a
rapidly evolving digital landscape, where traditional methods often
fall short.

Results
Preliminaries
In this study, we aim at identifying individuals across different
encrypted domains. Specifically, we aim at learning an identity
matching function:

Definition 1. Given D1, …, Dn different domains, the goal of the cross-
domain identity matching problem is learning a function:

p :
[

i, j2½n�
Di ×Dj ! ½0, 1�

such that pðud1
, vd2

Þ represents the probability that the profiles ud1
2 D1

and vd2
2 D2 are associated with the same real-world indivi-

dual (ud1
= vd2

).

The vanilla inter-event bursty model. We propose exploiting indivi-
dual temporal data for linking profiles back to the same individual
across different domains. Specifically, we analyze individual bursty
patterns, manifested as the time difference between any two con-
secutive activities of each profile. Formally:

Definition 2.Given a time period [τ, τ +Δτ] and a profile ud in domain D,
we denote the sequence of their activity times Aud

τ � τ, τ +Δτ½ � by:

Aud
τ = ðtud

0 , . . . , tud
m Þ ð1Þ

An inter-event time period is defined as the time difference between
two consecutive activities of ud:

Δtud
i = tud

i � tud
i�1 ð2Þ

The inter-event time sequence is defined by:

Sud
τ = ðΔtud

1 , . . .Δtud
m Þ ð3Þ

The cumulative distribution function of the inter-event sequence is
defined as:

Qud
τ ðΔtÞ= jδ 2 Sud

τ : δ ≤Δtj
m

ð4Þ

Ourbursty identitymatching functionpks is basedon the similarity
between the established inter-event time distributions of any two
profiles, estimated by the Kolmogorov–Smirnov (KS) statistic:

Definition 3. Let ud1
2 Dτ

1 and vd2
2 Dτ

2, and their corresponding inter-

event time distributions Q
ud1
τ and Q

vd2
τ . The KS-statistic is defined as the

maximal difference between their distributions:

KSτ ðud1
, vd2

Þ= supΔt jQ
ud1
τ ðΔtÞ � Q

vd2
τ ðΔtÞj ð5Þ

We define the corresponding identity matching function pks
τ as:

pks
τ ðud1

, vd2
Þ= 1� KSτ ðud1

, vd2
Þ ð6Þ
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We postulate that different profiles pertaining to the same indi-
vidual are bound to exhibit synchronization in their activity dynamics,
despite acting on different domains. Themotivation to this hypothesis
is presented in Fig. 1, observing two pairs of profiles:
1. A positive pair: ud1

and ud2
, correspond to the same individualu in

financial trading markets D1
τ and D2

τ respectively, illustrated illu-
strated in Fig. 1a (orange and cyan markers).

2. A negative pair: vd2
and wd3

, corresponding to different indivi-
duals in two different financial trading markets v 2 D2

τ , w 2 D3
τ ,

illustrated by red and green markers in Fig. 1a.
Both pairs present similar degrees (illustrated in Fig. 1a) and

resembling overlap in activity times: 37% of the time for the positive
pair and 42% for the negative pair, illustrated in Fig. 1b, d, respectively.
Nevertheless, the negative pair presents significantly different inter-
event time distributions, establishing a KS distance of
KSτ ðvd2

,wd3
Þ=0:47 with a p value of 5e−27 (Fig. 1e), while the positive

pair presents a high similarity of the inter-event distributions, with
KSτ ðud1

,ud2
Þ=0:031 and a p-value of 0.99 (illustrated in Fig. 1c). This

illustrates that burstiness patterns are able to characterize the profiles
pertaining to the same individual better than basic temporal and
structural patterns.

