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Optimizing carbon footprint in long-haul
heavy-duty E-Truck transportation

Junyan Su 1, Qiulin Lin 1 & Minghua Chen 1,2

Electrifying heavy-duty trucks is crucial for decarbonizing transportation, but
maximizing their potential requires minimizing the carbon footprint of timely
deliveries. This complex optimization task involves strategic path, speed, and
charging planning, which traditionalmethods struggle to optimize at scale.We
present a stage-expanded graph formulation that reduces complexity and
reveals a useful problem structure. Our formulation naturally decomposes the
problem into more tractable subproblems, allowing efficient coordination
between routing and charging decisions, and maintains a manageable graph
size. We exploit these structural insights to design an efficient algorithm with
performance guarantees. Simulations using real-world data over the U.S.
highway system demonstrate that our method complements the 36% carbon
reduction from electrification with an additional 25% decrease, totaling a 61%
reduction. Moreover, our carbon-optimized strategy, applicable to various
truck types, can achieve comparable carbon reductions 9 years sooner than
zero-emission truck adoption alone. This approach accelerates transportation
decarbonization, offering a powerful tool in the fight against climate change.

Climate change is the defining crisis of our time, and it is tied to the
rising anthropogenic greenhouse gas (GHG) emissions. Reducing or
even eliminating the GHG emissions across all major sectors is critical
to meet the 1.5 °C climate target. In the U.S., the transportation sector
has become the largest source of GHG emissions, accounting for 37%
of the country’s total carbon dioxide (CO2, the primary anthropogenic
GHG) emissions1. With only 0.4% of the total on-road vehicle popula-
tion, long-haul heavy-duty trucks are responsible for 11% of transpor-
tation carbon emissions (cf. Supplementary Fig. 1 in Supplementary
Information Section 4). Decarbonizing long-haul heavy-duty trucks,
i.e., reducing CO2 and other GHG emissions from their operations, is
thus a disproportionately high leverage point in the scope of the cli-
mate change mitigation framework.

Electrifying long-haul heavy-duty trucks is a critical step towards
decarbonizing the trucking sector2. Electric trucks (E-Trucks) not only
enhance the driving experience with their rapid acceleration and qui-
eter operation but also eliminate tailpipe emissions and offer a
potential to reduce carbon emissions3. Along this line, the U.S. gov-
ernment has set a target to electrify 30% of medium- and heavy-duty

truck sales by 2030 and 100% by 20404. However, achieving E-Trucks’
full decarbonization potential requires not only fast E-Truck adoption
but also a careful consideration of how they are operated and charged,
as the charging electricity incurs carbon footprints—the carbon emis-
sions during electricity generation. For clarity and brevity in our dis-
cussion, we assume all references to trucks pertain to long-haul heavy-
duty models unless specified otherwise.

We argue that the full decarbonization potential of E-Trucks is
jeopardized by the current common practice of driving as quickly as
possible along the shortest path. Such driving practice often under-
utilizes the geographical information and the traffic information,
resulting in inefficient paths and speed plans that consume substantial
energy5. Moreover, the current practice of charging E-Trucks—char-
ging whenever the battery level falls below a certain threshold—often
fails to consider the source of electricity, using gray electricity with
higher carbon intensity—the amount of carbon emissions per unit of
electricity during generation. Depending on different mixes of elec-
tricity generation (cf. Table 1), the carbon intensity presents large
geospatial and temporalfluctuations due to the inherent intermittency
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of renewable energy sources, as illustrated in Fig. 1. Ignoring such
spatial-temporal diversity of carbon intensity may lead to a large car-
bon footprint during charging. Indeed, as suggested by our numerical
studies with real-world data over the U.S. highway system, common
practice operations could under-realize E-Truck’s decarbonization
potential by 25%. Even worse, improper charging and operation of
E-Trucks might even lead to a higher carbon footprint than ICE trucks;
see Supplementary Section 5.2 for an example of inefficient E-Truck
operation and Supplementary Section 5.3 for an example of carbon-
optimized operation. It is thus essential to optimize the truck opera-
tions to unleash E-Trucks’ full decarbonization potential.

In this paper, we study the problem of minimizing the carbon
footprint of long-haul heavy-duty E-Trucks’ timely transportation, a
critical operation module. This involves strategically orchestrating
path planning, speed planning, and intermediary charging planning as
E-Trucks navigate national highway networks within tight delivery
timeframes.Thepathplanning and speedplanning jointly optimize the
E-Truck’s energy efficiency by selecting the most effective routes and
maintaining optimal speeds. Meanwhile, the charging planning stra-
tegically schedules charging sessions and locations to utilize clean
electricity with low carbon intensity. Such a carbon footprint optimi-
zation (CFO) problem is essential for realizing the environmental
advantages of E-Trucks. However, it remains intractable due to a
combination of challenges: (i) the strict delivery deadline, (ii) the
battery operational constraints, (iii) the non-convexity of the objective
function, and (iv) the enormous search space of charging decisions
across a vast network with diverse carbon intensity profiles. Indeed,
the CFO problem is NP-hard and more complicated and challenging
than those in related studies for internal combustion engine (ICE)
truck5,6 and electric vehicle (EV) driving optimization7–9. Existing
mathematical models (cf. Supplementary Table 2 in Supplementary
Information Section 2) and approaches (cf. Supplementary Table 3 in

Supplementary Information Section 3) either do not apply to the
problem or fail to solve the problem effectively, especially for large-
scale instances; see Supplementary Section 2 for a more detailed dis-
cussion of the related work.

To address this challenging problem, we propose a stage-
expanded graph formulation, which transforms the CFO problem
into a Generalized Restricted Shortest Path (GRSP) problem5,10 under
practical settings. The key advantages of this formulation are its low
model complexity and the exposure of a problem structure that
facilitates efficient algorithm design. By exploiting this structure, we
devise a dual-subgradient algorithm that is provably convergent. We
show that each iteration of this algorithm runs in polynomial time
relative to the network size. We also establish a sufficient condition for
optimality and derive a posterior bound on the solution quality when
this condition is not satisfied. Furthermore, our mathematical for-
mulation and approach are general and extendable to other long-haul
heavy-duty trucks, including hydrogen fuel cell electric trucks (FCE-
Trucks), and ICE trucks. Our algorithm demonstrates strong empirical
performance in extensive simulations conducted with real-world data,
enabling a thorough evaluation of the decarbonization potential of
E-Trucks in realistic operational settings.

Using our solution as a building block, we evaluate the full dec-
arbonization potential of E-Trucks and the benefits of carbon-
optimized operations. We conduct extensive simulations over the US
national highway network with the real-world data. We highlight the
following key findings: (i) With common practice operation, the
E-Truck achieves a 36% carbon reduction compared to the conven-
tional ICE trucks, validating the decarbonization potential of E-Trucks.
(ii) Our carbon-optimized operation achieves an extra carbon reduc-
tion of 25%, of which the carbon-aware charging and energy-efficient
driving contribute 12% and 13%, respectively. The aggregate 61% car-
bon reduction of the U.S. long-haul trucking sector amounts to 2.4% of
the total U.S. carbon emissions, or approximately the entire carbon
footprint of countries like Qatar11. (iii) The carbon-optimized opera-
tions, when applied to ICE trucks, FCE-Trucks, and E-Trucks, accelerate
the decarbonization progress, achieving the same level of carbon
reduction 9 years sooner than relying solely on adopting zero-
emission trucks. With the deployment of carbon-optimized opera-
tions, the whole long-haul trucking sector will achieve a substantial
carbon reduction by 2050—62% reduction relative to 2019 levels with
BAU projection, of which the adoption of zero-emission trucks con-
tributes 5%, carbon-optimized operations contribute 31%, and grid
decarbonization contributes 26%.

Table 1 | The U.S. electricity generation and resulting CO2
emissions of major types of energy source in 2020 [64, Table
7.2a, Table 11.6]

Coal Natural Gas Petroleum Renewable

Carbon Intensity
(kg/kWh)

1.02 0.39 0.91 0

Total Emission (tons) 7.86 × 108 6.35 × 108 1.6 × 107 0

Electricity (kWh) 7.73 × 1011 1.62 × 1012 1.75 × 1010 7.92 × 1011

Different energy source has different carbon intensity.

Fig. 1 | Spatial-temporal diversity of theU.S. carbon intensity (kg/kWh). aThe average carbon intensity in different states.bThe carbon intensity varying in timeduring
the first week of 202415. Large variation in carbon intensity are commonly observed inother times of the year. Source data of thisfigure are provided in the SourceDatafile.
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Paper Outline. We begin by presenting the problem formulation
and our methodology, emphasizing key technical innovations and
contributions. We then demonstrate through comprehensive numer-
ical experiments the decarbonization potential achievable throughour
integrated approach, providing quantitative insights into system-wide
emissions reductions and operational efficiency gains. We conclude
the main text with a assessment of current limitations and promising
avenues for future research in “Discussion”. Completemethodological
details and algorithmic frameworks are presented in Methods, with
additional supporting analyses, extended data tables, and supple-
mentary figures provided in the accompanying Supplementary
Information.

