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A software platform for real-time and
adaptive neuroscience experiments

Anne Draelos1,2,12 , Matthew D. Loring3, Maxim Nikitchenko3,
Chaichontat Sriworarat1,2, Pranjal Gupta2,4, Daniel Y. Sprague1,2,
Eftychios Pnevmatikakis5, Andrea Giovannucci 6, Tyler Benster7,
Karl Deisseroth 7,8, John M. Pearson 1,2,3,4,9,13 & Eva A. Naumann 3,4,10,11,13

Current neuroscience research is often limited to testing predetermined
hypotheses and post hoc analysis of already collected data. Adaptive experi-
mental designs, in which modeling drives ongoing data collection and selects
experimental manipulations, offer a promising alternative. However, such
adaptive paradigms require tight integration between software and hardware
under real-time constraints. We introduce improv, a software platform for
flexible integration of modeling, data collection, analysis pipelines, and live
experimental control. We demonstrate both in silico and in vivo how improv
enables efficient experimental designs for discovery and validation across
various model organisms and data types. We used improv to orchestrate real-
time behavioral analyses, rapid functional typing of neural responses via cal-
cium imaging, optimal visual stimulus selection, and model-driven optoge-
netic photostimulation of visually responsive neurons in the zebrafish brain.
Together, these results demonstrate the power of improv to integrate mod-
elingwith data collection and experimental control to achieve next-generation
adaptive experiments.

Technical progress in systems neuroscience has led to an explosion
in the volume of neural and behavioral data1–4. New challenges in
processing these large, high-dimensional data have spurred the
development of new computational methods to efficiently process
them5–7. Such theoretical and computational efforts have increas-
ingly focused on models of population dynamics8,9 that explicitly
focus on high-dimensional neural activity10,11. In parallel, experi-
ments have increasingly used complex stimuli and task structures
that align more closely with those experienced in the wild12,13 to

understand how neural circuitry and dynamics govern natural
behavior14–18.

Yet this complexity has led to new challenges in experimental
design. Our limitation is no longer the volume of data that can be
collected but the number of hypotheses that can be tested in limited
experimental time. For instance, even a few visual stimulus parameters
—contrast, speed, and direction of moving gratings—imply thousands
of combinations of unique stimuli, with even more for natural images.
Given a fixed time budget and an increasing number of experimental
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conditions, statistical power is likely to decrease significantly without
careful experimental design19.

But even beyond time limitations, many new questions can only
be addressed when experiments can be adjusted during data acquisi-
tion. For example, behaviorally relevant neurons are widely
distributed20,21 with unknown initial identities and locations. In these
cases, performing causal testing via targeted stimulation methods
requires first collecting data to assess the location and function of the
relevant neural populations22,23. Moreover, many quantities of interest
can only be learned from data, including information about the orga-
nization of behavioral states24, which behavioral variables are asso-
ciatedwith neural activity, or which neural dynamics aremost relevant
to behavior25. By contrast, typical analyses are performed long after
data acquisition, precluding any meaningful interventions that would
benefit from information collected during the experiment26. This
separation between data collection and informative analysis thus
directly impedes our ability to test complex functional hypotheses that
might emerge during the experiment.

Tighter model-experiment integration offers a potential solution:
Models can speed up hypothesis testing by selecting themost relevant
tests to conduct. Models can also be learned or refined continually as
data is acquired. Such adaptive paradigms have been used with great
success in learning features of artificially generated images that
maximally excite neurons in the visual cortex27,28 or for system iden-
tification of sensory processing models by optimizing the presented
stimuli29. Likewise, various models of decision-making can be tested
and differentiated via decoding and causally perturbing a latent task
variable using moment-to-moment readouts30. Closed-loop or adap-
tive designs led to identifying performance variability through real-
time auditory disruptions31 and finding stimuli that optimally excite
neurons with closed-loop deep learning32. These experimental design
strategies all utilize models that are updated as soon as new data or
test results become available.

Indeed, strategies that ‘close the loop’ are also essential for causal
experiments that directly intervene in neural systems16,22,26,33. For
instance, in experiments that aim tomimic endogenous neural activity
via stimulation, real-time feedback can inform where or when to
stimulate22,34–39, and such stimulations are critical to revealing the
functional contributions of individual neurons to circuit computations
and behavior16. In fact, for large circuits composed of thousands of
neurons, establishing fine-grained causal connections between neu-
rons may prove infeasible without models to narrow down candidate
mechanisms or circuit hypotheses in real time40.

Thus, for testing many complex hypotheses, data analysis should
not be independent from data acquisition. Yet while modern com-
puting and new algorithms have made real-time preprocessing of
large-scale recordings feasible7,41–43, significant technical barriers have
prevented their routine use. For example, many successful model-
based experiments have required significant offline or cluster-based
computing resources32,44. In addition, most existing algorithms and
software are not constructed to facilitate the parallel execution and
streaming analyses critical for adaptive experiments. Finally, inter-
process data sharing, concurrent execution, and pipeline specification
pose significant technical difficulties, and because adaptive designs
vary so widely, any practical solution must be easily configurable and
extensible to facilitate rapid prototyping. That is, simply allowing users
to choose from a set of built-in models is insufficient: the systemmust
allow experimenters to flexibly compose existing methods with
entirely novel algorithms of their own design.

To address these challenges, we present improv, a modular soft-
ware platform for constructing and orchestrating adaptive experi-
ments. By carefully managing the backend software engineering of
dataflowand taskexecution, improv can integrate customizedmodels,
analyses, and experimental logic into data pipelines in real time with-
out requiring user oversight. Any type of input or output data stream

can be defined and integrated into the setup (e.g., behavioral or neural
variables), with information centralized in memory for rapid, inte-
grative analysis. Rapid prototyping is facilitated by allowing simple
text files to define arbitrary processing pipelines and streaming ana-
lyses. In addition, improv is designed to be highly stable, ensuring data
integrity through intensive logging and high fault tolerance. It offers
out-of-the-box parallelization, visualization, and user interaction via a
lightweight Python application programming interface. The result is a
flexible real-time preprocessing and analysis platform that achieves
active model-experiment integration in only a few lines of code.