Experiments on financial markets
Identifying collusive trading practices, fraudulent accounts, and
coordinated market manipulations, often concealed under multiple
pseudonymous profiles to evade detection, is essential for ensuring
the integrity of financial systems and maintaining market stability. We
examine 2k traders transacting on two different financial trading
markets, on top of the Ethereum blockchain35–37. In this setting, we
refer to afinancial tradingmarketDi

τ as encompassing all of the trading
activity related to the respective crypto-token ci and time period
[τ, τ + Δτ] where Δτ stands for single day length:

Di
τ = fu : ubought or sold ci in ½τ, τ +Δτ�g ð7Þ

We wish to evaluate the performance of the vanilla inter-event
bursty model and compare it to baseline models exploiting
structural14,15,19,20 and temporal38–41 node characteristics (consider
section “Methods” for a formal definition). Figure 2 presents the
performance analysis of these models. Specifically, we consider 14
days of activity over two examined financial trading markets D1

τ ,D
2
τ

and evaluate the performance on each day separately. Figure 2a
presents the comparison of the AUC (ROC curve), and Fig. 2b depicts
comparison of the precision established for each threshold of top-
ranked profile pairs ðud1

, vd2
Þ. Both metrics indicate that structure-

basedmodels demonstrates limited efficacy in linking profiles across
different domains, highlighting the greater significance of tempor-
ality in this context (consider section “Discussion” for a thorough
discussion). The vanilla inter-event bursty model outperforms all
temporal baselines, suggesting that while the bursty dynamics are
closely related to an individual’s actual activity times, the latter is less
effective in capturing the nuances required for an accurate individual
fingerprint.

Stability and robustness
We further wish to evaluate the ability to match profiles across
domains even after long periods of time. In particular, given a user u
with a profile ud1

2 Dt0
1 , active during [t0, t0 + Δτ] in domain D1, we

define the similarity of ud1
to other profiles in the second domain, after

a time delay τ as:

KSt0, τ ðud1
, vd2

Þ= supΔt jQ
ud1
t0

ðΔtÞ �Q
vd2
t0 + τ ðΔtÞj ð8Þ

The corresponding identity matching function is:

pks
t0, τ

ðud1
, vd2

Þ= 1� KSt0, τ ðud1
, vd2

Þ ð9Þ

Wedefine the identification probability of u at time τ as the probability
that pks

t0, τ
ðud1

,ud2
Þ is within the top-k rankedmatches for ud1

. Figure 3a,
b present the identification probability as a function of the examined
time delay τ, for k = 5 and k = 10 correspondingly. While the identifi-
cation probability decreases with the length of delay, the performance
remains rather highwith 25% (35%)of users correctly identifiedwithin 5
(10) matches, even after a year long, outperforming baseline temporal
models.

Next we examine the robustness of our suggested model to data
omission. Indeed, incomplete data is a common challenge in today’s
era of massive data generation, making it crucial to understand its
implications.We randomlyomitΔof eachprofile’s activity timeswithin
the different domains and analyze the omission effect. Figure 4a pre-
sents the cumulative inter-event time distributions of two examined
profiles, which pertain to the same individual, after randomly omitting

vd2

ud2

ud1

wd3

D1

D2

D3

a

b

c

d

e

k = 306

k = 268

k = 249

k = 275

Fig. 1 | Synchronization of burstiness patterns. a illustrates the daily networks of
three financial tradingmarketsD1

τ ,D
2
τ andD3

τ , each corresponding to the trading of
a different crypto-token. Profiles ud1

(degree k = 306) and ud2
(degree k = 268)

correspond to the same individual (illustrated by orange and cyan markers). Pro-
files vd2

(degree k = 249) and wd3
(degree k = 275) pertain to different individuals

(illustrated by red and green markers). b presents the activity times of ud1
and ud2

,

reaching an activity overlap of 37%. d presents the activity times of vd2
and wd3

,
reaching an activity overlap of 42%. c depicts the cumulative inter-event times
distributions ofud1

andud2
, exemplifying similar distributions (KSτ ðud1

,ud2
Þ=0:031

with a p value of 0.99). e depicts the cumulative inter-event times distributions of
vd2