Results
An efficient approach for carbon-optimized E-Truck timely
transportation
We first introduce essential notations and the problem setting, fol-
lowed by an overview of the key ideas underpinning our approach.
Detailed discussions on the model and algorithm are deferred to
Methods. We model the highway system as a directed graph G= ðV, EÞ.
The node set V =Vr ∪Vc consists of road nodes Vr (representing seg-
ment endpoints) and charging stations Vc. The edge set E � V ×V
represents road segments. We consider an E-Truck traveling from an
origin o 2 V to a destination d 2 V within a hard deadline T. The
objective is to minimize the carbon footprint of the electricity used
along this trip. The E-Truck has a battery capacity B and needs to
maintain a positive battery State-of-Charge (SoC) throughout the trip.
We consider the E-Truck begins the journey with an initial battery SoC
β0∈ [0, B]. The solution to the problem includes (i) the path plan: a
sequence of edges from o to d; (ii) the speed plan: a speed profile
across these edges; (iii) the charging plan: the selection of inter-
mediary charging stations, along with wait and charge times at each
selected charging station.

One of our key methodological contributions is the stage-
expanded graph, a construction that extends G to integrate charging
decisions. The stage-expandedgraphoriginates from the following key

observations: (i) in practice, an E-Truck operator only charges for a
small number of timesduring a trip, e.g., 3–4 times charging for a 1500-
mile E-Truck transportation; (ii) the truck operation between two
consecutive charging stops (a stage) reduces to an energy-efficient
driving problem for which efficient algorithms are available5,6; (iii)
given the truck operations at each stage, the carbon-aware charging
decisions between each two consecutive stages become tractable to
optimize.

Given these observations, we construct the stage-expanded graph
Gs = ðVs, EsÞ as follows. We assume the E-Truck can make up to N
charging stops along its trip, where N is a parameter provided to the
problem. The graph Gs consists of N + 1 stages, corresponding to the
N + 1 segments of the journey between charging events. The node set
Vs is composed ofN + 1 copies (one copy for each stage) of the original
nodes in V: Vs = vi : v 2 V, i 2 1, . . . ,N + 1f g� �

. The edge set Es contains
(i) the original edges replicated across all stages, and (ii) virtual edges
connecting the same charging stations and the destination between
consecutive stages. Formally, we define:

Es1 = ðui, viÞ : ðu, vÞ 2 E, i 2 1, . . . ,N + 1f g� �
,

Es2 = ðvi, vi + 1Þ : v 2 Vc ∪ d
� �

, i 2 1, . . . ,Nf g� �
,

and Es = Es1 ∪ Es2:

ð1Þ

When an E-Truck, at stage i, arrives at a charging station v 2 Vc, it can
choose to end the current stage and charge. This action is represented
by traversing the charging edge (vi, vi+1). Within each stage, the E-Truck
needs to travel towards the next charging station or the final
destination. Upon arrival, it can charge at the charging station and
advance to the next stage or, if at the destination, end its journey. Note
that the E-Truck can charge for less than N times, arrive at the
destination at stage i <N + 1, and then travel across stages through
virtual edges until reaching the final stage, mimicking waiting at the
destination upon early arrival. We provide an illustration of the stage-
expanded graph in Fig. 2.

The stage-expanded graph captures the problem structure and
decomposes the routing and charging decisions. Specifically, we can

Fig. 2 | Illustration of a stage-expanded graph for an E-Truck timely transpor-
tation task with N = 2 charging stops. Nodes b, c, and e represent charging sta-
tions within the original transportation network. The red path indicates a feasible
operation candidate for an E-Truck traveling from origin o1 to destination d3. The
constructed stage-expanded graph comprises N + 1 = 3 stages. In the first stage, the

E-Truck travels from o1 to b1, with a travel time t1, then waits for t1w amount of time
and charges at b1 for t2c amount of time. Subsequent stages involve similar
sequences of travel, waiting, and charging. Dashed arrows represent virtual edges
that denote potential charging decisions between consecutive stages.
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separately optimize the energy-efficient timely transportation sub-
problemwithin each stage and the carbon-aware charging subproblem
between stages, followed by a higher level of coordination for the
solutions of the subproblems. Those subproblems are more tractable
than the original CFO problem. Efficient algorithms are available for
the energy-efficient timely transportation subproblems5,6, and the size
of the carbon-aware charging subproblems is small. Moreover, the
revealed structure comes with a minor increase in graph size—the size
of the stage-expanded graph is only N + 1 times the original graph,
where the number of charging stops N is a small constant in practice.
This is in sharp contrast to the time-expanded graph8 or the battery-
expanded graph12, which substantially increase the graph size as dis-
cussed in Supplementary Table 3 in Supplementary Information Sec-
tion 3. We explore the problem structure and formulate the CFO
problem as a GRSP problem on the stage-expanded graph. We then
propose an efficient dual-based algorithm, which features guaranteed
convergence and polynomial complexity per iteration. We also
establish a sufficient condition for optimality and derive a posterior
bound on the solution quality when this condition does not hold.
Besides the favorable theoretical properties, our algorithm demon-
strates strong empirical performance, allowing us to examine the full
benefits of E-Truck decarbonization using real-world data. See
“Methods” for our formal problem formulation, algorithm design, and
performance analysis. See also Supplementary Section 3 for a remark
on the novelty of our approach and a comparison with conceivable
alternatives.

Numerical experiment setup
To evaluate the decarbonization potential of truck electrification and
the enhanced environmental benefits of carbon-optimized E-Truck
operations, we conduct the simulation on the U.S. highway network
with real-world traces. The constructed transportation network
contains 84,504 nodes and 178,238 edges. We conduct simulations
on long-haul origin-destination pairs from Freight Analysis
Framework13. We divide the long-haul origin-destination pairs into
the four distance categories: 500–1000 miles, 1000–1500 miles,
1500–2000miles, and 2000+miles. We then select the top 100 pairs
based on freight value from each group, resulting in a total of 400
origin-destination pairs. More details of the simulation setup can be
found in Methods.

In the following, we will present the key findings focusing on the
implications of carbon-optimized operations for the truck dec-
arbonization strategies. More supplementary simulation results can be

found in the Supplementary Information, including (i) the applicability
of our approach to timely heavy-duty truck transportation over the
European continent highway system (Supplementary Section 7), (ii)
the robustness analysis of our approach (Supplementary Section 8.2),
and (iii) the runtime performance of our approach and other alter-
natives (Supplementary Section 8.4 and Supplementary Section 8.3).

Truck electrification reduces carbon emissions
We first evaluate the decarbonization potential of truck electrification
alone in reducing carbon emissions. In the following, we use the ICE
truck, operated with common practice that drives on the fastest path
at top truck speeds, as the baseline. We then compare the ICE truck
with the E-Truck operated with a conceivable baseline that mimics the
common practice (denoted by PRACTICE), which drives on the fastest
path also at top truck speeds, and charges whenever the battery level
falls below a certain threshold. For each origin-destination pair, we
compute the normalized carbon footprint of the E-Truck with respect
to the ICE truck and present the results in Fig. 3.We find that under the
PRACTICE baseline, the average normalized carbon footprints of the
E-Truck are 0.69, 0.61, 0.59, and 0.59 for the four distance categories,
respectively. Those numbers, combined with the estimated carbon
share of different distancecategories for long-haul heavy-duty trucks14,
indicate that the E-Truck can achieve an average reduction of 36% of
carbon emissions compared to traditional ICE trucks—a testament to
the decarbonization potential of truck electrification. This potential,
however, remains underexplored due to inefficient operations. The
normalized carbon footprint varies largely across different origin-
destination pairs, revealing room for optimization. More concerning,
improper operation can actually result in the E-Truck producing a
higher carbon footprint than its ICE counterpart, as illustrated in
Supplementary Section 5.2. This operational inefficiency underscores
the importance of optimized operations in maximizing the dec-
arbonization potential of E-Trucks, which we elaborate on in the fol-
lowing analysis.

Carbon-optimized timely transportation maximizes E-Truck
decarbonization potential
We then study the full decarbonization potential of E-Trucks by our
carbon-optimized operations (denoted by CARBON). We run our
approach over the same set of origin-destination pairs and compare
the performance of CARBON with the PRACTICE baseline. As demon-
strated in Fig. 3, we find that the average normalized carbon footprint
of CARBON are 0.43, 0.37, 0.34, and 0.35 for the four distance

Fig. 3 | The normalized carbon footprint under different driving strategies and
the carbon emission shares by different distance categories. a The normalized
carbon footprint for electric trucks relative to ICE Trucks across distance cate-
gories. Results compare carbon-optimized operations (CARBON) with conven-
tional baseline operations (PRACTICE). Box plots show interquartile ranges

(25th–75th percentiles) with median values indicated by internal lines. Square
markers denote mean values, and error bars represent ±1.5 standard deviations.
b The estimated carbon emission share of distance category for long-haul heavy-
duty trucks (data fromNREL14). Source data of thisfigureare provided in the Source
Data file.
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categories, respectively, leading to a weighted average of 0.39 com-
pared to the ICE truck. These results show that, carbon-optimized
operations achieve an additional 25% carbon reduction on top of
electrification alone, yielding a cumulative 61% carbon reductionwhen
compared to ICE trucks. The cumulative carbon reduction achieved in
the long-haul heavy-duty trucking sector amounts to 2.4% of the total
US carbon emissions or approximately the total carbon emissions of
countries like the Qatar. Moreover, such reduction is more consistent
across different origin-destination pairs than the PRACTICE baseline
with a smaller standard deviation in Fig. 3.