Results
improv is aflexible anduser-friendly real-time software platform
We created improv to easily integrate custom real-time model fitting
and data analysis into adaptive experiments by seamlessly interfacing
with many different types of data sources (Fig. 1a). improv’s design is
based on a simplified version of the ‘actor model’ of concurrent
systems45. In this model, each independent function of the system is
the responsibility of a single actor. For example, one actor could be
responsible for acquiring images from a camera, with a separate actor
responsible for processing those images. Each actor is implemented as
a user-defined Python class that inherits from the Actor class provided
by improv and is instantiated inside independent processes (Supple-
mentary Fig. 1). Actors interact directly with other actors via message
passing, with messages containing keys that correspond to items in a
shared, in-memory data store built atop the Plasma library from
Apache Arrow46. Rather than directly passing gigabytes worth of ima-
ges from actor to actor (e.g., from acquisition to analysis steps), the
image is placed into the shared data store, after which a message with
the image’s location is passed to any actor requiring access. Thus,
communication overhead and data copying between processes is
minimized (Fig. 1b). At a higher level, pipelines are defined by pro-
cessing steps (actors) and message queues, which correspond to
nodes and edges in a directed graph (Fig. 1c). This concurrent frame-
work also allows improv to ignore any faults in individual actors and
maintainprocessing performance for long timescaleswithout crashing
or accumulating lag (Supplementary Fig. 2).

Real-time modeling of neural responses
Designed for flexibility, improv facilitates a wide class of experiments
involving real-time modeling, closed-loop control, and other adaptive
designs. To test these capabilities in silico, we first benchmarked its
performance on a prerecorded two-photon calcium imaging data set.
Using raw fluorescence images streamed from disk at the rate of ori-
ginal data acquisition (3.6 Hz), we simulated an experiment in which
larval zebrafish were exposed to a sequence of visual whole field
motion stimuli. The improv pipeline acquired the images, pre-
processed them, analyzed the resulting deconvolved fluorescence
traces, estimated response properties and functional connectivity of
identified neurons, and displayed images and visuals of the results in a
graphical user interface (GUI) (Fig. 2a). Imageswereoriginally acquired
via two-photon calcium imaging of 6-day old larval zebrafish expres-
sing the genetically encoded calcium indicator GCaMP6s in almost all
neurons (“Methods”). Simultaneously, repetitions of visual motion
stimuli, square-wave gratings moving in different directions, were
displayed to the fish frombelow (Fig. 2b). These two data streamswere
sent to improv and synchronized via alignment to a common reference
frame across time (Fig. 2c, d).

Next, calcium images were preprocessed with an actor (‘Caiman
Online’) that used the sequential fitting function from the CaImAn
library7 to extract each neuron’s spatial location (ROI) and associated
neural activity traces (fluorescence and spike estimates) across time
(Fig. 2e; Supplementary Fig. 3). The visual stimuli and fluorescence
traces were then used to compute each neuron’s response to motion
direction, providing streaming and continually updated directional
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tuning curves. Additionally, within a separate ‘LNP Model’ actor, we fit
a version of a linear-nonlinear-Poisson (LNP) model47, a widely used
statistical model for neural firing (Fig. 2f; Supplementary Fig. 4). Here,
in place of the entire data set, we used a sliding window across the
most recent 100 frames and stochastic gradient descent to update the
model parameters after each new frame of data was acquired. This
model also scaled well to populations of thousands of neurons,
allowing us to obtain up-to-the-moment estimates of model para-
meters across the brain, including circuit-wide functional connections
among neurons. In testing, this online model fit converged quickly
towards the value obtained by fitting themodel offline using the entire
data set. As a result, our replication experiment had the option of
stopping early without needing to present each stimulus 5-10 times.

Finally, we constructed a GUI that displayed neural functional
responses and connectivity maps in real time and offered interactive
controls (Fig. 2g). While fully automating experiments could, in prin-
ciple, enablemore efficient experiments, it also remained important to
provide status metrics and raw data streams that allowed for experi-
menter oversight. Here, we used the cross-platform library PyQt48 to
implement a ‘Data Visualization’ actor as a frontend display, visualizing
raw and processed data in real time using improv as the backend
controller. All plots were updated as new data were received, up to 60
times per second, providing users with up-to-the-minute visual feed-
back (Supplementary Video 1). In this way, improv can easily integrate
incoming data with models to produce both visualizations andmodel-
based functional characterizations in real time,with thebenefit of early
stopping, saving valuable experimental time.

Concurrent neural and behavioral analyses
We next demonstrate how improv can be used for streaming, simul-
taneous analysis of neural data and behavior in real time. To do so, we
reproduced an analysis from Musall et al.49 in which features from

mouse behavioral videos acquired at 30 frames per second were used
to predict neural activity acquired as two-photon calcium imagingdata
in the dorsal cortex. As model variables from their behavioral video
data had the most power for predicting single-neuron activity, we
focused our replication solely on the video data rather than any other
task information. Importantly, this study identified unstructured
movements, which are generally not known ahead of time, as being the
strongest predictors of neural activity, suggesting that identifying
those significant behavioral metrics during the experiment would
generate new hypotheses to test behavioral-brain links online.

To demonstrate this possibility, improv ingested simultaneously
recorded video of a mouse and two-photon fluorescence traces. We
implemented a streaming dimension reduction method to reduce
each (240 × 320) video frame down to ten dimensions, used ridge
regression to predict the neural activity from the low-dimensional
behavioral video factors, and visualized the results (Fig. 3a). Here, we
used our recently developed form of streaming dimension reduction,
proSVD, to identify a stable low-dimensional representation of the
video data50. Within one minute, proSVD found a subspace of beha-
vioral features that were stable across time, one suitable to serve as a
reduced data representation in the subsequent regression model
(Fig. 3b). We next used an implementation of streaming ridge
regression51 to predict neural data from the proSVD-derived features.
We found that our identified regression coefficients β also converged
quickly on the order of minutes (Fig. 3c; Supplementary Fig. 5).

To gain insight into what low-dimensional behavioral features
were most significant for predicting neural activity, we visualized this
dimension-reduced data, plotting the first two proSVD dimensions
(Fig. 3d, orange trajectory). Simultaneously, as Musall et al., we visua-
lized the identified effects by overlaying the weighted regression
coefficients onto the original behavioral video, which highlighted the
relevant regions of the imageused in predicting neural activity (Fig. 3d;
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Fig. 1 | Design architecture of improv. a Schematic for possible use cases of
improv, enabling real-time data collection from multiple sources (orange), mod-
eling and analyzing these data via user-defined code (blue), and manipulating
experimental variables (magenta). improv orchestrates input and output data
streams independently and asynchronously. b Schematic for the actor model. (1)
improv creates and manages actors as separate, concurrent processes. (2) Actors

can access a shared data store and pass messages to other actors. (3) Actors send
only addresses of data items, minimizing data copies. c Example actor graph, a
pipeline that acquires neural data, preprocesses them, analyzes the resulting neural
activity, suggests the next stimulus to present, and visualizes the result. Actors
correspond to nodes in the processing pipeline, and arrows indicate logical
dependencies between actors.