and wd3
, exemplifying significantly different distributions (KSτ ðvd2

,wd3
Þ=0:47

with a p-value of 5e−27).
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Δ ∈ [50%, 75%, 90%] of their activity, compared to their original dis-
tributions. Notably, the pre- and post-data omission distributions
change significantly, and the similarity between the two profiles
decreases with Δ. Figure 4b depicts the change to the average KS
distance as a function of the originalKS, presenting anon-monotonous
effect of data omission on profile similarity. Encouragingly, this indi-
cates that both originally highly similar and highly distinct profiles are
more robust to data omission, compared to profile pairs that originally
had medium-level similarity, and are more prone to be affected by
incomplete data. We further wish to estimate the data omission effect
on the performance of the identity matching model. Figure 4c, d
depict correspondingly the AUC andprecision for eachof the different
levels ofΔ, indicating the decrease caused by incomplete data. Despite
this expected decrease in performance, the vanilla inter-event bursty
model, evenunder 90%data omission threshold, outperforms state-of-
the-art temporal models, applied with only 50% omission threshold
(consider Supplementary Fig. 3). This result underscores the model’s
relative robustness and its effectiveness in capturing individual fin-
gerprints, even under severe data limitations.

Scalability: Bursty-GNN for temporal similarity networks
To further enhance the vanilla version of inter-event bursty model, we
proposeemploying a temporal graphneural network (TGNN)on topof
cross-domain similarity networks Gτ

ks = ðV τ , EτÞ where edges link pro-
files across different domains, and edge weight is reflected by the KS
distance between the inter-event time distributions of any pair of
profiles.We employ a supervised learning approach to train the TGNN,
using edge labels inferred from the KS statistic metric:
1. Positive edges: two profiles ud1

2 Dτ
1 and vd2

2 Dτ
2 are linked by a

positive edge if KSτ ðud1
, vd2

Þ≤ thp, where thp is a predefined
positive threshold.

2. Negative edges: two profiles ud1
2 Dτ

1 and vd2
2 Dτ

2 are linked by a
negative edge if KSτ ðud1

, vd2
Þ≥ thn, where thn is a predefined

negative threshold.

We employed thp = 0.001 and thn = 0.98 as the predefined
positive and negative thresholds, respectively. The proposed TGNN
setting utilizes labels inferred from the KS statistic and does not rely
on actual identity labels. As such, it is applicable to the unsupervised
setting we are examining. The Bursty-TGNN learns a latent embed-
ding for all profiles, which is utilized subsequently for a cross-
domain edge detection task. Figure 5a illustrates the two-layer
Bursty-TGNN employed on the daily similarity networks. An elabo-
rated overview of the TGNN architecture can be found in the Sup-
plementary Materials.

In order to evaluate the Bursty-TGNN, we consider an identity
matching problem of higher complexity, where we do not restrict the
experiment to the two-domains use-case. This setting, alongside ver-
ifying the performance of the Bursty-TGNN, will assist in examining its
scalability by identifying profiles across over 500 financial trading
markets, while considering over 250k daily users. The performance
was evaluated for the vanilla bursty model, the Bursty-TGNN model
comparing them with temporal baseline models only. The structural
baseline models did not scale effectively, preventing us from evaluat-
ing their performance in this challenge.

The identity matching problem across these domains pre-
sents a notably low baseline, as merely 3 out of 1000 randomly
selected profile pairs actually correspond to the same individual
(dashed horizontal red line in Fig. 5c). Figure 5b, c depict,
respectively, the average AUC and precision for the multi-domain
setting. Notably, up to the top-200 pairs the vanilla inter-event
bursty model outperforms the temporal baselines, reaching
almost error-less precision on average. Furthermore, the Bursty-
TGNN extension (dashed purple curve, Fig. 5c) presents a per-
formance boost when run on the top-1000 inter-event similarity
edges (dashed vertical gray line in Fig. 5c marks the top-1000
threshold), underscoring the evolving role of each profile within
the overall network and the hidden potential in this dynamic view
for solving the identity matching task.