We then study the attribution of the carbon reduction from
carbon-optimized timely transportation. Recall that the carbon-
optimized operations reduce carbon footprint by jointly optimizing:
(i) energy-efficient driving by path and speed planning and (ii) carbon-
aware charging by charging planning. To further understand the
attribution of those two modules, we consider a modified approach
(denoted by ENERGY) from our method that uses uniformly constant
carbon intensity. The ENERGY baseline isolates the first mechanism by
focusing exclusively on energy-efficient driving while deliberately
excluding carbon-aware charging considerations. Therefore, by con-
trasting CARBON and ENERGY results, we isolate and quantify the

impact of the second module and specifically demonstrate the sig-
nificance of carbon-aware charging operations in overall dec-
arbonization performance. We also explore the effects of extending
the delivery deadlines on the carbon footprint of E-Trucks by adjusting
the deadlines from 1.1Tf to 1.5Tf, where Tf represents the minimum
travel time determined by a fastest-path approach detailed in Meth-
ods. The ratio T/Tf is referred to as the delay factor. For ease of pre-
sentation, we present the results in Fig. 4 for the distance category of
500–1000 miles, which contributes the most carbon share among all
distance categories, as seen in Fig. 3. The full results for all distance
categories can be found in Supplementary Fig. 7 in Supplementary
Information Section 6.2whichdemonstrate similar results.Weobserve
that carbon-optimized operations consistently reduce more carbon
than energy-efficient ones across various delay factors. For example, at
a delay factor of 1.2, carbon-optimized operations achieve an addi-
tional 0.12 normalized carbon savings over energy-efficient opera-
tions. Therefore, at least 12% out of the 25% additional carbon
reduction from the carbon-optimized operation is attributed to
carbon-aware charging. These findings, combined with the facts that
CARBON consume at most 2.4% more normalized energy on average
than ENERGY (cf. Fig. 4b), demonstrate that carbon-optimized timely

Fig. 4 | Carbon footprint and energy consumption of E-Trucks under different
operations with different delay factors. A larger delay factor means a more
relaxed deadline. The results are for the distance category of 500–1000miles. The
results for all four distance categories can be found at Supplementary Fig. 7 in
Supplementary Information Section 6.2. a The normalized carbon footprint with
respect to ICE trucks under today’s common practice. b The normalized energy

consumptionwith respect to ICE trucks under commonpractice. In both (a,b), box
plots show interquartile ranges (25th–75th percentiles) with median values indi-
cated by internal lines. Square markers denote mean values, and error bars
represent ±1.5 standard deviations. Source data of this figure are provided in the
Source Data file.

Fig. 5 | Normalized carbon emissions of electric trucks relative to internal
combustion engine trucks.We compare carbon-optimized operation (CARBON)
with commonpractice operation (PRACTICE) across different grid decarbonization
scenarios: business-as-usual (BAU), conservative projection (CONSERVATIVE), and
optimistic projection (OPTIMISTIC). Box plots show interquartile ranges

(25th–75th percentiles) with median values indicated by internal lines. Square
markers denote mean values, and error bars represent ±1.5 standard deviations.
Themean values,median values, and standarddeviations areweighted by emission
share in each distance category. Source data of this figure are provided in the
Source Data file.
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transportation simultaneously reduces energy consumption and the
carbon footprint via energy-efficient driving and carbon-aware char-
ging, maximizing the environmental benefits brought by E-Trucks.

Carbon-optimized timely transportation boosts truck dec-
arbonization in the future
We then study how carbon-optimized timely transportation reshapes
the truck decarbonization pathway in the future, using carbon inten-
sity projection data from theCambiumdataset15. This is to examine the
usefulness of our approach in different projected carbon intensity
settings. We focus on three power grid decarbonization scenarios: (i)
Business-As-Usual (BAU) that assumes a continuation of current poli-
cies and trends. (ii) CONSERVATIVE that assumes high future costs for
renewable investments; (iii) OPTIMISTIC that achieves the full grid
decarbonization target by 203516 where national-wide carbon intensity
is zero, albeit regional ones can fluctuate around zero over time.
Negative carbon intensity is achieved by assuming the fast develop-
ment of nascent technologies17 like bioenergywith carbon capture and
storage (BECSS)18. In the following, all carbon reductions are computed
by considering the carbon shares of different distance categories
shown in Fig. 3.

We commence our investigation by examining the impacts of
carbon-optimized operations on a single E-Truck. Our results, pre-
sented in Fig. 5, reveal that CARBON achieves an additional carbon
reduction of 13% by 2050 in the BAU scenario when compared to the
PRACTICE baseline. This additional carbon reduction increases to 17%
in the CONSERVATIVE scenario. Even in the OPTIMISTIC scenario, our
carbon-optimized solution can still achieve an additional 3% carbon
reduction compared to the PRACTICE baseline, by exploiting the
(small)fluctuationof carbon intensity over different regions and times.

We further evaluate the impact of carbon-optimized operations
across the entire long-haul heavy-duty trucking sector.Weexamine the
major types of long-haul heavy-duty trucks, including ICE trucks, fuel
cell electric trucks (FCE-Trucks), and battery electric trucks (E-Trucks).
We utilize zero-emission vehicle (ZEV, including FCE-Trucks and E-
Trucks) adoption projection data from ref. 14, focusing on the fol-
lowing scenarios: (i) NORMAL that reflects a central set of assump-
tions; (ii) ADVANCED with lower charging infrastructure cost; (iii)
CONSTRAINED with constrained ZEV technology advancement. We
tailor our approach inMethods and deploy it to the entire spectrumof
long-haul heavy-duty trucks; see Methods for detailed descriptions of
such adoption.

Our results also indicate that carbon-optimized timely transpor-
tation can contribute to the decarbonization of the trucking sector by
reducing carbon emissions more efficiently. In Fig. 6, we observe that
there will be an immediate carbon reduction in 2026 by implementing
our carbon-optimized operations for ICE trucks, a goal that would
otherwise take 9 additional years through ZEV adoption alone. More-
over, carbon reductions achievable by 2050 through ZEV adoption are
reached 7 years earlier with carbon-optimized operations. This trend
persists under the ADVANCED ZEV adoption scenario. Carbon-
optimized operations consistently contribute to trucking sector dec-
arbonization over time. From 2026 to 2030, total emissions increase
slightly due to the growing number of trucks, but the subsequent
adoption of ZEVs combined with carbon-optimized operations leads to
a sharp decline, with a carbon reduction of 62% by 2050, of which ZEV
adoption contributes 5% carbon-optimized operations contribute 31%,
and grid decarbonization contributes 26% (cf. Fig. 7). Cumulatively,
carbon-optimized operations account for an additional CO2 reduction
of 1.2 billion tons from 2026 to 2050 compared to common practices.

Fig. 6 | The stock share and carbon footprint of long-haul heavy-duty trucks
from 2019 to 2050 under different ZEV adoption scenarios. a, b, c present the
stock share for ICE Truck, E-Truck, and FCE-Truck in CONSTRAINED, NORMAL, and
ADVANCED ZEV adoption scenarios. d, e, f present the carbon footprint of major
types of long-haul heavy-duty trucks, including ICE trucks, FCE-Trucks, and
E-Trucks. The solid lines represent the carbon footprint of trucks with common

practice (PRACTICE), and the dashed lines represent the carbon footprint of trucks
with carbon-optimized operations (CARBON). The shaded areas represent the
carbon reduction from carbon-optimized operations compared to common prac-
tice.We assume thegriddecarbonization scenario tobeBAU in this analysis. Source
data of this figure are provided in the Source Data file.
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Discussion
In this paper, we explore how to unlock the full decarbonization
potential of long-haul heavy-duty E-Trucks via carbon-optimized
timely transportation. We present a stage-expanded graph based
problem formulation and an efficient algorithm with favorable theo-
retical and empiricalperformance. Throughextensive simulationswith
real-world traces, we show that carbon-optimized operation further
reduces the carbon footprint of E-Trucks by 25%, on top of the 36%
reduction from electrification alone. The cumulative 61% carbon
reduction achieved is comparable to the total carbon footprint of
countries like the Qatar. Our approach is applicable to various types of
trucks, including ICE and ZEV trucks, allowing us to assess the impact
of carbon-optimizedoperations on the entire spectrumof the trucking
industry. Our forward-looking projections suggest that carbon-
optimized operations propel truck decarbonization, achieving com-
parable carbon reduction 9 years earlier than ZEV truck adop-
tion alone.

Operationalizing our approach necessitates a comprehensive
software ecosystem capable of driver interaction, real-time data inte-
gration, and dynamic optimization of charging, routing, and speed
planning. Our framework requires two distinct data categories with
varying update frequencies and accessibility characteristics. Static
Data encompasses information requiring infrequent updates due to its
stable nature: (i) TransportationNetworkData, including detailed road
mappings, segment-specific grade profiles, and charging station loca-
tions; and (ii) Vehicle Specifications, encompassing battery charging
characteristics, vehicle weight parameters, and energy efficiency pro-
files. This data is predominantly accessible through established sour-
ces, including OpenStreetMap19 for transportation networks and
manufacturer databases for vehicle specifications. Dynamic Data
requires continuous updates to capture real-time operational condi-
tions: (i) Traffic Conditions, providing current congestion levels across
road segments; (ii) Charging Infrastructure Status, including real-time
availability and queuing times at charging stations; and (iii) Grid Car-
bon Intensity, reflecting the temporal and spatial variability of elec-
tricity generation carbon footprints based on dynamic energy mix
compositions. These data streams are accessible through established
platforms including transportation APIs20, charging network
platforms21,22, and grid monitoring systems23.