Article https://doi.org/10.1038/s41467-025-64856-3

Nature Communications |         (2025) 16:9909 3

www.nature.com/naturecommunications


Supplementary Video 2). Thus, real-time modeling with improv
allowed for rapid identification of brain-behavior relationships that
could ultimately be used to time causal perturbations to the system
based on current neural or behavioral state.

Streaming predictions of future neural activity
Given the growing importance of testing theories based on neural
population dynamics10,11,52, we next asked whether improv could be
used to learn andpredict upcomingneural population activity during a
single experiment. As neural dynamics, by definition, vary across time,
and are highly individual- and trial-specific, it is important to learn and

track these trajectories as they occur. By doing so, experiments could
directly test hypotheses about how these neural dynamics evolve
across time by perturbing activity at precise moments along neural
trajectories. In this simulated example, we tackled the first stage of
such an experiment by modeling latent neural dynamics in real time
and generating future predictions of how trajectories would evolve
given current estimates of the neural population state. Here, we used
data53 recorded from the primary motor cortex (M1) in an experiment
where monkeys made a series of self-paced reaches to targets.

For this pipeline, note that we did not need to reimplement or
change the code for the proSVD actor from our previous experiment

Fig. 2 | improv provides streaming model-based characterization of neural
function. a Diagram showing the conceptual flow of data among all actors in the
pipeline. Fluorescence images and visual stimuli data were acquired, preprocessed,
fed into the model, and visualized, all in real-time. b Schematic of calcium imaging
in zebrafish. An acquisition computer acquired fluorescence images and controlled
the projection of visual stimuli, and a second networked computer running improv
received data for processing in real time. c The ‘2p Acquisition’ actor was respon-
sible only for sending images from the two-photon microscope to the improv
computer, one image at a time (3.6 frames/s).d The ‘Visual Stimuli’ actor broadcast
information about the stimulus status and displayed visual stimuli. Stimuli were
interleaved moving (4.2 s) and stationary (5.3 s) square wave gratings drifting in
eight directions (arrow wheel). e Each image was streamed to the CaImAn Online
algorithm, encapsulated in a custom actor, that calculated neural spatial masks
(ROIs), fluorescence traces, and estimated (deconvolved) spikes across time for
each neuron, shown for three example traces. f A linear-nonlinear-Poisson (LNP)

model was reformulated to work in the streaming, one-frame-at-a-time, setting.
Center, Diagram of our model incorporating stimuli, self-history, and weighted
connection terms. Bottom, Log-likelihood fit over time, as more frames were fed
into improv. The onlinemodel fit converged to the offline fit obtained using the full
data set (dotted line) after a single repetition of unique visual stimuli (shaded
region). g The ‘Data Visualization’ actor was a GUI that displayed the raw acquired
images (left), a processed image overlaid with ROIs color-coded for directional
preference, neural traces for one selected neuron (white), and population average
(red), tuning curves, andmodelmetrics. The processed frame showed each neuron
colored by its directional selectivity (e.g., green hues indicate forward motion
preference). The LNP actor interactively estimated the strongest functional con-
nections to a selected neuron (green lines). The LNP model likelihood function
(bottom right) showed the optimization loss across time and estimated con-
nectivity weights of highly connected neurons below.

Article https://doi.org/10.1038/s41467-025-64856-3

Nature Communications |         (2025) 16:9909 4

www.nature.com/naturecommunications


(Fig. 4a). Rather, we easily inserted this module into a new pipeline
simply by modifying a parameter file with dataset-relevant values
describing the neural data (Fig. 4b). With improv, it is thus extremely
simple to combine old and new analyses by reusing actors or swapping
models – either in new experiments or during an experiment in pro-
gress. As our newexperiment, we thus acquired neural data in the form
of sorted spikes, used proSVD for streaming dimension reduction on
the neural data, implemented another streaming algorithm to learn
andpredict latent neural trajectories, and visualized themodelmetrics
and projected neural paths.

After dimension reduction on the neural data, we used a stream-
ing probabilistic flowmodel, Bubblewrap50, tomodel the resulting low-
dimensional latent trajectories in real-time (Fig. 4c). By covering the
observed latent trajectories with Gaussian tiles (or ‘bubbles’), the
model maximized the likelihood of observed transitions between
these tiles, learning a transition matrix A that allowed it to predict the
likely evolution of the current trajectory into the future. Predictions
even one full second (100 samples) into the future remained accurate,
dropping in performance by only 11% from one-step-ahead predic-
tions, as quantified by the log predictive probability (Fig. 4d). Thus,
this model can, in principle, be used to plan causal interventions of
these neural trajectories and precisely time their delivery. Importantly,
such trajectories or perturbations cannot be known in advance, and
thus, real-time predictions of ongoing neural activity are essential for
conducting true causal tests of neural population dynamics theories.

Closed-loop stimulus optimization to maximize neural
responses
Causally perturbing neural dynamics in adaptive experiments requires
real-time modeling to efficiently determine when, where, and what
kind of feedback to deliver. Insteadof being restricted to a pre-defined
and limited set of options, we instead used improv during live, two-
photon calcium imaging to choose visual stimuli based on ongoing

responses to visually evoked neural activity in larval zebrafish (Fig. 5,
Supplementary Fig. 6). A standard experimental design is to present a
limited set of motion stimuli while simultaneously imaging neural
activity to measure each neuron’s direction selectivity20,54. However,
because of time constraints set by the number of stimuli and pre-
sentation duration, it is difficult to assess a larger stimulus space if
sampling is not optimized. For instance, previously, we needed about
eightminutes per plane (20 s per stimulus * 3 repetitions * 8 directions)
for such a coarse directional tuning curve (45° intervals)20. Yet, eval-
uating each neuron for its response to twenty-four different angles (at
15° intervals) for each eye results in 576 possible stimuli (20 s * 24 per
left eye * 24 per right eye * 3 reps) thatwould take close to ten hours for
a single plane alone or over 200h of continuous imaging for the
entire brain.

Here, we implemented an adaptive approach using Bayesian
optimization (BO)55 to quickly determine fine directional tuning.
Avoiding complex software-hardware integration, we applied ZMQ
libraries to rapidly transfer fluorescence images via an Ethernet con-
nection and communicate with improv, controlling stimulus para-
meters on the fly (“Methods”). improv utilized a ‘Bayesian
Optimization’ actor (BO) to select which visual stimulus to display on
each next trial tomaximize a given neuron’s response to visual stimuli.
To initialize the BO model, the responses to an initial set of eight
stimuli were analyzedby the ‘CaimanOnline’ actor (Fig. 5b). AGaussian
Process (GP)56 was then used to estimate a given neuron’s tuning curve
f across all stimulus possibilities, as well as the uncertainty σ in that
estimate (Fig. 5c). We then chose the optimal next stimulus based on a
weighted sum of those two components, balancing exploration and
exploitation57. This cycle of acquiring and analyzing the neural
responses, updating the model estimate, and selecting the next sti-
mulus continued until a chosen model confidence value or an upper
limit on the number of stimuli (nmax=30) was reached (Supplementary
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Video 3). Next, a new neuron was randomly selected from all respon-
sive neurons for optimization using the same procedure.

