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Spatial transcriptomics technologies are becoming increasingly high-resolu-
tion, enabling gene expression measurement at the subcellular level. Here, we
present subcellular expression localization analysis (ELLA), a statistical fra-
mework for modeling subcellular mRNA localization and detecting spatially
variable genes within cells. ELLA uses an over-dispersed nonhomogeneous
Poisson process to model spatial count data with a unified cellular coordinate
system to anchor diverse cellular morphologies, demonstrating effective type |
error control and high power in simulations. In real data applications, ELLA
identifies genes with distinct subcellular localization and associate these pat-
terns to key mRNA characteristics: nuclear-enriched genes exhibit an abun-
dance of long noncoding RNAs or protein-coding mRNAs, while cytoplasmic-
or membrane-enriched genes frequently encode ribosomal proteins or con-
tain signal peptides. ELLA also uncovers dynamic subcellular localization
changes across the cell cycle. Overall, ELLA is a powerful, robust, and scalable
tool for subcellular spatial expression analysis across high-resolution spatial

transcriptomics platforms.

Spatial transcriptomics is a collection of new genomics technologies
designed to measure gene expression within tissues while preserving
spatial localization information. Recent technological advancements
have substantially improved the spatial resolution of spatial tran-
scriptomics, facilitating expression measurements at cellular and
subcellular levels. Specifically, in situ RNA-sequencing techniques,
such as ISS', FISSEQ?, APEX-seq’, HybISS*, STARmap’, and Ex-seq®,
achieve a spatial resolution under 1 pm, which is much smaller than the
size of a typical cell. Recent high-throughput sequencing-based tech-
niques, such as Slide-seq V2, Seq-Scope®, and Stereo-seq’, offer spatial
resolutions in the range of 0.5-10 pm. In situ imaging techniques, such
as MERFISH', SeqFISH+", MERSCOPE?, CosMx", and 10X Xenium',
provide spatial resolutions as fine as 0.1-0.2 um. Together, these high-
resolution spatial transcriptomics technologies have enabled expres-
sion measurement at subcellular resolution, providing unprecedented
opportunities to interrogate the intracellular localization and dis-
tribution of mRNAs within cells.

The intracellular localization and distribution of mRNAs are vital
for cellular functions. They ensure the targeted delivery of mRNAs and
facilitate localized protein synthesis, enabling precise regulation of
gene expression within specific subcellular compartments. The spatial
localization of mMRNAs empowers cells to respond rapidly to local cues
and signals, adapting effectively to changing environments and sup-
porting specialized cellular functions®. For example, the localization of
mRNAs encoding for S-actin at the leading edges of fibroblasts or the
lamellipodia of myoblasts ensures localized protein synthesis of actin,
supporting proper cell polarity and motility’. In addition, the spatial
localization of mRNA contributes to cellular organization and differ-
entiation, aiding in the establishment and maintenance of distinct
cellular identities and functions, influencing asymmetric cell division
and cell fate determination across various organisms. Classic examples
of mRNA subcellular localization include the spatially localized
expression of Oskar at the posterior end of the syncytial Drosophila
embryo, which is essential for the development and assembly of the
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germ plasm in Drosophila, facilitating germ cell formation”. Another
well-known example is AshI mRNA in S. cerevisiae, which localizes to
the bud tip to establish asymmetry of HO endonuclease gene expres-
sion, which is important for mating type switching'®. Given the
importance of proper mRNA spatial localization, its misplacement
often leads to detrimental effects and has been associated with mul-
tiple diseases”. For example, disruptions in axonal mRNA transport
and localization contribute to neurodegeneration in Huntington’s
disease'. Therefore, characterizing the subcellular spatial localization
pattern of mRNA—how mRNA molecules are localized and distributed
spatially within cells, such as whether they are concentrated around
the nucleus, enriched at the cell membrane, or diffusely scattered
throughout the cytoplasm—is crucial for unraveling the complexity of
cellular structure and function, as well as for elucidating the cellular
mechanisms underlying disease etiology.