While individual data sources exist, successful integration
requires developing unified interfaces ensuring compatibility, accu-
racy, and reliability across heterogeneous systems–necessitating
coordinated stakeholder collaboration. Successful deployment

demands multi-stakeholder coordination among policymakers, trans-
portation authorities, logistics operators, and energy providers
(including grid operators and charging infrastructure companies).
Policymakers must establish standardized data interchange protocols,
incentivize cross-sector data sharing, and support digital infra-
structure investments. Transportation authorities should provide
comprehensive road network data and real-time traffic information.
Energy providers must deliver accurate, timely data on charging
availability and grid carbon intensity. Logistics companies must adopt
integrated technological solutions and participate in real-world vali-
dation studies. This collaborative ecosystem is essential for realizing
the framework’s full decarbonization potential in operational
environments.

Remarkably, deploying this software ecosystem requires no
investment in hardware infrastructure, instead building upon purely
algorithmicdevelopment and existing data sources. This characteristic
enables immediate deployment across existing fleet operations,
without the decade-long infrastructure development cycles that typi-
cally constrain decarbonization efforts. Our framework thus offers an
agile and cost-effective strategy for a rapiddecarbonizationpathway in
the trucking sector.

Beyond long-haul heavy-duty trucks, our approach may not be
directly applicable to the operations of light-duty vehicles or short-
haul trucks, as their operation settings often involve frequent pickup-
delivery scheduling, which is absent in the long-haul heavy-duty vehi-
cle operation studied in this paper24,25. However, in cases with long
transportation distances and fixed pickup-delivery schedules, our
approaches can be applied to minimize their carbon footprint, energy
consumption, ormonetary cost. Developinggeneral carbon-optimized
operation strategies for light-duty vehicles and short-haul trucks
deserves further investigation26,27.

Methods
Our preliminary model and approach were initially introduced in our
conference paper28. In this section, we provide a more comprehensive
and self-contained presentation of our model and approach for com-
pleteness, which includes detailed problem formulation, improved
algorithm with lower time complexity, performance analysis, and dis-
cussion on model limitation.

System model
Wemodel the highway system as a directed graph G = ðV, EÞ. The node
set V =Vr ∪Vc consists of road connection points Vr and charging

Fig. 7 | The attribution of carbon reductions of 2050 relative to the 2019 level.
The carbon emissions increase due to the growing truck population and decrease
due to ZEV adoption, carbon-optimized operations, and grid decarbonization,

respectively. a The attribution under the BAU grid decarbonization scenario and
the NORMAL ZEV adoption scenario. b The attribution under the OPTIMISTIC grid
decarbonization scenario and ADVANCED ZEV adoption scenario.
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stations Vc. The edge set E � V ×V represents physical road segments.
Each road segment e 2 E has a length De and speed limits ½Rlb

e ,R
ub
e �,

which define theminimum andmaximum travel times tlbe =De=R
ub
e and

tube =De=R
lb
e , respectively. Without loss of generality, we assume

homogeneous road conditions (e.g., grade) on each road segment.
Following the model in refs. 5,28, we model the energy consumption
rate (in kW) on segment e as a convex function of the traveling speed
re, denoted f eðreÞ : ½Rlb

e ,R
ub
e � ! R. This function fe(re) is primarily

determined by the road grade and the E-Truck’s weight. Note that fe(re)
can be negative on downhill segments due to regenerative braking29.
Given the convexity of fe( ⋅ ), we can assume the E-Truck travels at a
constant speed on segment ewithout loss of optimality [ref. 5, Lem. 1].
We ignore the acceleration and deceleration phases between road
segments, since their contribution to overall time and energy con-
sumption is typically negligible relative to the entire segment duration,
as justified in refs. 5,28. The total energy consumed to traverse seg-
ment e in time te is then given by the perspective function
ce(te) = te ⋅ fe(De/te), which is also convex in te by the convexity preser-
ving property of the perspective function30. We assume ce(te) is non-
increasing in te, as the increasing domain can be excluded without loss
of optimality5,28.

At each charging station v 2 Vc, an E-Truck may wait for a time
duration tw 2 ½tlbw , tubw � and charge for a time duration tc 2 ½0, tubc �. The
lower bound tlbw accounts for the minimum time required for a driver
to stop and wait in a charging queue, etc. The upper bound tubw is
introduced to maintain model regularity and avoid excessively long
waiting times. For ease of presentation, we employ a homogeneous
lower bound across all charging stations and time periods while pre-
serving the framework’s broad applicability. Its extension to hetero-
geneous lower bounds for different charging stations is
straightforward. A discussion on more sophisticated, dynamic waiting
time estimation can be found in Discussion on Model Limitation.

We model the charging process at v 2 Vc with a concave function
Φv(t). It gives the battery SoC achieved after charging from an empty
battery for a duration t. For an initial SoC βv, the increase in SoC after
charging for time tc is given by:

ϕvðtc,βvÞ=ΦvðΦ�1
v ðβvÞ+ tcÞ � βv: ð2Þ

Here, Φ�1
v denotes the inverse of the function Φv; see Supplementary

Fig. 2 in Supplementary Information Section 5.1 for an illustration.
While E-Trucks may support multiple charging modes, e.g., fast and
regular charging, this work assumes the exclusive use of fast charging
at all stations for simplicity. The inclusion of multiple charging
schemes can be accommodated by modeling each scheme with a
distinct charging node at the station and duplicating the adjacent road
segments to connect these nodes. The concave charging function
naturally captures the characteristic behavior of batteries, where the
charging rate decreases as the state of charge (SoC) increases29,31, and
provides a more realistic modeling framework compared to the
constant charging rate approximation32.

At each charging station v 2 Vc, the carbon intensity is repre-
sented by a continuous function πvðτÞ : R ! R (in kg/kWh), where τ
denotes the arrival time at node v. For simplicity, we set τ0 = 0 at the
origin o. Note that carbon intensity data canbewell predicted athourly
intervals, as discussed in ref. 33. Given this function, if an E-Truck with
an initial SoC βv begins charging at time τv and continues for a duration
tc, the resulting carbon footprint is expressed as:

Fvðβv, tc, τvÞ=
1
η

Z tc

0
πvðτv + ξÞ

∂�ϕv

∂t
ðξ ,βvÞdξ : ð3Þ

Here, η (with 0 < η ≤ 1) represents the battery’s charging efficiency. The
left partial derivative ∂�ϕv

∂t ðξ ,βÞ corresponds to the charging rate at
time ξ given initial SoC β. This carbon footprint function, which

integrates the product of carbon intensity and instantaneous charging
rate, yields a nonlinear and nonconvex expression.

A stage-expanded graph based problem formulation
We consider the problem of minimizing the carbon footprint for an
E-Truck traveling from an origin o 2 V to a destination d 2 V, under a
hard deadline T and subject to the battery SoC constraints. The
E-Truckbeginswith an initial SoCβ0 andhas a battery capacityB, and is
permitted tomake up toN charging stops during the journey. Limiting
the number of charging stops is reasonable in practice, as our analysis
reveals that trips with 1500 miles typically only need 3–4 charging
stops on average, while longer routes require proportionally more
charging stops.Within our simulation dataset, themaximumobserved
charging requirement reached 12 stops for origin-destination pairs
exceeding 3000 miles. This variable charging frequency reflects the
realistic operational constraints of current E-truck technology and
charging infrastructure, where trip distance directly influences char-
ging strategy and route planning complexity.

In the following, we formulate the problem using the stage-
expanded graph technique we mentioned in the “Results” section. A
preliminary version of this formulation was presented in our con-
ference paper28. Here, we provide a more comprehensive and self-
contained presentation for completeness.

In the stage-expanded graph Gs, a complete path is composed of
N+ 1 subpaths that connect the origin, up to N charging stations, and the
destination. The selection of the charging stop at each stage and the road
segments used in each subpath are represented by the binary variables.
Specifically, for every charging station v 2 Vc, a binary variable y

i
v 2 f0, 1g

is introduced, with yiv = 1 indicating that station v is chosen as the i-th
charging stop. Similarly, for each subpath i∈ {1, …, N+ 1} and each road
segment e 2 E, a binary variable xie 2 f0, 1g is defined, where xi

e = 1
denotes that segment e is selected in the i-th subpath. To simplify nota-
tion, we aggregate these variables as follows: xi = fxi

ege2E , x= fxigN + 1
i= 1 ,

yi = fyivgv2Vc
, and y= fyigN + 1

i = 1 . The feasible set for (x, y) is defined by the
constraints that ensure connectivity, proper sequencing, and consistency
across the subpaths and charging stops:

P = x, yð Þj xie 2 0, 1f g, 8e 2 E, i 2 1, . . . ,N + 1f g,� ð4aÞ

yiv 2 0, 1f g, 8v 2 Vc, i 2 0, . . . ,N + 1f g, ð4bÞ

X
e2OutðvÞ

xi
e �

X
e2InðvÞ

xi
e = y

i�1
v � yiv, 8v 2 Vc, i 2 1, . . . ,N + 1f g, ð4cÞ

X
v2V

yiv = 1,
X
v2~Vc

yiv = 1, 8i 2 0, 1, . . . ,N + 1f g, ð4dÞ

y0o = 1, y
N + 1
d = 1

�
: ð4eÞ

In the above set, ~Vc =Vc ∪ fo,dg. Out(v) denotes the set of outgoing
edges at node v and In(v) denotes the set of incoming edges at node v.
The constraint (4c) enforces the flow conservation at each stage,
ensuring that the path is continuous and connected. Constraint (4d)
guarantees that exactly one charging station is selected per stage.
Constraint (4e) specifies the boundary conditions at the origin o and
the destination d. We also note that the feasible set P also accom-
modates paths with fewer thanN charging stops, as the same charging
station can be selected in consecutive stages.