We validated our approach by comparing it to rigid sampling
within a reduced stimulus space (144 unique combinations) and found
that our online BO approach identified qualitatively similar neural
response curves compared to the offline GP fit to all collected data
(Fig. 5d). In addition, we quantified the accuracy of the identified peak

by computing the Euclidean distance between the location of the
maximum values of the offline and online GP fits, accounting for cir-
cular boundary conditions (Supplementary Fig. 7). On average, the
correct peakwas identified in 93%of neurons chosen for optimization,
and incorrectly identified peaks tended to have more complex tuning
curves with multiple maxima (Supplementary Fig. 8). Better accuracy
could be achieved by increasing the desired confidence level.
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While this method only optimized stimuli to drive peak responses
of a single neuron at a time, simultaneous imaging of the entire
population allowed us to observe the responses of all other neurons in
the field of view, and thus we updated tuning information for all
neurons after each stimulus. Thismeant that, in practice, just 15 stimuli
were needed (on average) to optimize a population of 300 neurons
(Fig. 5e). Thus, using improv, we quickly identified the peak tunings
across different neural populations (Fig. 5f). For instance, when com-
paring peak tunings for neurons in the pretectum (Pt) and the optic
tectum (OT), we observed differences between regions, differences
that were reflected in the algorithm’s pattern of stimulus sampling.We
noted that Pt neurons preferred whole-field stimuli where the same
angle was shown to each eye, but OT neurons’ peak tunings were
concentrated in off-diagonal regions, with converging or diverging
stimuli displayed to the fish. The adaptive algorithm correctly chose to
sample in regionswhere neuronsweremaximally tuned, depending on
the region (Fig. 5f, white ‘x’s). Again, since we record simultaneously
from all neurons, each new optimization routine leveraged data from
the previous neurons, effectively aggregating information across the
given neural population. Thus, this method is particularly well suited
for applications where population correlations are expected, allowing
for exploring larger stimulus spaces.

Adaptive optogenetic photostimulation of direction-selective
neurons
Finally, we used improv to adaptively select neurons for optogenetic
photostimulation based on direction selectivity. Optogenetics is
powerful for dissecting causal neural interactions, activating neurons
by opening light-gated channels while recording from downstream
target neurons16,58. Yet, typically, the criteria for photostimulation,
including location and neuron type, must be learned beforehand.
Here, we leveraged improv to implement real-time data analysis to
enablemore flexible phototargeting that cannot be pre-specified, such
as the functional roles of individual neurons (Fig. 6; Supplementary
Fig. 6). Specifically, we used an all-optical approach59 in larval zebra-
fish, simultaneously performing two-photon photostimulation in red
(1045 nm) of neurons expressing a novel redshifted marine opsin,
rsChRmine60 during two-photon calcium imaging in green (920 nm,
GCaMP6s), avoiding spectral overlap.

After alignmentof the imaging andphotostimulationpaths before
each experiment (Methods; Supplementary Fig. 9), improv coordi-
nated phases of rapid characterization of individual and network-level
calcium responses, followed by a closed-loop, automated photo-
stimulation of neurons identified by their visual response profiles
(Fig. 6b, d). We designed this adaptive procedure to probe how
functionally-grouped and direction-selective neurons might drive the
visually-responsive neural circuits in ways similar to the presentation
of external stimuli. First, we characterized individual neurons’
responses to a predetermined set of motion stimuli (Fig. 6c). Next,
these tuning curves were used by our ‘Adaptive Targeting’ actor to
select a neuron with specific direction preference and opsin expres-
sion level for photostimulation. The targeted neuron’s x and y position
estimated from the ‘Caiman Online’ actor was then sent to the

‘Photostimulation’ actor for immediate photostimulation (Supple-
mentary Video 4). improv orchestrated the automated analysis of 3–5
repetitions of photostimulation-evoked responses in neurons across
the entire field of view. This targeting and stimulation procedure was
repeated by selecting new neurons based on continually estimated
criteria, e.g., directional tuning, excluding previously stimulated neu-
rons, and opsin expression. Therefore, improv enabled real-time
tracking andmanipulation of experimental parameters to phototarget
relevant neurons as they were discovered during imaging throughout
the experiment.

Using these methods, we identified neurons that responded to
photostimulation of a specific target neuron (Fig. 6e). We observed a
variety of photostimulation-related response profiles, with some
neurons exhibiting no response to any photostimulation, some with
selective activation (Fig. 6f, 1&2), and some with consistent
photostimulation-locked responses independent of the targeted neu-
ron (Fig. 6f, 3). When combined with information about each neuron’s
responses to directional visual stimuli, these data allowed us to
examine the ways in which different directionally tuned neurons
interact. Across fish, we characterized individual neurons for their own
directional preference, as well as their responsiveness during the
photostimulation of other neurons (Fig. 6g). We observed some neu-
rons whose visual tuning curves closely match their photostimulation
tuning curve, suggesting that their visual response may be at least
partly driven by neurons with similar tuning properties. For example,
some forward-selective neuronswere activatedbyphotostimulationof
other forward-selective neurons. Interestingly, some neurons respon-
ded more during photostimulation than to visual stimulation, while
others stopped responding when neurons were photostimulated with
shared direction preferences. Overall, slightly more neurons were
more responsive to visual stimulation, often responding to both visual
stimuli and photostimulation (Fig. 6h, right). In general, neurons that
weremore activated by photostimulation were either weakly activated
by visual stimulation or responsive only to photostimulation events.

Together, these experiments demonstrate improv’s ability to
orchestrate a complex adaptive experiment involving stimulus selec-
tion and evaluation, experimental phase switching, data handling, and
online target selection, including conversion of coordinates of the
imaging path into voltage signals for photostimulation. improv
enabled us to compute diverse responses to visual and photo-
stimulation in real-time and to dynamically select neurons for pertur-
bation based on ongoing estimates of their network-driven activity.
Future experiments could extend these paradigms to combine both
visual stimuli and photostimulation simultaneously, incorporating
higher-dimensional stimuli via Bayesian optimization, considering
behavior, or rapidly dissecting functional connectivity across brain
regions.