a b

Fig. 2 | Performance evaluation for the cross-domain identity matching pro-
blem. Comparing the inter-event bursty model (pks) and temporal (blue shaded)
and structural (yellow shaded) baselines. a presents the averagedAUC over 14 daily
tests, with error bars standing for standard error. b presents the average precision

as a function of the examined number of pair candidates (with ±1 standard error in
light background, correspondingly). The inter-event bursty model presents higher
performance than baseline methods across all examined metrics.
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Experiments on social media
Identifying coordinated inauthentic behavior across social media
domains is essential, since malicious entities frequently employ bots,
troll farms, or fake accounts to avoid detection and reinforce targeted

narratives. These tactics are often aimed at shaping public sentiment,
influencing elections, and steering political landscapes. Platforms like
Twitter (X) and Telegram, widely used for real-time news sharing,
opinion formation, and group coordination, are particularly appealing

ks = 0.039

ks = 0.121

ks = 0.192

ks = 0.081

a b c d

Fig. 4 | Robustness to incomplete data. a depicts the cumulative inter-event time
distributions of two examined profiles, which pertain to the same individual, after
randomly omitting Δ∈ [50%, 75%, 90%] of their activity, compared to their original
distributions. Notably, the similarity deteriorates with increase in Δ. b presents the

non-monotonous effect of data omission on the average KS distance change as a
function of the original KS distance. c, d present the AUC and the precision of pks

upon different noise omission thresholds, presenting a slight decrease in perfor-
mance. Error bars (c) and light shaded background (b, d) represent standard error.

a b

Fig. 3 | Temporal fingerprints stability. The identification probability of a user
depending on the time delay from their initial observation, for k = 5 and k = 10, in
(a, b) correspondingly. Despite the evident decrease of the identification prob-
ability as the delay between observations increases, the vanilla bursty model (dark

red curve) is able to correctly identify 25% of the users within 5 ranks, and 35%
within 10 ranks, after a delay of an entire year, outperforming the baseline temporal
models (green-shaded curves). Shaded background represents ±1 standard error.
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to actors seeking to amplify influence across diverse audiences. A
critical step toward detecting such campaigns is the ability to accu-
rately match identities across distinct platforms, especially when
pseudonymity and content encryption hinder profile attribution
across domains. In this experiment, we examine 266 profiles: 126
Twitter, 120 Telegram and 20 Instagram, corresponding to 131 differ-
ent entities, on a weekly basis (Δτ = 7 days), for 8 weeks. Figure 6
presents the performance of the vanilla inter-event model and com-
parisons to the temporal baselines. The vanilla inter-event model
outperforms the baseline models, attesting to the generalizability of
the model to different platform types. To further evaluate general-
izability, we conducted two additional identity matching experiments.
The first experiment consists of matching profiles across different
Reddit forums (sub-reddits), and the second one involved matching

profiles across different Telegramchannels. These analyses, presented
in Supplementary Fig. 4, yielded higher performance than the Twitter-
Telegram-Instagram setting and provide additional evidence for the
generalizability of burstiness-based identity matching across diverse
social media contexts.

Discussion
The widespread accessibility of generative AI and LLMs has made text
generation remarkably fast and effortless, placing powerful tools
within the reach of all. These technological advancements have led to a
significant rise in manipulative cross-platform activity including the
spread of sophisticated influence campaigns, which are now far more
challenging to detect using content-based models due to their versa-
tile and easily adaptable nature. Privacy restrictions, though essential

a b

Fig. 6 | Performance evaluation of the inter-event similarity method (pks) for
identity matching across social media platforms and comparison to temporal
baselines. a depicts the averaged AUC over 8 weekly tests, with error bars sig-
nifying the standard error. b resents the average precision as a function of the

examined number of pair candidates (with ±1 standard error in light background,
correspondingly). The inter-event bursty model presents similar AUC and higher
precision, comparing with baseline temporal models.

Fig. 5 | Scalability and the Bursty-TGNN. a presents the architecture of the 2-layer
TGNN on top of temporal similarity networks. b, c present the average AUC and
precision of the Bursty-TGNN, the vanilla bursty model and various temporal

baseline models on the multi-domain identity matching problem, with the Bursty-
TGNN manifesting an evident enhancement to the top-1000 precision. Error bars
(b) and light shaded background (c) represent standard error.
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for safeguarding individuals, hinder the analysis of cross-domain pat-
terns and correlations, which are crucial for identifying such coordi-
nated activities. Countering these evolving threats across
disconnected domains requires accurate identity linkage as a foun-
dational step.