Despite the importance of characterizing the subcellular spatial
localization pattern of mRNAs, only a few computational methods
have been developed for this purpose, each with its own limitations.
Specifically, Bento® employs pre-trained random forest classifiers to
categorize each gene into five pre-defined subcellular RNA localization
patterns, while SPRAWL?' relies on four metrics to identify four pre-
specified subcellular patterns. However, both methods are limited to
imaging-based spatial transcriptomics data, where transcripts are
represented as point clouds, but fail to leverage the vast amount of
high-resolution spatial transcriptomics obtained from recent
sequencing-based technologies, which often include multiple tran-
script counts at the same capture area or location. Additionally, they
are constrained to detect genes with pre-defined localization patterns,
thus limiting the discovery of any new spatial localization patterns. As a
result, as will be shown here, both methods suffer from low statistical
power in detecting a wide range of spatial localization patterns.
Besides these major limitations, Bento requires nuclear boundary
information, which may not be readily available in some spatial tran-
scriptomics datasets. In addition, Bento is only applicable to analyzing
a single cell and lacks the ability to borrow the spatial localization
pattern shared across multiple cells. Conversely, SPRAWL is only
applicable to analyzing multiple cells, not a single cell, and is unable to
directly distinguish between enrichment and depletion in the pre-
specified localization patterns due to the nature of its two-sided tests.

Here, we present subcellular expression localization analysis
(ELLA), a statistical method for modeling the subcellular localization of
mRNAs and detecting genes that display spatial variation within cells in
high-resolution spatial transcriptomics. ELLA utilizes an over-
dispersed nonhomogeneous Poisson process (NHPP) to model the
spatial count data within cells, creates a unified cellular coordinate
system to anchor diverse shapes and morphologies across cells, and
relies on an expression intensity function to capture the subcellular
spatial distribution of mRNAs. ELLA can be applied to an arbitrary
number of cells and detect a wide variety of subcellular localization
patterns across diverse spatial transcriptomic techniques, while pro-
ducing effective control of type I error and yielding high statistical
power. With a computationally efficient algorithm, ELLA is scalable to
tens of thousands of genes across tens of thousands of cells. We
illustrate the benefits of ELLA through comprehensive simulations and
applications to four spatial transcriptomics datasets. In real data
applications, ELLA not only identifies genes with distinct subcellular
localization patterns but also reveals that these patterns are associated
with unique mRNA characteristics. Specifically, genes enriched in the
nucleus show an abundance of long noncoding RNAs (IncRNAs) and
protein-coding mRNAs, often characterized by longer gene lengths.
Conversely, genes containing signal recognition peptides, encoding
ribosomal proteins (RPs), or involved in membrane-related activities
such as synaptic transmission and G protein-coupled receptor activ-
ities, tend to be enriched in the cytoplasm or near the cellular mem-
brane. Moreover, genes exhibit dynamic subcellular localization

during the cell cycle, with some showing decreased nuclear enrich-
ment in the G1 phase, while others maintain their patterns of enrich-
ment regardless of cell cycle phases.

Results

Method overview

ELLA is described in “Methods,” with its technical details provided in
Supplementary Notes and method schematic displayed in Fig. 1a.
Briefly, ELLA is a statistical method for modeling the subcellular loca-
lization of mRNAs and detecting spatially variable genes with sub-
cellular spatial expression patterns in high-resolution spatial
transcriptomics. ELLA examines one gene at a time, relies on an over-
dispersed NHPP to capture the spatial distribution of expression
measurements within cells, creates a unified cellular coordinate sys-
tem by defining a cellular radius in each cell that points from the center
of the nucleus towards the cellular boundary, and computes a P value
to capture any subcellular expression patterns observed along the
cellular radius. ELLA is capable of borrowing information across cells
through a joint likelihood framework to substantially improve detec-
tion power, while taking advantage of multiple intensity kernel func-
tions to capture the distinct subcellular expression patterns that may
be encountered in various biological settings to ensure robust per-
formance. In addition, ELLA relies on a fast-binning algorithm for
approximate position computation and leverages policy gradient
optimization for scalable inference. As a result, ELLA is computation-
ally efficient and is easily scalable to tens of thousands of genes mea-
sured in tens of thousands of cells. ELLA is implemented in Python,
freely accessible from https://xiangzhou.github.io/software/.