Discussion
As data collection capacities in neuroscience continue to grow, the key
question for experimentalists may no longer be which data they can
afford to collect but which they can afford to ignore. Adaptive
experiments like those illustrated above offer a powerful alternative in

Fig. 4 | Real-time latent neural trajectory prediction with improv. a improv
pipeline for dimension-reducing multichannel neural electrophysiology data and
predicting latent dynamics in real-time. Data from (O’Doherty et al.53). b Neural
spiking data are streamed from disk, simulating online waveform template
matching, binned at 10ms, and smoothed using a Gaussian kernel to obtain firing
rates. The ‘proSVD’ actor then reduced 182 units down to a stable 6-dimensional
space. c The ‘Bubblewrap’ actor incorporates dimension-reduced neural trajec-
tories and fits (via a streaming EM algorithm) a Gaussian mixture Hidden Markov
Model to coarsely tile the neural space. Left, A dimension-reduced input data tra-
jectory (orange line), bubbles (shaded blue ellipses), and the (probabilistic) con-
nections between bubbles (dashed black line). Right, The model predictive

performance is quantified by the log predictive probability (blue, top) and the
entropy of the learned transition matrix (purple, bottom). Black lines are expo-
nentially weighted moving averages. d Predictions can be qualitatively and quan-
titatively monitored via improv. Left, Dimension-reduced neural data are displayed
in light gray with the neural trajectory of the current arm reach shown in orange;
bubbles and connections as in c. The dashed black line indicates the predicted
transitions in the space given the first 150ms of the trial, predicting 400ms into the
future. Right, Bubblewrap’s predictive performance (log predictive probability and
entropy;mean and standard deviation) is shown as a function of seconds predicted
ahead. Error bars denoting standard deviation are calculated across all timepoints
in the second half of the dataset (n = 7500).
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whichmodels guide data collection and causal interventions based on
continuous feedback. improv dramatically simplifies the design and
prototyping of these experiments by combining flexible, modular
specification of analysis pipelines with arbitrary modeling in the loop.
improv accomplishes these complex tasks while orchestrating the

most time-consuming and tedious aspects of constructing adaptive
pipelines: parallelism, error-handling, and data management flows
(Fig. 1). With improv’s software architecture, we show that many
commonly used models, such as linear-nonlinear Poisson and reg-
ularized regression, can easily be fit online, often requiring no more

1

2

Fig. 5 | improv enables closed-loop optimization of peak neural responses.
a improv pipeline for optimization of neural responses during calcium imaging
using a ‘BayesianOptimization’ (BO)model actor to inform the ‘Visual Stimuli’ actor
to select the next stimulus to display. b Matrix of 576 possible combinations of
visual stimuli consisting ofmoving gratings shown to each eye individually. Stimuli
aremoving for 5 s andheld stationary for 10 s. cOnline BOactor assesses a neuron’s
stimulus response to the current visual stimulus and updates its estimate of the
tuning curve using a Gaussian process (GP) (f), as well as the associated uncertainty
(σ). The next stimulus is selected by maximizing a priority score that balances
exploration (regions of high uncertainty) and exploitation (regions of high
response). Estimates and uncertainty are plotted here and in (d) using a color scale
normalized to 1 for visualization.d Tomeasure similar receptive field precision, the
online BO approach typically only requires 8–20 stimulus presentations, compared

to an incomplete grid search of 144 stimuli (gray denotes unsampled regions). The
peak tuning identified by an offline GP fit and the empirical peak tuning from the
grid search agree with the peak tuning determined online. e On average, just
15 stimuli are needed to determine peak tunings of 300 neurons in real time (N = 12
imaging sessions). fHeatmaps showing the distributions of identified peak tunings
for individual neurons in the pretectum (Pt, left) or the optic tectum (OT, right).
Color indicates the density of tuning curve peaks across the population. White ‘x’s
mark the locations where the algorithm chose to sample. In this example, the
algorithm sampled primarily near the diagonal (congruent, same direction of
motion to both eyes) in the Pt but chose to sample more frequently in off-diagonal
areas (different direction of motion to both eyes, e.g., converging motion)
in the OT.
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than a few minutes to approximate their offline estimates (Fig. 2). The
result is a system in which new experiments can be quickly prototyped
from interchangeable parts, in keeping with the Unix philosophy61.

In addition, to enable integration with other widely used tools, we
designed improv to easily interoperate with many packages not
designed for streaming settings or real-time execution. For example,
Suite2p6 can be used as a batch preprocessor for groups of images as a
drop-in replacement for CaImAn (Supplementary Fig. 10) and this
functionality can be implemented in just a few lines of code. Currently,
improv is written in Python, which we chose for the language’s wide
appeal and native support of many machine learning libraries, but as
proof of concept, we implemented some analysis algorithms in the
Julia language62, which can offer better performance through just-in-
time compilation. While we constructed GUIs to operate most of the
simulated and in vivo experiments we ran here, improv can run on low-
resource systems using only a text-based command line interface,

allowing users to customize the system based on their needs (Sup-
plementary Video 5).

It is this flexibility that distinguishes improv from similar software
systems. For instance, BRAND, which likewise focuses on real-time
experiments and shares many architectural features with improv, runs
only on Linux, with core code written in C + +63. Similarly, Heron which
uses a graph structure to specify experimentalflowandoffers aGUI for
interactive design of experiments, does not focus on performance and
runs only onWindows64. Bonsai, which constructs experiments using a
visual programming interface or custom C# scripts on Windows, is
useful for simpler experiments but is less suitable for complex work-
flows or integration with modern machine learning methods that use
Python65. Cleo, which targets closed-loop experiments, is focused on
detailed biophysical simulation of the systems involved38. Moreover,
while specialized systems like that of33 have also established closed-
loop setups in the zebrafish, these methods rely on specialized
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Fig. 6 | Adaptive optogenetic photostimulation target selection during func-
tional calcium imaging in zebrafish. a improv pipeline for targeting direction-
selectiveneurons for photostimulation. The ‘AdaptiveTargeting’ actor provides the
target locations to the ‘Photostimulation’ actor to control the next photostimula-
tion event. b improv orchestrates a phase of visual stimulation to characterize
neurons in real time, automatically switching after reaching characterization cri-
teria to a closed-loop photostimulation phase. c Example visual tuning curves of
neurons chosen for photostimulation, normalized to theirmaximum response. The
‘Adaptive Targeting’ actor selects a direction-selective neuron with rsChRmine
expression for photostimulation. d Average fluorescence across all neurons
showing stimulus-locked responses to visual stimuli (colored bars) followed by a
photostimulation phase (gray lines). e Pretectum (Pt) and hindbrain (Hb) in a
zebrafish expressing nuclear-targeted GCaMP6s (greyscale). Photostimulating a
target neuron (red dot) results in evoked activity in responsive neurons (orange
dots). Color intensity encodes the response magnitude, and lines denote the top
10 strongest responders. f Fluorescence responses to photostimulation of the red