This study underscores the potential of temporal patterns, spe-
cifically individual burstiness, as a robust and scalable framework for
cross-domain identity matching. We demonstrate that individual
bursty dynamics form temporal fingerprints that persist across dif-
ferent platforms and over long periods of time, enabling accurate
cross-domain identity matching. Our model outperforms state-of-the-
art temporal and structure-basedmodels in two experimental settings
(Figs. 2 and 6), proving its generalizability. We demonstrated that the
suggested model is stable over time, and is able to correctly identify
35% of the users even after an entire year, by examining at most 10
candidates for each profile (Fig. 3b). We further assessed the model’s
robustness to incomplete data and its impact on individual temporal
fingerprints. We demonstrated that despite omitting various fractions
of the individual’s activity, temporal fingerprints remain similar, in
particular for originally highly similar profiles (Fig. 4a, b). Although this
affected the predictive ability of the model, it was still able to attain an
AUC of 0.82 after an omission of 50% of individual activity (Fig. 4c).
Lastly, we demonstrated that our model is highly scalable, out-
performing the temporal baseline models in a setting involving 500
distinct domains (Fig. 5b, c), where all examined structure-based mod-
els failed to scale effectively. The limitations of structure-based models
and the high computational complexity of existing temporal models
highlight the advantages of our model as an efficient alternative,
enabling real-time deployment on resource-limited devices.

Beyond the practical applications of cross-domain identity
matching across encrypted domains, a deeper question emerges: why
are temporal signals more informative for linking identities than
structural ones? We postulate that structural patterns, influenced by
connection type (e.g., trading, social, or professional networks), vary
significantly across different platforms, obscuring structural coordi-
nation and hindering cross-domain identity matching. In contrast, the
manifestation of temporal regularities stems from the interconnected
nature of distinctdomains. To explain this observationmore generally,
we turn to a theoretical perspective that captures how coordination
can emerge across disconnected systems. Building on the “network of
networks” framework25–27, we consider coordinating individuals as
bridges, implicitly linking seemingly disconnected domains. External
events propagate as shock waves through this interconnected struc-
ture, while influencing coordinating entities across domains and trig-
gering their actions. These actions, even if not simultaneous, often
exhibit similar bursty patterns (see ref. 42 for formalmodeling). Cross-
domain identity matching, where a single entity controls multiple
profiles across distinct platforms, offers a concrete example of this
mechanism. The user’s profiles implicitly connect otherwise dis-
connected domains: activity triggered by interaction or coordination
on one platform can lead the same entity to act on another platform,
thereby transmitting influence across systems, leading to similar
bursty patterns. While previous studies primarily modeled human
burstsiness based on isolated individuals, disregarding environmental
effects28,43–46, we offer a broader perspective, attributing alignedbursty
behavior to shock waves traversing the network of networks.

These findings carry implications beyond the specific task of
identity matching. In network science and computational social sci-
ence, individual behavior is often modeled through structural rela-
tionships or semantic content. Our results suggest an alternative
approach, modeling individuals based on the timing and dynamics of
their actions. This temporal perspective enablesmodeling behavioral
regularities across platforms, even in the absence of observable
connections or shared metadata. By demonstrating that temporal
signals are sufficient for identifying persistent behavior, our work

positions time as a foundational dimension in understanding indivi-
dual roles and coordinated activity within complex and fragmented
systems.

Finally, it is worth considering whether coordination signals
arising from bursty dynamics can be obscured. Our robustness ana-
lysis for the identity matching use-case (Fig. 4) reveals that despite
omitting significant activity portions, most users remain identifiable.
We hypothesize that this robustness may extend to themore general
coordination scenario. Specifically, since many online settings are
designated for timely responses, obscuring coordination from tem-
poral signals is inherently challenging, as individuals naturally
respond promptly to external shocks. Attackers may attempt to
distribute actions over time using hidden agents, but such strategies
are impractical. For instance, delayed transactions in money laun-
dering raise suspicion, and dispersed actions weaken coordinated
attacks’ impact, suggesting that ultimately, attempts to obfuscate
coordinationmay undermine the purpose of the coordinated activity
itself.