Simulations
We performed comprehensive simulations on imaging-based spatial
transcriptomics to evaluate the performance of ELLA and compared it
with three methods. The three methods include SPRAWL?, Bento®,
and Wilcox, where Wilcox denotes a modified Wilcoxon rank sum test
developed in the present study that uses expression measurements
normalized by the area of subcellular regions to examine the differ-
ence in expression between nuclear and cytoplasmic areas. All meth-
ods examine one gene at a time, and all methods except Bento
produce a P value for each gene; Bento outputs five prediction prob-
abilities for five pre-specified cellular localization patterns, which
cannot be converted to a P value. Among these methods, ELLA can
analyze either one or multiple cells; SPRAWL and Wilcox can only
analyze multiple cells; and Bento can only analyze one cell. Therefore,
we compared ELLA with SPRAWL and Wilcox in all our main simula-
tions on multiple cells, while comparing ELLA with Bento in additional
simulations on only one cell. Unlike ELLA and SPRAWL, both Bento and
Wilcox require nuclear boundary information in addition to cell
boundary information (Table S1). We provide the actual nuclear
boundary information to Bento and Wilcox, although this information
may not be readily available in certain sequencing-based techniques,
such as Seq-Scope® and Stereo-seq’, and may not be accurately infer-
red in other techniques.

Simulation details are provided in “Methods”. Briefly, we sampled
n different embryonic fibroblast cells from seqFISH+ data (Fig. S1) and
simulated expression counts for 1000 genes to be spatially distributed
within these cells. We examined type | error control of different
methods in null simulations, where the simulated gene expression
counts are randomly distributed spatially within each cell without any
specific subcellular spatial expression patterns (Figs. 1b and S2). We
also examined the power of different methods in alternative simula-
tions, where the simulated gene expression counts are enriched in
specific subcellular regions within the cells, exhibiting either sym-
metric (consisting of eleven distinct symmetric patterns; Figs. Ic,
S3 and S4) or asymmetric patterns (three distinct asymmetric patterns,
Figs. 1d and S5). These simple yet interpretable patterns are commonly
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Fig. 1| Schematic of ELLA and simulation results. a ELLA is a method for mod-
eling the subcellular localization of mRNAs and detecting genes that display spatial
variation within cells in high-resolution spatial transcriptomics. ELLA takes as
inputs the spatial gene expression data along with the nuclear center and cell
segmentation information. It first performs data pre-processing to create a unified
cellular coordinate system to anchor diverse cell morphologies. It then fits a
nonhomogeneous Poisson process model for each gene to capture its spatial
distribution within cells, computes a P value to capture any subcellular expression
pattern observed along the cellular radius, and estimates such a pattern in the form
of estimated pattern expression intensity and pattern score. ELLA is capable of
borrowing information across cells through a joint likelihood framework to sub-
stantially improve detection power, while taking advantage of multiple intensity
kernel functions to capture the distinct subcellular expression patterns that may be
encountered in various biological settings to ensure robust performance.
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baseline null simulation, where gene expression is randomly distributed spatially
within cells. ELLA was compared to SPRAWL, Bento, and Wilcox. ¢ Radar plots show
the powers in the alternative simulations with multiple cells across eleven sym-
metric subcellular expression patterns, where gene expression is enriched in
specific subcellular regions. ELLA was compared to SPRAWL and Wilcox, and
power was evaluated based on 5% FDR. d Radar plots of the power of different
methods in the alternative simulations with multiple cells across three asymmetric
subcellular expression patterns, where gene expressions exhibit distinct asym-
metric patterns. ELLA was compared to SPRAWL and Wilcox, and power was
evaluated based on 5% FDR. ELLA’s power for radial punctate setting with piecewise
constant kernels is marked with “*”. e Radar plots show the power of different
methods in the additional alternative simulations with one cell across five sym-
metric subcellular expression patterns, where gene expression is enriched in
specific subcellular regions within cells. ELLA was compared to Bento, and power
was evaluated based on 5% FDR. Source data are provided as a Source data file.