neuron in (e) (top trace; Target), and three simultaneously recorded putatively
responsive neurons (bottom): (1) responsive, upregulated; (2) non-responsive; and
(3) consistently responding. Extracted fluorescence traces are obtained from ‘Cai-
man Online’. g Example neurons’ visual and photostimulation tuning curves. The
visual tuning curve is calculated as the average response during a given angular
direction of the stimulus (45°, 90°, …). The photostimulation tuning curve is cal-
culated as the average response during photostimulation of other neurons whose
tuning peaks were located at a given direction, such as the 45°, forward-right tuned
neuron in c). The left plot shows a neuron that is less activatedby photostimulation
but with similar directional tuning, and the two left neurons show stronger uni-
versal activation from stimulated neurons. h Analysis of all neurons across fish
(N = 3; ~1300 neurons) responsive to visual stimuli (red dot) and photostimulation
events (black dot), compared to their overall responsiveness. Most neurons
responded to visual and optogenetic stimulation, but some neurons were only
discovered as responsive during photostimulation. Diagonal trends on either side
indicate neurons preferring either visual or photostimulation.
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hardware and software solutions that are tightly matched to the spe-
cific system under construction. improv, by contrast, offers a cross-
platform, modular, domain-agnostic system that maximizes the flex-
ibility available to users when incorporatingmultiple data streams and
models into real-time experiments.

This flexibility, along with a commitment to cross-platform sup-
port and use of commodity hardware, also necessitates tradeoffs in
improv’s function in the real-time setting. Only the most recently
acquired data is relevant to maintain in memory, and thus improv
ignores old data to optimize speed. Typically, only data from the last
few images or timebins are kept inmemory for active use by streaming
algorithms before being offloaded to hard drive storage. Our use of an
in-memory data store, which gives all actors fast and easy access to all
data, also requires a fairly large amount of dedicated memory, which
limits what else could be run on the same computer. Still, all improv
applications always stayed ahead of data acquisition, applying mod-
ifications to somealgorithms: for example, whenusingCaImAnOnline,
we ceased updating the shapes of neurons after an extended imaging
period ( > 30min) and stopped adding newneurons to consider once a
threshold was reached.

Another key limitation inherent to all real-time systems is the
necessity of synchronizing multiple pieces of hardware and multiple
data sources. Despite improv naturally accommodating actors spread
across different machines, it currently only supports a single, cen-
tralized data store and orchestrating server, each of which run on a
particular machine. While this architecture represents a potential
limitation, it is one shared by all other real-time systems33,63,64 and
posed no practical challenge in any of our in silico or in vivo
experiments.

As both the volume and variety of data collected in neuroscience
continues to grow, so will the need for new experimental designs that
can cut through this complexity to efficiently test hypotheses19. We
have argued that adaptive designs, particularly those that incorporate
models into the process of data collection, offer a way forward. improv
provides a tool for engineering adaptive designs and thus opens the
door to new classes of experiments in which large hypothesis classes
can be effectively tested by data-driven algorithms, bridging large-
scale experiments and complex post hoc analyses. By simplifying the
inclusion of streaming analysis and visualization into data collection,
improv allows experimenters to gain real-time insights as experiments
progress, allowing them to explore and refine their ideas during the
pilot phase. Thus, we expect our platform to provide an empowering
set of tools for integrating data collection with analysis and interven-
tion across a broad range of experiments in neuroscience.

Methods
Datasets
Zebrafish functional types and connectivity. Previously recorded
raw two-photon imaging data containing visual stimulus information
and two-photon calcium images from a single plane in the pretectum
were used in Fig. 220. Images in a custom format (.tbif) were streamed
from disk at the rate of earlier data acquisition, 3.6 Hz, into the data
store using a custom ‘Tbif Acquirer’ actor.

Mouse behavior and neural activity. The mouse behavior video with
two-photon calcium fluorescence traces dataset used in Fig. 3 can be
found at https://doi.org/10.14224/1.38599, and were originally pre-
sented in ref. 49. We used the dataset mSM49 recorded on July 30,
2018, and the Camera 1 recording for the behavior video.

Monkey neural spiking activity for trajectory prediction. The elec-
trophysiology dataset from a monkey reaching task used in Fig. 4 can
be found at https://doi.org/10.5281/zenodo.3854034. Note the data
were not separated into trials, allowing for continuous trajectory
estimation. We used the indy_20160407_02.mat dataset and binned at

10ms. We also applied a smoothing Gaussian kernel with a 50 time-
point window length to obtain a continuous estimate of firing rates for
each channel.

Experimental integration
Our example implementation on improv and its integration with live
experiments has been tested on three main computers: (1) a 2015
Macbook laptop with 8 GB of RAM and a 2 core 2.2 GHz Intel i7 pro-
cessor; (2) a 2018 custom-built (total cost <$4k) Ubuntu desktop
machine with 128 GB of RAM and a 14 core 3.1GHz Intel i9 processor;
and (3) a 2019 custom-built ( < $4k) Windows desktop machine with
the same specifications as (2). Our package has been confirmed to be
operational with all major operating systems (Windows 10 with Win-
dows Subsystem for Linux, Ubuntu, and Mac OS X).

The integration of improv into the experimental two-photon
microscopy setup required only a method for transferring streaming
data from the acquisition system to our analysis system in real time.
We ran improv on a separate computer, but in general a separate
computer is not required, and analysis can be done on the same
machine. While many networking solutions exist, we chose to use
ZeroMQ, a widely used universal messaging library that has interfaces
inmany languages, including Python and LabVIEW. Images obtained in
LabVIEW were thus directly streamed via ZeroMQ to our ‘ZMQ
Acquirer’ actor in Python. Similarly, messages and timestamps for the
visual stimulus being displayed were also streamed directly from the
Python script running the visual stimuli to the same actor. And with
improv’s flexibility, should we want to run a simulated experiment
using data streamed from disk (rather than live via ZeroMQ), only the
Acquirer actor would need to be changed, leaving the rest of the
pipeline intact.

For the experiments reported in Figs. 5, 6, we also generated
some lab-specific integration code that is hosted at: https://github.
com/Naumann-Lab/improv.