Next, we introduce the decision variables for speed and charging
planning. At each stage i and road segment e, we define tie as the
travel time on segment e during stage i. Additionally, for each char-
ging station v considered as the i-th stop, we define ti, vw and ti, vc as the
waiting time and charging time, respectively. These variables are
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aggregated as follows: ti = tie
� �

e2E , t
i
w = ti, vw
� �

v2~Vc
, tic = ti, vc

� �
v2~Vc

, and

t= ti, tiw, t
i
c

� �� �N + 1

i=0 . The corresponding feasible set is given by

T = t j tie 2 ½tlbe , tube �, 8e 2 E, i 2 1, . . . ,N + 1f g,�
ti, vw 2 tlbw , t

ub
w

� �
, ti, vc 2 0, tubc

� �
, 8v 2 ~Vc, i 2 1, . . . ,Nf g, t0w = t0c =0

�
:

ð5Þ

We define τiv as the arrival time at which the E-Truck arrives at
charging station v for its i-th stop. These arrival times are collected into
the vector τ = fτivgv2~Vc, i2f0, ...,N + 1g. The feasible set for τ is determined by
constraints that ensure temporal consistency with the travel, waiting,
and charging times:

T τ = τ j τiv 2 ½0,T �,8v 2 ~Vc, i 2 0, . . . ,N + 1f g� �
: ð6Þ

We impose the constraint that the total duration for travel and char-
ging during the i-th stage must fall within the predefined time window
allocated for that stage:

δτ
i ðx, y, t, τÞ=

X
e2E

xi
et

i
e +
X
v2Vc

yi�1
v ti�1, v

w + ti�1, v
c

� �
�
X
v2Vc

yivτ
i
v � yi�1

v τi�1
v

� �
≤0:

ð7Þ

In the above constraint, the first term represents the travel time along
the i-th subpath, while the second term accounts for the time spent at
the (i − 1)-th charging stop, including both waiting and charging. The
third term corresponds to the total scheduled time duration allocated
between the (i − 1)-th and i-th charging stops, ensuring that the
cumulative time used does not exceed the available window.

During the trip, it is crucial that our decisions prevent any battery
overflow or underflow on each road segment, which may introduce
numerous constraints and complicate the problem. Next, we seek to
reduce the number of SoC constraints by leveraging a useful obser-
vation in practice.

We observe from empirical studies that regenerative braking
provides only a limited amount of energy to the E-Truck, as noted in
ref. 34. Given this practical insight, we demonstrate that by maintain-
ing amild reserve in the SoC upon arrival at a charging stop for a given
stage, it is possible to ensure that the SoC remains positive throughout
the entire subpath associated with that stage.

Specifically, let βi
v represent the battery SoC of the E-Truck upon

arrival at charging station v during the i-th stop. We aggregate these
variables into the vector β= βi

v

n o
v2~Vc , i2f0, ...,N + 1g

, whose feasible set is
defined by:

Sα = β jβi
v 2 ½αB,B�, 8v 2 ~Vc, i 2 0, . . . ,N + 1f g,β0

o =β0

n o
, ð8Þ

where α∈ [0, 1) is a parameter that sets a conservative lower bound on
the SoC upon arrival at any charging station. The initial SoC at the
origin is given by β0. The SoC constraint that prevents battery deple-
tion upon arrival at charging stop i is given by:

δβ
i ðx,y, t,βÞ=

X
e2E

xi
eceðtieÞ+

X
v2Vc

yivβ
i
v

�
X
v2Vc

yi�1
v βi�1

v +ϕvðβi�1
v , ti�1, v

c Þ
� 	

≤0:
ð9Þ

In this expression, the first term corresponds to the total energy
consumed along the i-th subpath, the second term represents the
SoC upon arrival at the i-th charging stop, and the third term indi-
cates the SoC after departing from the (i − 1)-th charging stop. We
then demonstrate that, under the condition that regenerative brak-
ing contributes only a minor amount of energy, a small value

of α is adequate to maintain feasible SoC levels throughout each
subpath.

Lemma 1. Consider an E-Truck traversing a subpath consisting of n
road segments en route to a charging stop, starting with an initial SoC
β0. Let ci 2 R denote the energy consumed (or harvested, if negative)
on the i-th segment. Provided the harvested energy from regenerative
braking is relatively small such that:

1
2

Xn
i= 1

jcij � ci
� �

≤
α

2ð1� αÞ
Xn
i = 1

ci, ð10Þ

and if the initial SoC β0 is large enough to support the cumulative
energy consumption:

β0 �
Xn
i = 1

ci ≥αB, ð11Þ

then the E-Truck maintains a non-negative SoC throughout this
subpath.

Note that the amount of energy harvested–represented by the left-
hand side of inequality (10)–by an E-Truck traveling on the US highway
network is indeed relatively small34. This is primarily because the max-
imum allowable grade on U.S. highways does not exceed 6%35, which
restricts the potential for large energy harvesting through regenerative
braking. Our simulation results confirm that setting α=0.06 is adequate
to maintain non-negative SoC in the majority of cases. Furthermore, a
comparisonwith a lower bound scenariowhere α=0 reveals only aminor
performance gap from introducing the conservative ratioα. The details of
this comparison are provided in Supplementary Information Section 8.1.
For scenarios involving non-negligible harvested energy, an extended
treatment is provided in Supplementary Section 10.

The Carbon Footprint Optimization (CFO) problem is then for-
mulated as follows:

CFO : min F0ðβN + 1
d Þ+

XN
i = 1

X
v2Vc

yivFvðβi
v, t

i, v
c , τiv + t

i, v
w Þ ð12aÞ

s:t:δτ
i ðx, y, t, τÞ≤0, 8i 2 1, . . . ,N + 1f g, ð12bÞ

δβ
i ðx, y, t,βÞ≤0, 8i 2 1, . . . ,N + 1f g, ð12cÞ

var:ðx, yÞ 2 P,β 2 Sα , τ 2 T τ , t 2 T : ð12dÞ

Our objective is to minimize the carbon footprint (12a), where
F0ðβdÞ=π0 � β0 � βd

� �
+ =π0 �max 0,β0 � βd

� �
represents the carbon

footprint for the used electricity in the initial battery and π0 is the
carbon intensity of the electricity in the initial battery. Constraint (12b)
is the time scheduling constraint at each stage, the details of which are
referred to (7). Constraint (12c) is the SoC constraint for each subpath,
the details of which could be referred to (9).

The following theorem presents the hardness result of the CFO
problem.

Theorem 1. The CFO problem is NP-hard. Further, it is NP-hard even
just to find a feasible solution for the problem.

This hardness result was initially presented in our conference paper36

without the proof. Herewe provide a proof in Supplementary Section 11.2
for completeness. Theorem 1 implies that unless P=NP, there is no
polynomial-time algorithm that can generate a feasible solution to some
CFO problem. Such a result indicates that finding a feasible solution
efficiently is difficult in the worst case. However, we observe that the hard
case only happens when the deadline is stringent. In particular, we
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consider the following problem, which seeks to find the fastest solution
subject to the SoC feasibility constraints:

Tf = min
XN
i = 1

X
v2Vc

yivðti, vc + ti, vw Þ+
XN + 1

i = 1

X
e2E

xi
et

i
e ð13aÞ

s:t:δβ
i ðx,y, t,βÞ≤0, 8i 2 1, . . . ,N + 1f g ð13bÞ

var: ðx, yÞ 2 P,β 2 Sα , t 2 T : ð13cÞ

We denote the optimal solution of (13) as Tf. Note that when the user-
specified deadline T in the CFO problem (12) is the same as the
minimum time Tf, it becomes difficult to find a feasible solution of (12)
because the problem (13) is NP-hard and finding a feasible solution to
the CFO problem (12) is as difficult as finding the optimal solution to
the fastest solution for (13). In practice, however, the deadline T is
usually determined by the customer and may not be close to the
minimumpossible travel time Tf. In the following, we shall assume that
the deadline T is larger than the total time of a practical baseline
solution, and our approach starts with a feasible solution produced by
such a practical baseline. We also provide a discussion on how to
handle the case when such an assumption fails and the deadline
T = (1 + ϵ)Tf is close to Tf in Supplementary Section 10.

An efficient algorithm with performance guarantees
In this section, we introduce an efficient dual-based algorithm for the CFO
problem, leveraging structural properties derived from the formulation in
(12). The algorithm utlizes a partially dualization technique5,6,37 for the
constraints (12b) and (12c). After the partial dualization, we can convert
the original problem (12) into a tractable dual problem that can be
decomposed into small subproblems and a shortest path problem on the
stage-expanded graph. We then update the dual variables by the sub-
gradient method to obtain the final solution. Note that a preliminary
version of this algorithm was presented in our conference paper28. In this
extended work, we offer a more detailed elaboration of the algorithm,
accompanied by a methodological improvement that enhance its clarity
and reduce its computational complexity.

To construct a partially-relaxed dual formulation of the CFO
problem presented in (12), we relax constraints (12b) and (12c), asso-
ciating dual variables λτi and λβi with each, respectively. The dual vari-
able λτi represents the price of the scheduled deadline at the stage i,
and λβi represents the price of the SoC at the stage i. The Lagrangian
function is given by combining the objective function and constraints
using dual variables, i.e.,

Lðx,y, t,β, τ, λÞ= F0ðβN + 1
d Þ+

XN
i = 1

X
v2Vc

yivFvðβi
v, t

i, v
c , τiv + t

i, v
w Þ ð14aÞ

+
XN + 1

i = 1

λτi δ
τ
i ðx, y, t, τÞ+

XN + 1

i = 1

λβi δ
β
i ðx,y, t,βÞ: ð14bÞ

Herewe stack the dual variables into a vector λ = (λβ, λτ). The definition
of each term in the above Lagrangian function could be found in the
CFO problem in (12).