observed in biological systems and can be modulated or combined to
generate more complex spatial patterns. In the simulations, we first
created a baseline setting and then varied the number of cells (n), the
gene expression level (m), and, in the alternative settings, the strength
of the subcellular expression patterns (s; “Methods”), one at a time on
top of the baseline setting, to create additional settings. In total, we
examined 13 null and 73 alternative settings, with 1000 replicates per
setting.

In the null simulations, the P values from ELLA are well calibrated
across settings, and so are the P values from SPRAWL, although
SPRAWL failed to produce P values for the radial and punctate metrics

in m=1 settings (Figs. 1b, S6 and S7). Wilcox yielded inflated P values,
especially in settings where the gene expression level is low, or where
the number of cells is large (Figs. 1b, S6 and S7). The P value inflation
observed in Wilcox suggests that the simple normalization procedure
and the non-parametric Wilcoxon test are not sufficient to control for
variance heterogeneity and subsequently type 1 error (Fig. S8,
Table S2).

In the alternative simulations, because some methods failed to
control for type I error, we evaluated power based on a fixed false-
discovery rate (FDR) to ensure a fair comparison across methods
(Methods). We first examined the eleven subcellular expression
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patterns in the symmetric pattern category, including two patterns
with nucleus enrichment, two patterns with nuclear edge enrichment,
five patterns with cytoplasmic enrichment, and two patterns with
membrane enrichment. Based on an FDR threshold of 0.05, ELLA
achieves consistently higher power (average = 0.68, range = 0.61-0.73)
than the other methods (SPRAWL: average = 0.04, range = 0.00-0.09;
Wilcox: average = 0.04, range = 0.00-0.15) in detecting each of the
eleven patterns (Fig. 1c; Table S3). For SPRAWL, its radial and punctate
metrics tend to exhibit very low power in detecting any of the patterns
(average=0.01, range=0.00-0.03), presumably because these
metrics are not well-suited for detecting symmetric patterns. The
peripheral and central metrics of SPRAWL have low power for
detecting the cytoplasmic enrichment patterns (average=0.01,
range = 0.00-0.04) but have slightly higher powers for detecting the
membrane and nuclear enrichment patterns (average=0.05,
range = 0.01-0.09), as one might expect. Also, as expected, the power
of ELLA, SPRAWL, and Wilcox all improve with increasing number of
cells, increasing expression level, and increasing pattern strength
across all eleven patterns, although the power of ELLA improves much
faster compared to the other two methods (Fig. S9). For example, at an
FDR of 0.05, the power of ELLA in detecting the first nucleus pattern is
0.01 with 10 cells, but increases to 1.00 with 300 cells, while the power
of SPRAWL'’s central metric only increases from 0.01 to 0.42, and the
power of SPRAWL’s peripheral metric only increases from 0.00 to
0.66. The exceptions are Wilcox and SPRAWL'’s radial metric, whose
power for detecting nucleus patterns remains below 0.05 and barely
improves as the number of cells increases. We also carefully examined
the case where m=1, a setting commonly observed in spatial tran-
scriptomics datasets (e.g., 57.8% gene-cell pairs in a MERFISH data®),
and found that ELLA achieved a power of 0.66 or 0.62 when either the
pattern strength was strong or the number of cells was large (Fig. S10).
Additionally, we examined another set of 11 alternative simulation
settings with over-dispersed counts and found that ELLA consistently
achieved high power and outperformed the other methods (Fig. S11).