Visual stimuli
Stimuli were presented frombelowusing customPython 3.10 software
(pandastim: www.github.com/Naumann-Lab/pandastim). Using a
60Hz, P300 AAXA Pico Projector, stimuli were presented using only
the red LED. This created red and black square-wave grating patterns,
providing visual stimuli that strongly evoke optomotor response
behaviors66. Stimuli were created online from dual dictionaries,
determining the texture and the stimulus object. Textures were cre-
ated as dual gratings presented independently to each eye of the
zebrafish and provided parameters for the dark value, the light value,
the spatial frequency, and the texture size. These textures weremoved
in accordancewith theparameters specified in the stimulus object. The
parameters independently controlled the two stimulus textures to
specify the stationary duration (time pre-movement), the moving
duration, the speed of movement, and the angle of movement. The
texture and stimulus parameters were parsed into a combined stimu-
lus class andheld in anorderedqueue for serial display. Adaptive visual
stimulation experiments presented in Fig. 5 used a stationary time of
10 s, moving time of 5 s, speed of 10mm/s, and different angles of
movement in each eye.

Zebrafish
All experiments with live zebrafish (Danio rerio) were approved by
Duke University’s standing committee on the use of animals in
research and training. We raised zebrafish larvae in small groups of
about 30 fish infiltered embryowater on a 14-h light, 10-h dark cycle at
a constant 28 °C. From 4-days post fertilization (dpf) onwards, we fed
larvae with paramecia. Embryos were kept in E3 solution (5mM NaCl,
0.17mM KCl, 0.33mM CaCl2, 0.33mM MgSO4). We performed all
calcium imaging experiments with zebrafish aged 5–7 dpf. At these
stages, sex cannot be determined. For calcium imaging alone, we used
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pigmentless Casper or nacre Tg(elavl3:H2B-GCaMP6s)44,67, screened for
homozygous, brightfluorescenceexpression. Thesefishwere supplied
as a generous gift from Dr. Misha Ahrens26.

For optogenetic photostimulation experiments, we generated a
new transgenic line expressing a red-shifted marine opsin,
rsChRmine60 under the elavl3 promoter. Tg(elavl3:rsChRmine-oScarlet-
Kv2.1) were generated by standard Tol2 mediated transgenesis,
resulting in strong neural expression visualized as bright, red fluores-
cence emitted by the red fluorescent protein oScarlet. The somatic
potassium channel Kv2.1 motif was added to boost the expression of
rsChRmine in each neuron’s soma area rather than in neural processes.
These fish were outcrossed to generate the double transgenic fish line
Tg(elavl3:H2B-GCaMP6s); Tg(elavl3:rsChRmine-oScarlet-Kv2.1). These
zebrafish were screened around 36 h after fertilization for red and
green fluorescence in the brain and spinal cord, as well as strong light-
induced movement, indicating functionality of the opsin.

Two-photon imaging
In vivo two-photon fluorescence imaging was performed using a
custom-built two-photon laser-scanning microscope, equipped with a
pulsed Ti-sapphire laser tuned to 920nm (InsightX3, Spectraphysics,
USA). To minimize movement artifacts, larval zebrafish were embed-
ded in low-melting-point agarose (2% w/v), with their tails freed to
allow for observation of behavioral responses. In addition, viability
monitoring was supplemented by observing the heartbeat and blood
flow through brain vasculature before and after imaging. All data
acquisition was performed using custom LabVIEW (National Instru-
ments, USA) and open-source Python code. Typically, the images were
obtained in raster scanning mode with 512 × 512 pixels scanned at
400 kHz, and frames were acquired at 2.3 Hz, with imaging power of
~10mW at the specimen.

To account for possible vertical drift of the fishover time, we ran a
stabilization program that performed an automatic alignment check
every 10min, pausing visual stimulation for the duration of the align-
ment check. Our alignment check involved taking a small image stack
around our current position, using 5 imaging stacks. This stack began
one neuron depth below our current plane (−6 μm) and progressed to
one neuron depth above our current plane ( + 6 μm), generating ima-
ges at (−6, −3, 0, +3, +6) μmaway from our current imaging plane. The
images were binarized using an Otsu threshold68, and then compared
to the target image acquired during experiment initialization via the
Sørensen–Dice coefficient (DSC)69:

DSC =
2jX \ Y j
Xj j+ jY j ð1Þ

From this, the plane was automatically moved to the highest
scoring plane. This alignmentmethod allows us to continuously image
across a stable plane for durations of over 3 h.

Two-photon calcium fluorescence analysis
Spatial and temporal traces were extracted from the calcium images
using the CaImAn Online algorithm within CaImAn7, modified with
custom code to allow for single frame-by-frame processing of incom-
ing data streams without prespecifying the data length. Parameters
supplied to CaImAn Online for motion correction and source extrac-
tion are specified in a configuration file to the preprocessing actor and
are available in our codebase. Our analyses utilized both the estimated
fluorescence traces as well as the extracted spike counts for sub-
sequent model fitting. Extracted spatial traces were used for visuali-
zation in the user interfacewith openCV tofill in and color each neuron
by its responses to visual stimuli.

To compute each neuron’s direction selectivity, a running mean
was calculated for responses to each of the 8 directions of visual
motion. For baseline subtraction, we averaged a window of 10 frames

directly before the onset of each motion stimulus. We averaged 15
frames during motion to calculate the neuron’s response to each
motion stimulus. The relative response magnitudes to each stimulus
were calculated to color encode response magnitude (brightness) and
directionality (hue), resulting in a visual representation of anatomical
direction selectivity distribution (Fig. 2, see arrow wheel for
color code).

LNP model fitting
In zebrafish calcium imaging experiments (Fig. 2), we used a form of
the well-known linear-nonlinear-Poisson model to estimate functional
connections among all observed neurons47. Our specific version of the
model included terms for: (1) a baseline firing rate; (2) the stimulus
responses, simply modeled as a vector of length 8 corresponding to
the current stimuli, without using any spike-triggered averages; (3) the
self-history effect, modeled using a history vector of activity up to 4
frames prior to the current frame; and (4) weighted functional con-
nections to all other neurons, modeled using the prior frame activity
information. An exponential nonlinear term was used to compute
firing rates.

To fit thismodel online, we used stochastic gradient descent with
windows of data ranging from 10 to 100 frames of prior data held in
memory. Step sizes were chosen based on the data, but a value of 1e-5
was generally used successfully. For visualization purposes, each
neuron’s top 10 connections (determined by magnitude) were sorted
and displayed in the graphical user interface as both a matrix (right)
and green lines (center, if a neuron is selected).

proSVD and ridge regression
For streaming dimension reduction of the behavioral video, we used
the proSVD algorithmdescribed in ref. 50. For each frame of the video,
the image was first downsampled by a factor of 4 (from 320 × 240 to
160 × 120 pixels). The first 10 frames of data were used to initialize
proSVD and reduced to 10 dimensions. Each subsequent frame was
embedded 1 frame at a time to a stable 6-dimensional space. These
projected data were then used in a streaming ridge regression derived
from51 to predict the 57 neural traces (calcium fluorescence) from the
proSVD-discovered features. Lambdawasfixed at 1e-5, thoughwe note
that this hyperparameter could be re-estimated on an ongoing basis as
more data are acquired.