Limitations and future research
An intrinsic limitation of our study is the need for sufficient individual
data to reliably estimate inter-event distributions. Future research
should examine how identification probability depends on activity
volume and inspected period length. Our preliminary analysis
demonstrates that identification probability increases with activity
volume (Fig. S2) but decreases with longer inspection periods (Fig. S5),
indicating short-term patterns are more effective for matching pro-
files. The choice of similarity measure also impacts performance, and
alternative methods, such as those in ref. 47, could be evaluated.
Further improving model scalability, possibly using complexity-
reduced versions of the KS statistic48 and optimizing search algo-
rithms, is another promising direction. In addition, while our current
approach is fully unsupervised, it would be valuable to explore the
effect of incorporating limited supervision, such as fine-tuning with a
small set of labeled identity pairs, to further enhance performance in
low-resource scenarios. The authors intend to pursue these directions
in future research.

Methods
Data
Financial markets data. We consider the Ethereum blockchain35–37,49,50

as our financial dataset. This encrypted financial ecosystem enables
the trading of tens of thousands of different crypto-tokens, using a
single Ethereum wallet. Broadly, a crypto wallet is a digital tool that
securely stores and manages the user’s cryptocurrency holdings,
allowing the user to send, receive, and monitor their digital assets on
blockchain networks. The address of a crypto wallet serves as a
unique identifier, similarly to an account number in traditional
financial systems. Since a single Ethereumwallet can be employed for
the trading of all Ethereum-based crypto-tokens, it can be used as the
trader’s identifier across different crypto-domains, for validation
purposes (ground truth). We refer to a financial trading market Di as
encompassing all the trading activity related to the respective
crypto-token ci. We consider two different experimental settings
over this dataset.
1. Two-domain setting: Considering 14 days of trading activity

across two domains only, encompassing the activity of 2k
daily users.

2. Multi-domain setting: Considering 14 days of trading activity
across 512 financial domains, encompassing the activity of 250k
daily users.

Both settings contain temporal data on an individual level gran-
ularity and network data, where an edge (u, v)∈ Vi represents that user
u sold crypto-token i to user v.
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Social platforms.
1. Cross Twitter-Telegram-Instagram: This dataset contains posting

activity from 266 user profiles: 126 Twitter (X), 120 Telegram, and
20 Instagram, corresponding to 131 different individuals. The data
was collected over a period of eight weeks (June 1 - July 28, 2024).
We manually generated the ground truth labels for this dataset,
relying on profile name similarity (for instance, “foo_networks” on
Twitter and “FooNetworks” on Telegram), profile biographies,
officialwebsites, andother public sources of information (articles,
Linktree) that indicate affiliation with the same individual or
organization. The experiment on this dataset involved analyzing
eight weekly activity snapshots of these users from all three social
platforms. Each snapshot contains merely temporal data in the
form of individual posting times, and lacks network data in the
form of retweets, re-posts, likes and other connections.

2. Cross sub-Reddits: This dataset contains user-level temporal
posting activity in multiple Reddit51 forums (sub-Reddits), span-
ning over 3,075 users with verified activity in 2848 sub-reddits
over a 19-week period. Ground truth for this dataset was defined
based on shared Reddit accounts appearing in different sub-
Reddit contexts. The experiment on this dataset entailed
analyzing 19 weekly activity snapshots of these users on top of
all active sub-Reddits. Each snapshot contains merely temporal
data in the form of individual posting times, and lacks network
data in the form of replies or mentions.

3. Cross Telegram Channels: This dataset contains posting activity
from 248 Telegram users across 175 different channels, such that
each user has posted in 2 or more of the channels. The data was
collected over an 8-week period aggregated into weekly bins
(Δt = 7 days). Ground truth for this dataset was defined based on
shared Telegram accounts posting in different channels. Each
of the eight snapshots contains merely temporal data in the form
of individual posting times, and lacks network data in the form of
replies or mentions.