The corresponding dual problem then seeks tomaximize the dual
function D(λ), which is the minimum value of the Lagrangian function
L( ⋅ ) given a λ, i.e.,

DðλÞ= min
ðx, yÞ 2 P,
β 2 Sα , τ 2 T τ , t 2 T

Lðx,y, t,β, τ, λÞ:
ð15Þ

The dual problem is then given by

max
λ≥0

DðλÞ: ð16Þ

In the dual subgradient algorithm used to solve the problem,
efficient computation of the dual function D(λ) is crucial. Here, we
proceed to discuss the methodology for computing D(λ) efficiently.
After plugging in the definitions and rearranging the terms in (15), we
observe that computing D(λ) given λ is to solve a two-level optimiza-
tion problem. The inner level involves multiple independent sub-
problems, each corresponding to an individual road segment or a
charging station. The outer level involves a combinatorial optimization
problem focusing on path and charging station selection.

DðλÞ=D1ðλÞ+ min
βN + 1
d 2½αB,B�

λβN + 1β
N + 1
d + F0ðβN + 1

d Þ
� 	

ð17aÞ

+ min
ðx,yÞ2P

XN + 1

i= 1

X
e2E

xie min
tie2½tlbe , tube �

gi
eðλ, tieÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

wi
eðλÞ:speed planning

0
BBBB@ ð17bÞ

+
XN
i = 1

X
v2Vc

yiv min
ti, vc 2 ½0, tubc �, ti, vw 2 ½tlbw , tubw �,

βi
v 2 ½αB,B�, τiv 2 ½0,T �

hi
vðλ, ti, vc , ti, vw ,βi

v, τ
i
vÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σi
vðλÞ:charging planning

1
CCCCCCCCCCCA
,

ð17cÞ

where D1ðλÞ= � λτN + 1T � β0λ
β
1 is a constant for any given λ and the

functionsgi
eð�Þ andhi

vð�Þ are auxiliary functions for easeof presentation.
In particular, the function gi

eðλ, tieÞ is given by

gi
eðλ, tieÞ= λτi tie + λβi ceðtieÞ, ð18Þ

and the function hi
vðλ, ti, vc , ti, vw ,βi

v, τ
i
vÞ is given by

hi
v λ, ti, vc , ti, vw ,βi

v, τ
i
v

� 	
= Fv βi

v, t
i, v
c , τiv + t

i, v
w

� 	
+ λτi + 1 ti, vw + ti, vc

� �
+ λτi + 1 � λτi
� �

τiv + λβi � λβi+ 1

� 	
βi
v � λβi+ 1ϕv βi

v, t
i, v
c

� 	
:

ð19Þ

Intuitively, gi
eðλ, tieÞ includes all terms associated with the road seg-

ment e in stage i, representing the cost of traveling time tie under the
dual prices λ. hi

vðλ, ti, vc , ti, vw ,βi
v, τ

i
vÞ includes all terms associated with

charging station v at stage i, representing the cost of arriving at time τiv
with SoC βi

v, waiting ti, vw , and charging for ti, vc time under the dual
prices λ.

Next, we show how to efficiently compute the dual function D(λ)
based on (17), which includes solving the three types of subproblems
(17a), (17b) and (17c) and determining the path and charging station
selection ðx,yÞ 2 P.

The first type of subproblem in (17a) is a single-variable optimi-
zation problem with respect to βN + 1

d , which can be solved efficiently.
We define its optimal value as

ρðλÞ= min
βN + 1
d 2½αB,B�

λβN + 1β
N + 1
d + F0 βN + 1

d

� 	� 	
: ð20Þ
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The second type of subproblem in (17b) is a single-variable opti-
mization problem with respect to tie. We define its optimal value as

wi
eðλÞ= min

tie2½tlbe , tube �
gi
eðλ, tieÞ, ð21Þ

where the function gi
eð�Þ is defined in (18). Given any λ, the above

problem is a single-variable optimization problem for every edge e at
stage i, which can be solved efficiently. The above optimization
problem aims to find the optimal travel time tie for each edge e at stage
i that balances the trade-off between the traveling time tie and the
energy consumption ce(te) with the weighting factor λ.

The third type of subproblem in (17c) is a 4-variable optimization
problem with respect to ti, vc , ti, vw ,βi

v and τiv. We define its optimal value
as

σi
vðλÞ= min

ti, vc 2 ½0, tubc �, ti, vw 2 ½tlbw , tubw �,
βi
v 2 ½αB,B�, τiv 2 ½0,T �

hi
vðλ, ti, vc , ti, vw ,βi

v, τ
i
vÞ:

ð22Þ

Given the dual variable λ that gives the tradeoff between the
objective and the constraints, the above optimization problem aims to
find the optimal charging time ti, vc , waiting time ti, vw , battery SoC βi

v and
the arriving time τiv at stage i for each charging station v. The value of
σ(λ) can be computed in OðM4=ϵ41 Þ time using a Branch and Bound
(BnB) approach38, which involves sovling the fixed-size, 4-variable non-
convex problem in (22). Here, M = maxftubc , tubw ,B,Tg represents the
diameter of the box constraint in subproblem (22), and ϵ1 denotes the
desired solution accuracy.

Upon resolving the above inner level subproblems (20), (21) and (22),
we can rewrite the dual function D(λ) in (17) in terms of ρ, w, σ as
follows:

DðλÞ=D1ðλÞ+ρðλÞ+ min
ðx,yÞ2P

XN + 1

i = 1

X
e2E

wi
eðλÞxi

e +
XN
i= 1

X
v2Vc

σi
vðλÞyiv

 !
: ð23Þ

While the outer-level problem in (23) initially presents itself as a
complex integer program, it can be effectively transformed into a
shortest path problem on the stage-expanded graph Gs . Here, each
edge e at stage i is assigned a weight wi

eðλÞ, and virtual edges linking
node v from stage i to i + 1 are givenweights σi

v. This reformulation not
only simplifies the problem but also leads to a improvement in com-
putational complexity (cf. Proposition 1) compared toour priorwork28,
which relied on a more intricate graph construction.

Given any dual variable λ, the value of D(λ) can be efficiently
computed by first solving subproblems (20), (21), and (22), and
subsequently addressing the outer problem (23) using shortest-path
algorithms on the stage-expanded graph. To iteratively refine the
dual variable λ, we employ a dual subgradient method. Let λ[k]
represent the dual variable at iteration k. The update rule is applied as
follows:

λβi ½k + 1�= λβi ½k�+θk δ
β
i x*½k�,y*½k�, t*½k�,β*½k�
� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δβ
i ½k�

0
BBB@

1
CCCA

+

, ð24aÞ

λτi ½k + 1�= λτi ½k�+θk δ
τ
i x*½k�,y*½k�, t*½k�, τ*½k�� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δτ
i ½k�

0
BB@

1
CCA

+

: ð24bÞ

The values x*[k], y*[k], t*[k], β*[k], τ*[k] are obtained by solving sub-
problems (23), (21), and (22) using the current dual variable λ[k]. These

solutions yield the subgradient components δβ
i ½k� and δτ

i ½k� for D(λ).
We use the operator (a)+ to represent maxf0,ag, and θk denotes the
adaptive step size at iteration k.

The overall approach is outlined in Box 1. We first initialize the
solution by the baseline solution sol0 (cf. discussion below Theorem 1)
and then iteratively compute D(λ) and update λ via the subgradient
direction. Intuitively, the dual variables λ can be viewed as penalties
associated with violating the scheduled deadline and the battery SoC
constraints. A higher value of λβi , for example, places larger emphasis
on the constraint δβ

i , leading to several consequences. First, it increa-
ses the influence of energy cost in (18), which in turn leads to longer
travel times solved from the edge subproblem (21). Meanwhile, an
increase in λβi leads to a decrease in the scheduled battery SoC βi

v at the
i-th stop, while simultaneously increasing βi�1

v and extending the
charging time ti, vc at the (i − 1)-th stop. This indicates that a higher λβi
amplifies the difference in scheduled SoC between consecutive char-
ging stops (i − 1) and i. A similar interpretation holds for the dual
variable λτi . Essentially, the algorithm in Box 1 aims to iteratively update
the dual variables to identify a solution that balances the objective and
the penalties from the constraints.

We now present a theoretical analysis of our approach, estab-
lishing three key properties: (i) the algorithm guarantees convergence
with a rate of Oð1=

ffiffiffiffi
K

p
Þ, with K number of iterations; (ii) the computa-

tional complexity per iteration remains polynomial with respect to the
graph size; and (iii) under certain conditions, the algorithm will pro-
duce the optimal solution, while otherwise will produce the solution
with bounded suboptimality. The proofs are available in the Supple-
mentary Information.

Consistent with classical subgradient methods39, the proposed
algorithm in Box 1 achieves convergence to the dual optimal value at
the same Oð1=

ffiffiffiffi
K

p
Þ rate.