Real-time predictions with Bubblewrap
To demonstrate real-time neural trajectory prediction, we used the
Bubblewrap algorithmdescribed in ref. 50.We used the same ‘proSVD’
actor employed in the previous example: we initialized using the first
100 timepoints of data, reduced each timepoint of subsequent data to
6 dimensions, and put the resulting data projected onto that subspace
into the central plasma store.We constructed a ‘Bubblewrap’ actor that
then took this data andfit the Bubblewrapmodel to it. Bubblewrapwas
initialized with the first 20 timepoints of projected data (6-dimen-
sional) and 50 tiles in the low-dimensional space. We chose hyper-
parameters based on prior work50: lambda and nu are 1e-3, and the
gradient step was 8e-3. We computed the log predictive probability
and entropy at each time point post-initialization and at 1–5 time
points into the future.

Online Bayesian optimization
Weused a Bayesianoptimization framework to adaptively select which
visual stimulus to display during a live experiment based on ongoing
estimates of neural activity. We coded a custom kernel (2-dimensional
Gaussian, radial basis function) and optimizer class to fit to the
2-dimensional neural tuning curves (0–360 degrees of angles of
motion for each eye in 15-degree intervals). We modeled this discrete
space with unit distances based on the size of the space (0–23 for each
dimension) and corresponding length scale 1/24. For each neuron, we
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initialized using all data acquired up to that time point. For the first
neuron, this was 8 stimuli of whole field motion (same angle in each
eye) sampled randomly at 45-degree resolution. The optimizer used an
upper confidence bound (UCB) acquisition function57 to select the
next stimulus for display. If this stimulus had already been sampled
more than 5 times for that neuron, a random stimulus was selected
instead (using a NumPy random seed of 1337). After each stimulus was
displayed and the resultant neural activity analyzed, a stopping func-
tion was evaluated. We computed the expected improvement (EI) and
compared it to a hyperparameter (1e-2) we chosebased on experience.
If the EI dropped below that threshold, we saved the online-estimated
tuning curve for post hoc analysis andmoved on to the next neuron. If,
after a maximum number of stimuli (30) was reached, the EI dropped
below the threshold, we added the neuron ID to a list of neurons to
come back to later in the experiment, after more (hopefully informa-
tive) datawas collectedduring the optimization of other neurons. Each
neuron was chosen for optimization amaximumof 2 times, and a total
of 300 neurons were chosen for optimization in each z-plane, with a
maximum of 8 planes per fish.

Online optogenetic photostimulation
To optogenetically photostimulate visually characterized neurons in a
closed-loop configuration via improv, we performed simultaneous
calcium imaging of GCaMP6s (green, 920 nm) as described abovewith
afirst imaging optical path to raster scan across a plane of the zebrafish
brain and a second photostimulation optical path equipped with a
lens-conjugated galvanometer scanner to excite neurons expressing
rsChRmine (red, 1045 nm). The imaging and photostimulation paths
were aligned vertically in z and mapped onto each other in the hor-
izontal plane, so that the second scanner could transform the spatial
coordinates provided by the first one for precise targeting. Slight
shifting and rotating of these coordinates to align both paths resulted
in specific voltage commands to the scanning mirrors to deliver spiral
stimulation to specific neurons with the photostimulation path. We
confirmed spatial x,y,z alignment by ‘burning’ a grid pattern into a
fluorescent microscope slide (Thorlabs, FSK2) using the photo-
stimulation path while imaging with the imaging path70.

After alignment, the experiment started by improv coordinating
thefirst phaseof the experiment, that is, calcium imaging of neurons in
the zebrafish pretectum and hindbrain with the 950 nm excitation
imaging path. After improv detected sufficient characterization of the
directional tuning of all neurons in the field of view, improv triggered a
photostimulation phase. During the photostimulation phase, improv
autonomously selected a neuron of a specific directional tuning range
and red opsin expression for photostimulation, sending the x and y
coordinates to the photostimulation controller. These computed x, y
target coordinates are then transformed into voltage signals to create
waveform signals, resulting in spirals generated by the photostimula-
tion path galvanometer mirrors. While we continuously recorded
neural activity with the imaging optical path, we then stimulated the
target neurons with these photostimulation patterns. Since CaImAn
source extraction does not necessarily correspond to each neuron’s
cell body, we increased the diameter of the photostimulation region to
the typical neuronal size of 6–10μm. For these experiments, improv
coordinated 5 repetitions of photostimulation events spaced 15 s
apart. These photostimulation spiral scanning events lasted for
200–300ms (depending on cell size) with dwell times of 1ms at a laser
power of 10–20mW at the sample. In a typical experiment, improv
automatically selected approximately 25 neurons to be photo-
stimulated. All relevant information (fluorescence images, visual sti-
mulation information, photostimulation event times, and locations)
was saved for further analysis. For the post hoc analysis, we analyzed
visual response and photostimulation-derived characteristics in the
form of tuning curves and computed the peak responses for each
stimulus type for all responsive neurons (Fig. 6).

Photostimulation target selection
Neurons were selected for photostimulation based on two primary
factors: (1) tuning curve derived from responses to visual stimuli and
(2) pixel intensity of a red-channel image above a threshold. The tuning
curves and associated color arrays were calculated as described above
(‘Two-photon calcium fluorescence analysis’). These were used to
compute an inner product with a set of desired functional types. For
example, forward types can be characterized with a basis [−1, 1, −1]
from the color array [red, green, blue] where red and blue are down-
weighted and green (forward) is preferentially selected. A set of neu-
rons within a range (−75<x < 75) were selected for possible
consideration.

A single red-channel image was acquired at the start of the
experiment at 1045 nm in the imaging path and used for all neurons.
For all neurons selected first based on visual responses, the intensity of
a rectangle of pixels surrounding the center (x,y) position of the
neuron was summed as a proxy for opsin expression level. Next, either
the neuron whose intensity was greatest or a random neuron whose
intensity exceeded a threshold (50) was chosen. To increase the
diversity of neurons selected for photostimulation, we kept a list of
already-stimulated neurons and preferentially (but not always) selec-
ted neurons not on this list.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All new imaging data generated in this study have been deposited in
the DANDI database under accession code https://dandiarchive.org/
dandiset/001569 and can be downloaded directly. Data from pre-
viously published work can be found at locations listed in their
respective citations.

Code availability
The improv software package can be downloaded from github.com/
project-improv/improv or the Python Package Index pypi.org/project/
improv. It can also be found at https://doi.org/10.5281/zenodo.
17079045 and https://zenodo.org/records/17079045.
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