Temporal graph neural network
We employ a temporal graph neural network (TGNN) on top of cross-
domain similarity networks Gτ

ks = ðV τ , EτÞ, as described in section
“Scalability: Bursty-GNN for temporal similarity networks.” We frame
this problem as a link prediction task, aiming to unveil potential con-
nections within these similarity networks over time. Specifically, the
task is identifying which profile pairs should be linked as corre-
sponding to the same individual. This approach aligns with our
objective to identify the implicit links between profiles, represented by
edges in the similarity network, rather than to predict future transac-
tion activity, as would be the case if we performed link prediction on
the original transaction network. For eachprofile, we calculate 16 node
features. Features include transaction counts, inter-event time statis-
tics, and graph-based metrics like in-degree, out-degree, clustering
coefficient, closeness, betweenness centrality, and PageRank. We use
RobustScaler for feature normalization to mitigate the effects of out-
liers. Node features are recalculated daily to reflect the evolution of
transaction behavior, providing a consistent set of features for train-
ing, validation, and evaluation.

Training. We employed supervised learning to train the TGNN, using
edge labels informed by KS statistic measures. Positive training edges
were defined as KS ≤ ρp, where ρp = 0.001, and negative training edges
were defined as KS≥ ρn, where ρn = 0.98. A weighted binary cross-
entropy loss function was used to counter class imbalance:

LBCE = � 1
N

XN

i= 1

wi � yi � logðσðlogitsiÞÞ+ ð1� yiÞ � logð1� σðlogitsiÞÞ
� �

ð10Þ

where LBCE is the binary cross-entropy loss, N is the number of
samples, wi is the weight for sample i, yi is the true label, σ is the
sigmoid function, and logitsi are the raw scores from the classifier.

TheAdamoptimizer, initializedwith a learning rate of0.0001,was
employed along with a ReduceLROnPlateau scheduler. Training was
conducted for up to 100 epochs with early stopping to avoid over-
fitting. The data snapshots were divided into 80% for training and 20%
for validation. A dropout rate of 0.5 was applied to the model. Each
input node featured 34 attributes. TheGConvGRUandGATConv layers
were configured with 64 hidden units, and the output embedding
dimension from the linear layer was set to 32.

Evaluation. We assessed the TGNN’s capability to link Ethereum pro-
files against the baseline inter-event time distribution similarity. Con-
sistent node features were used, and evaluation was performed across
wallet activity for all days in the study period. The TGNN predicted the
likelihood of an edge existing for each pair within two sets indepen-
dently. First, previously seen edges, i.e., the 146positive training edges.
Then, the next 1000 most likely edges as ranked by KS score, corre-
sponding to edges with a KS distance measure between 0.001 and
0.02616. The second set of edges had not previously been seen by
the model.

Comparison baseline models
In this study, we compare the performance of the vanilla burstymodel
to various state-of-the-art models. We use each model in order to
establish an embedding of the profiles, across the different domains.
We apply cosine similarity on all embedding pairs to form a score,
indicating the certainty that both profiles correspond to the same
individual.

Structure-based models. We first compare against four baseline
models, which rely on network data.
1. REGAL14: A spectral method solving the network alignment pro-

blem using network topology and nodes’ feature similarity, fol-
lowed by a low-rank matrix approximation speed-up.

2. IsoRank15: A spectralmethodpropagating pairwise node similarity
over the network employing the homophily assumption (profiles
pertaining to the same individual across two domains would have
similar topological network environments).

3. NAWAL19: Combines generative adversarial deep neural network
with structural similarity to calculate node embeddings.

4. GAlign20: Calculates node embeddings using a multi-order Graph
Convolutional Networks (GCN) to capture local and global
structural information.

Temporal models. Foundation models are large-scale, pre-trained
machine learning models, typically based on transformer
architecture52,53, designed for a wide range of downstream tasks across
diverse domains. Building upon the success of foundation models in
language and vision, foundation models for time series are large pre-
trainedmodels that capture complex patterns in temporal data across
diverse domains and used for tasks like forecasting, sequence classi-
fication, anomaly detection, and imputation. In recent years, numer-
ous foundationmodels for time-series analysishavebeen introduced54,
each employing unique methodologies to enhance forecasting accu-
racy and efficiency.