BOX 1

A Dual Subgradient Algorithm
for CFO
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Theorem2. LetD* denote the optimal dual objective, andDK represent
themaximumdual value achieved over K iterations of the algorithm in
Box 1. Using a constant step size θk =

1ffiffiffi
K

p for all 1 ≤ k ≤K, there exists a
positive constant C such that the following holds:

D* � DK ≤
Cffiffiffiffi
K

p : ð25Þ

Theorem 2 shows that a constant step size 1=
ffiffiffiffi
K

p
is sufficient to

achieve a convergence rate ofOð1=
ffiffiffiffi
K

p
Þ. To obtain faster convergence,

one may adaptively update the step sizes40 or modify the subgradient
directions41.

Next, we provide a summary of the time complexity per iteration
for the algorithm outlined in Box 1, as described in the following
proposition.

Proposition 1. The time complexity per iteration of the algorithm in
Box 1 is given by

O N + 1ð Þ2jVjjEj+NjVcj
M4

ϵ41

 !
, ð26Þ

where M = tubc , tubw ,B,T
� �

and ϵ1 denotes the tolerance level used to
determine convergence when solving the subproblems (22).

Proposition 1 establishes that, the computational complexity per
iteration of our approach remains bounded by a polynomial function
of the graph size. Note that as compared to our conference version28,
the time complexity per iterationhasbeen improvedby a factor of jVcj,
mainly due to a more efficient treatment for solving the outer integer
problem (23).

Recall that Theorem 2 ensures that the algorithm in Box 1 con-
verges to a solution inOð1=ϵ20Þ number of iterations, with the accuracy
tolerance ϵ0. By combining Proposition 1 andTheorem2, the total time
complexity of the algorithm in Box 1 is given by

O
1
ϵ20

N + 1ð Þ2jVjjEj+NjVcj
M4

ϵ41

 ! !
: ð27Þ

Note that a convergence to the dual optimum does not necessa-
rily guarantee convergence to the primal optimumdue to thepotential
existence of a duality gap. We thus establish the following posterior
bound on the suboptimality.

Theorem 3. Let OPT denote the optimal objective value for the pro-
blem in (12). If the algorithm described in Box 1 generates a feasible
solution during iteration k≥1 with an objective value of ALG, then the
optimality gap can be bounded as follows:

ALG� OPT ≤ �
XN + 1

i= 1

λβi ½k�δ
β
i ½k�+ λ

τ
i ½k�δτ

i ½k�
� 	

: ð28Þ

Note that this posterior bound in (28) can be evaluated during
each iteration of the algorithm in Box 1, enabling early termination
when a desired accuracy level is reached. Furthermore, Theorem3 also
establishes an optimality condition for the generated solution, as
formalized in the following corollary.

Corollary 1. If the algorithm in Box 1 returns a feasible solution in line
9, then the solution is optimal.

Discussion on model limitation
While our model and approach provide a comprehensive framework
that captures the essential components of carbon-optimized E-Truck
operations, there are several real-world considerations that are not
explicitly modeled in this study. Below, we analyze how these

considerations impact carbon footprint optimization for E-trucks and
discuss potential integration approaches within our methodology.

Driver work/rest regulations. Regulatory frameworks worldwide
mandate specific driver work and rest periods to ensure safety andwell-
being. In the United States, FederalMotor Carrier Safety Administration
(FMCSA) Hours of Service (HOS) rules require: (i) maximum 11 h driving
within a 14-h workday followed by 10 consecutive hours rest, (ii) man-
datory 30-min break after 8 h driving, and (iii) weekly limits of 60h over
7 days or 70h over 8 days. Similarly, EU Drivers’ Hours Rules mandate
(i) amaximumof 9 h daily driving, (ii) a 45-min break after 4.5 h driving,
and (iii) a 45-h weekly rest period. While existing literature addresses
driver scheduling under work/rest regulations42,43, these studies neither
consider E-truck routing with intermittent charging requirements nor
time-dependent carbon intensity dynamics, limiting their direct
applicability to our problem. Given that deliveries in our scenarios may
require 15–60h of driving, the most relevant constraints are short
breaks and mandatory rest periods. These requirements alter arrival
times at charging stations, thereby affecting the carbon intensity of
charging energy. Our framework could accommodate these regulations
by synchronizing rest stops with charging schedules and incorporating
mandatory breaks into route stages. Take the US HOS rules as an
example, we could implement the following adaptations: (i) We can
group every two stages and add a constraint that the total driving time
in these two stages should not exceed 11 h. We can then add a con-
straint that the minimum waiting time tlbw after the second stage in the
group should be 10h. (ii) We can add a constraint that the total driving
time in every stage should not exceed 8h, and the minimum waiting
time tlbw after every stage should be 30min. The choice of tlbw and the
number of stages in a group can be adjusted based on the specific
regulations and operational requirements. Our proposed scheme can
be readily extended without new difficulty to solve the problem with
these new constraints by following the same mathematical derivation
steps in the “Methods” section. This adaptation would maintain reg-
ulatory compliance while leveraging dynamic carbon intensity varia-
tions across different charging times and locations. However, it may
incur optimality loss as it reduces the feasible solution space. A com-
prehensive evaluation of work/rest regulation impacts on carbon sav-
ings merits dedicated future investigation.

Payload restrictions. Payload constraints encompass two dimensions:
(i) vehicle-specific maximum load capacity and (ii) road-specific axle
load limits. Regarding vehicle capacity, our current framework
assumes a predetermined payload based on transportation require-
ments, with appropriate truck selection occurring prior to route
optimization. Since payload directly influences energy consumption44,
incorporating diverse truck types and payload configurations would
enhance assessment precision. Our approach can be extended to
broader vehicle and payload scenarios, which should be straightfor-
ward. For road-specific restrictions, we can preprocess the transpor-
tation network by removing edges where the payload exceeds
allowable limits, ensuring regulatory compliance. Our approach then
operates on this filtered network without requiring framework mod-
ifications. We also note that stricter payload regulations effectively
reduce the feasible solution space, potentially limiting achievable
carbon savings.

Weather impacts. Weather conditions affect three key model com-
ponents: (i) carbon intensity function πv(τ) through wind and solar
irradiance variations, (ii) energy consumption function ce(te) via wind
speed and temperature effects, and (iii) travel speed limits during
adverse conditions. For carbon intensity, state-of-the-art prediction
tools like CarbonCast45 already incorporate weather impacts on
renewable energy generation and grid carbon intensity33,45. Our fra-
mework implicitly accounts for weather-related carbon intensity
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variations through these prediction systems. For energy consumption
and speed limits, we can integrate weather forecasts as additional
model parameters46 to enhance realism and accuracy. Implementation
would involve incorporating weather predictions to update these
functions, then applying our approach with modified inputs. To
address prediction uncertainties and unexpected conditions, we could
incorporate buffers in travel deadlines and battery capacity while
enabling dynamic re-planning when conditions change drastically.

Dynamic speed limits. Dynamic speed limits due to time-varying
traffic conditions or heterogeneous road types could impact the
design space of carbon-optimized operation. Integrating dynamic
speed limits into the model would require real-time updates to travel
speeds and route plans, potentially leveraging traffic condition pre-
dictions. Our stage-expanded graph approach could be adapted to
accommodate these dynamic travel speed limits. For example, we can
divide the time into different traffic phases (e.g., morning and evening
rush hours)47 and treat each traffic phase as another type of stage.
Therefore, in the stage-expanded graph, each stage also corresponds
to a traffic phase, and our approach can thus be adapted to accom-
modate the dynamic travel speed limits. Such adaptation, however,
may complicate the model and thus requires further investigation.

Sophisticated queueing model for charging stations. Recall that for
ease of presentation, we employ a homogeneous lower bound of the
waiting time tlbw across all charging stations and time periods while
preserving the framework’s broad applicability. Its extension to het-
erogeneous lower bounds for different charging stations is straight-
forward. More sophisticated, dynamic waiting time estimation could
incorporate queuing theory approaches based on charging station
capacity and traffic-derived arrival rates48,49, or simulation-based
methodologies50. These refined queuing estimates could subse-
quently be integrated into our optimization framework for enhanced
delivery planning accuracy.

We would like to note that, while more sophisticated models
would undoubtedly increase realism, our work represents a compre-
hensive framework addressing carbon footprint optimization in E-truck
operations. Our primary objective is to demonstrate the potential of
carbon-aware E-truck strategies within broader decarbonization initia-
tives. We believe our current modeling approach provides a robust
foundation for establishing this potential, while more sophisticated
models constitute valuable directions for future research.

Simulation setup
Transportation network. We utilize the U.S. highway network data
from the Map-based Educational Tools for Algorithm Learning
(METAL) project51. The constructed network comprises 84,504 nodes
and 178,238 edges. Road segment grades are calculated using eleva-
tion data from the Shuttle Radar Topography Mission (SRTM)52, based
on the endpoints of each segment. For real-time traffic conditions, we
integrate the speed data obtained from HERE Maps20.