In this paper, we benchmark our bursty model against four SOTA
foundation models for time-series analysis: CHRONOS, MOMENT,
PatchTST, and GPT4TS. These models have been trained on datasets
from various domains, spanning electricity, traffic, weather, and
health, as well as the UCL and UEA collections. Given the scarcity of
labeled data in many domains in time-series analysis, a particularly
critical challenge for foundation models is zero-shot learning, which
refers to the ability to perform tasks on unseen data without requiring
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additional training or fine-tuning55. Benchmarking on zero-shot tasks
evaluates the robustness and versatility of pre-trained models, high-
lighting their potential for real-world applications where task-specific
data is limited or unavailable. Importantly, all models were reported to
support zero-shot learning, and were evaluated on such settings.
1. GPT4TS56: Leverages pre-trained language models, specifically

GPT-2, for time-series analysis. By treating time-series data
similarly to textualdata,GPT4TS applies the strengths of language
models for forecasting tasks. The model fine-tunes the embed-
ding layer, normalization layers, and output layer of GPT-2 to
accommodate time series inputs, while keeping the self-attention
and feedforward layers of the model unchanged. The model’s
short- and long-term forecasting performance has been tested on
ETT, Weather, ILI, and ECL datasets57 (Zhou et al.56; Ma et al.41),
including zero-shot experiments on the ETT-H and -M datasets.

2. PatchTST40: A prominent transformer-based model tailored for
long-term, multivariate time series forecasting. A key feature of
the model is segmenting time-series data into subseries-level
patches, which serve as input tokens to the transformer. This
reduces the computational load by decreasing the length of input
sequences and thereby lowering the time and space complexity
associated with self-attention mechanisms. For zero-shot perfor-
mance evaluation, it is tested on a diverse array of datasets
spanning healthcare, finance and economics, retail and energy.

3. Chronos39: A family of pre-trained probabilistic time-series
models that adapt language model architectures for time-series
forecasting and encoding tasks, with parameter sizes ranging
from 8 million (tiny) to 710 million (large). The model tokenizes
time series data through scaling and quantization, enabling the
application of language models to the data. The models are pre-
trained on a collection of 13 datasets, encompassing energy,
transportation, weather, and web traffic and have been evaluated
on a wide range of datasets. For zero-shot performance, it is
further tested on a wider array of datasets, including healthcare,
retail, banking, and more.

4. Moment38: A family of foundation models designed for general-
purpose time-series analysis. It addresses challenges in pre-
training large models on time-series data by compiling a diverse
collection of public datasets, termed the “Time Series Pile”, which
spans 5 large public databases. Moment employs multi-dataset
pre-training to capture diverse time-series characteristics, enhan-
cing its adaptability across various tasks such as forecasting,
classification, anomaly detection, and imputation.

After extracting and grouping temporal information per user per
time period, we compute embedding similarity between every pair of
cross-platform users in the following manner: First, we align the tem-
poral sequences with the desired model input length. This process
includes left-padding or truncating time steps to match the desired
model input (typically, N = 512 for small models and N = 1024 for
large models). We then pass the padded tensor, adjusting dimensions
as permodel requirements, into the selectedmodel in batches of 16 to
accommodate GPU constraints. If applicable, we apply mean pooling
to the output embeddings to achieve a one-dimensional vector
representation per user. Computing the similarity is then straightfor-
ward: we apply cosine similarity between each pair of users, skipping
self- and same-platform comparisons (as we are only interested in
cross-platform identity matching) to derive a final similarity score.

Use of LLMs. The authors acknowledge the use of a LLM (ChatGPT-4o,
OpenAI, San Francisco, CA) to improve grammar and enhance the
clarity of the text. All AI-generated suggestionswere critically reviewed
and edited by the authors to ensure the original meaning was pre-
served. The authors take full responsibility for the content of the final
manuscript.

Data availability
The financial markets data analyzed in this study is available from the
dataset published in ref. 50, it has been deposited in the Harvard
dataverse under accession code Ethereum-ERC20-markets. The Social
media data analyzed in this study has been deposited in the posted on
github alongside code for a minimal working example https://github.
com/NetworkIntelligenceAndCoordinationLab/Latent-Connections-
in-Social-Media.

Code availability
The code used for this study is available on github: https://github.com/
NetworkIntelligenceAndCoordinationLab/Latent-Connections-in-
Social-Media under MIT license.
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