Energy consumptionmodel. To obtain energy consumption data, we
employ the FASTSim simulator53, and evaluate the energy consump-
tion across varying driving speeds (ranging from 10mph to 70mph in
increments of 0.2mph) and road grades (from −6 to 6% in steps of
0.25%). It is worth noting that the maximum permissible grade for
interstate highways in the United States, as specified in ref. 35, is a 6-m
elevation change over 100 meters of road length. We subsequently fit
the collected energy consumption data using cubic polynomial func-
tions, which are also used in prior studies5,37,47. Among heavy-duty E-
Truckmodels, we select the Tesla Semi54 as our primary vehiclemodel
based on several key considerations specific to our U.S.-focused case
study. The Tesla Semi currently offers the longest commercially
advertised range (500 miles) among heavy-duty electric trucks

available in the U.S. market. While alternative electric truckmodels are
emerging, their typical operational ranges of 200–300 miles are not
well-suited for the long-haul transportation scenarios examined in this
study. More importantly, the Tesla Semi’s 500-mile range represents
what we believe to be a realistic and achievable benchmark for electric
truck capabilities as the technologymatures andbecomesmorewidely
adopted. This range specification allows us to model scenarios that
reflect the anticipated operational potential of electric trucking rather
than being constrained by current technological limitations. For
comparative reference,wehave included a comprehensive overviewof
available electric truckmodels in the U.S. market in Table 2. We set the
battery capacity to B = 1000 kWh (derived from manufacturer-
reported energy consumption rates) and the gross vehicle weight to
36 tons, consistent with class 8 truck standards for highway freight.

Origin destination pair and start time. We collect origin-destination
pairs from the Freight Analysis Framework (FAF)13. We divide the long-
haul origin-destination pairs into the following four distance cate-
gories: 500–1000 miles, 1000–1500 miles, 1500–2000 miles, and
2000+miles. We select the top 100 pairs based on freight values from
each group, resulting in a total of 400 origin-destination pairs. For
each origin-destination pair, we select the corresponding nearest
nodes in the highway network graph as the origin and destination
nodes, respectively. For each origin-destination pair, we conduct the
simulationwith the start timeof travel at 8:00AMon February 1st,May
1st, August 1st, and November 1st, 2024, to account for seasonal var-
iations in carbon intensity. For future projections, we use the same
date and time with varying years.

Charging station data. Given the limited availability of dedicated
truck-specific charging networks, we collect the location data of light-
duty EV charging stations from OpenStreetMap (OSM)19. While these
stations primarily serve light-duty EVs, we consider themoperationally
relevant for heavy-duty electric truck analysis for two critical reasons.
First, dedicated truck-specific charging networks remain limited in
current U.S. infrastructure deployment, making existing charging
locations the most realistic foundation for near-term planning. Sec-
ond, existing light-duty EV charging infrastructure can be technically
adapted to accommodate heavy-duty electric trucks through power
scaling and connector modifications, as demonstrated in recent
infrastructure studies55. Consequently, OSM’s charging location data
provides a realistic and practical foundation for heavy-duty electric
truck infrastructure planning and operational optimization studies
within the U.S. context. Wemerge the charging stations with the same
locations into a single charging station. The dataset includes 1, 636
charging stations, and we model their charging functions using a pie-
cewise linear approximation with breakpoints at 0%, 80%, 85%, 90%,
95%, and 100% battery SoC29. This model indicates that the studied
E-Truck can be charged from 0% to 80% in 48min. A visual repre-
sentation of this charging process is provided in Supplementary Fig. 2
within Supplementary Information Section 5.1. For carbon intensity
data, we utilize the Cambium datasets15, from which we derive a

Table 2 | A summary of the available heavy-duty E-Truck
models in the US

Model Range Charging Time

Kenworth T680E 150 mile 125min (80%)

Peterbilt 579EV 150 mile 120min (90%)

Freightliner eCascadia 150–230 mile 90min (80%)

Volvo VNR Electric 275 mile 90min (80%)

Nikola Tre BEV 330 mile 160min (80%)

Tesla Semi 500 mile 40min (80%)
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piecewise linear carbon intensity function π( ⋅ ) for each charging
station. The charging efficiency η is set to 0.956.

ICE truck model. We adopt the parameters of the Kenworth T800
trailer57 for the ICE truckmodel.We set the same totalweight of 36 tons
as the E-Truck model. The FASTSim simulator is then employed to
gather fuel consumption data for the ICE trucks, fromwhich we derive
the corresponding energy consumption function. To quantify carbon
emissions, we apply the CO2 emission factor for diesel provided by the
EIA58. According to the data, a diesel-powered ICE truck emits 10.19 kg
of CO2 per gallon of diesel consumed, which is equivalent to 0.25 kg of
CO2 per kWh of energy. We assume that the ICE trucks begin its
journey with a full fuel tank at the origin. Given the ubiquitous
refueling infrastructure for conventional vehicles, we further assume
that ICE trucks can access refueling stations with negligible detour or
delay during transit.

Carbon-efficient operations for ICE trucks and hydrogen FCE-
trucks. For ICE trucks, the carbon-efficient operation is equivalent to
the energy-efficient operation, aswe assume ICE trucks’ refueling takes
negligible time along the transportation task. The CFO problem
reduces the energy-efficient driving problem for ICE trucks, and our
approach reduces to the dual-based method in5. We thus use the
algorithm in5 to compute the carbon-optimized operation for ICE
trucks. For hydrogen FCE-Trucks, we use the same energy consump-
tionmodel as E-Trucks.We assume all the hydrogen fuel consumed by
FCE-Trucks is produced by electrolysis of water using the electricity
from the same region as the hydrogen refueling station59. Additionally,
we assume that the hydrogen refueling stations are co-locatedwith the
electric charging stations. Because the FCE-Truck usually has a longer
range and a shorter refueling time than the E-Truck, a feasible E-Truck
operation is also a feasible hydrogen FCEV truck operation for the
same transportation task. In the simulation,weadopt the same carbon-
optimized operation for E-Trucks to the hydrogen FCE-Trucks. We
then evaluate the carbon footprint of FCE-Trucks with an electrolysis
efficiency of 80%60 and a hydrogen-to-electricity efficiency of 60%61.
Although this direct application is sub-optimal, it still results in a
substantial reduction in carbon emissions for FCE-Trucks. With our
primary focus on E-Trucks, we defer a more comprehensive study on
the carbon-optimized operation for FCE-Trucks to future research.

Electric grid projection. We use the electric grid projection data from
the Cambium dataset15. We use the following three scenarios: (i) BAU:
the business-as-usual scenario, called “Mid-case” in the Cambium
dataset; (ii) CONSERVATIVE: a conservative projection that assumes
the cost of renewable investment remains high in the future, called
“High Renewable Energy and Battery Costs” in the Cambium dataset;
(iii) OPTIMISTIC: an optimistic projection that achieves the electric
grid meets the full decarbonization target by 203516, called “Mid-case
with 100% Decarbonization by 2035” in the Cambium dataset. By
default, we use carbon intensity data in 2024 with the BAU scenario.

Vehicle adoption projection. We use the vehicle adoption projection
data from ref. 14. We select the data for long-haul heavy-duty trucks
(class 7–8). We do not differentiate the hybrid electric trucks and ICE
trucks in the simulation as they are both powered by diesel, and hybrid
electric trucks contribute little fuel efficiency improvement in the long-
haul task61. We use the following three different scenarios for the
vehicle adoption projection: (i) NORMAL: the scenario with central
assumption, called “Central” in ref. 14; (ii) ADVANCED: the scenario
with lower charging infrastructure cost and higher utilization, called
“Adv. Electricity” in ref. 14. (iii) CONSTRAINED: the scenario with
constrained FCE-Truck and E-Truck technology advancement, called
“Cons. ZEV Tech Progress” in ref. 14.

Baseline comparison. We evaluate and compare the following truck
operation strategies: (i) CARBON: our proposed approach focused on
minimizing carbon footprint; (ii) ENERGY: a variant of our approach
where the objective is to minimize energy consumption, achieved by
setting a uniformcarbon intensityπ( ⋅ ) ≡ 1; (iii) FAST: ourmethodology
applied to the problemdefined in (13), which aims to identify solutions
with the shortest possible travel time. (iv) PRACTICE: a conceivable
baseline that mimics the human practice for driving an E-Truck. In
particular, we first compute the fastest path from the origin to the
destinationwithout intermediary charging stops.We then simulate the
E-Truck to drive at the fastest speed until the battery is below tol = 20%
SoC. We then find and route to the nearest charging station and fully
charge the battery. We repeat the process until the destination is
reached. If we can not find a feasible solution, we restart the procedure
with a larger tol ← tol +5%.

Runtime environment. We implement our approach in the Julia pro-
gramming language62 and run the simulation on theHigh-Performance
Computing system CityU Burgundy with multiple computing nodes.
Each node is equipped with two AMD EPYC 7742 64-core CPUs and
512 GBofmemory. For each problem instance, we use 8 CPU cores and
16GB of memory to compute the solution with our approach.

Other parameters and implementation details. The number of
charging stops N for the CARBON and ENERGY strategies is aligned
with that of the FAST strategy. Under these typical conditions, the
number of charging stops does not exceed 12. We configure the
conservative lower bound ratio as α = 0.05 and limit the maximum
number of iterations to 100. For each origin-destination pair, the
default deadline is defined as T = 1.2Tf, where Tf represents the
minimum travel time determined by the FAST strategy. Additionally,
we assume that the E-Truck begins its journey with its battery fully
charged, i.e., β0 = B. We assume the carbon intensity of the initial
battery π0 is the average carbon intensity at the origin on the start
date. Therefore, for a trip without intermediary charging stops, the
incurred carbon footprint is (β0 − βd) ⋅ π0, where βd is the final battery
SoC at the destination.

Data availability
All datasets generated and analyzed in this study are available in the
accompanying Source Data files. The US network data51, elevation
data52, origin-destination pairs data13, charging station data19, carbon
intensity data15, vehicle adoption data14 are all publicly available. The
road traffic data can be accessed through HERE Maps’ API20 and is
subject to HERE Maps’ terms of use. Source data are provided with
this paper.

Code availability
The custom computer code used to generate results can be accessed
through the GitHub repository63.
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