ELLA is also more powerful than the other methods in detecting
two of the three asymmetric subcellular expression patterns. These
include the radial-cyto and punctate-cyto patterns, where gene
expression is enriched in either a circular sector or a small subcellular
disc in the cytoplasm (Fig. 1d). Specifically, for the radial-cyto pattern,
ELLA achieved a power of 0.99 while Wilcox achieved a power of 0.00.
For SPRAWL, its peripheral, central, radial, and punctate metrics
achieved a power of 0.10, 0.00, 0.16, and 0.23, respectively. For the
punctate-cyto pattern, ELLA achieved a power of 0.77 while Wilcox had
zero power. For SPRAWL, its peripheral, central, radial, and punctate
metrics achieved a power of 0.17, 0.00, 0.16, and 0.39, respectively
(Fig. 1d; Table S4). Certainly, because ELLA models expression patterns
along the cellular radius, it is not powered to detect radial-uniform
asymmetric patterns, where gene expression is enriched in a circular
sector of the cell completely uniformly (Fig. 1d), a scenario unlikely in
practical biological applications.

Importantly, ELLA not only achieves high power in detecting
genes with various subcellular expression patterns but also accurately
estimates these patterns (Figs. S12 and S13). Specifically, the average
KL-divergences achieved by ELLA for estimating the two pattern
categories are 0.12 and 0.29, respectively (Table S5). To further sum-
marize the observed subcellular pattern, ELLA computes a subcellular
pattern score for each gene. This score represents the relative position
of subcellular expression enrichment, with zero indicating enrichment
in the cell nucleus and one indicating enrichment on the cell mem-
brane (Methods). The majority of the pattern scores (77%) are within
0.1 of the truth across the three pattern categories, underscoring the
accuracy of ELLA (Figs. S14 and S15, Table S6).

ELLA’s performance is robust to the number of kernels used (Fig.
S16a), and its framework is general and allows for customized kernel
choices. For example, employing a piecewise constant kernel (Fig.

S16b) enhanced both ELLA’s power (0.77-0.961; Fig. 1d) and the
accuracy of its intensity estimation (Fig. S16¢) in the punctate-cyto
setting.

We performed additional simulations with only one cell in order
to compare ELLA with Bento (Fig. 1e). Bento is capable of detecting five
pre-specified patterns, including enrichment in nucleus, nuclear edge,
cytoplasm, cell boundary, and none. To favor the comparison towards
Bento, we focused on comparing ELLA with Bento under five sym-
metric patterns that Bento specifically models, where gene expression
is enriched in nucleus (including 2 patterns), nuclear edge (1), cyto-
plasm (1), or cellular boundary (1) under a relatively high expression
level (m=30) and a high pattern strength (s=9) (Fig. S17). Because
Bento cannot produce P values, we used the prediction probabilities
output from Bento to rank genes, with which we measured powers
based on FDR (Methods). We are able to compute FDR for Bento in
simulations only because we know the truth, which is certainly
unknown for any real data applications. In the simulations, ELLA
achieves high power (Fig. 1e, average = 0.81, range = 0.59-0.91; Table
S7) and accuracy (Figs. S18 and S19, Table S8) across all five patterns,
consistently outperforming Bento (average = 0.10, range = 0.00-0.75).

We also performed simulations to evaluate the influence of cell
segmentation accuracy. In the challenging scenario where the true
expression pattern is enriched close to the cell membrane, ELLA pro-
vided accurate pattern estimation in the ideal segmentation setting. In
the under-segmentation setting, the pattern was estimated reasonably
accurately, remaining enriched close to the cell membrane. In the over-
segmentation setting, the pattern was to some extent misestimated,
appearing enriched in the cytoplasmic region adjacent to, but not
coinciding with, the cell membrane. In the noisy segmentation setting,
ELLA also produced a reasonably accurate estimation of the expected
pattern (Fig. S20). Additionally, in the less challenging scenario where
the true expression pattern is enriched in the nucleus, ELLA produced
accurate results across all four segmentation settings (Fig. S21). Similar
results are observed in both single-cell and multi-cell analysis
(Fig. S22).

Seq-Scope mouse liver data

We applied ELLA to analyze four published datasets obtained using
different high-resolution spatial transcriptomics technologies (Meth-
ods). The four datasets include liver data by Seq-Scope®, an embryo
data by Stereo-seq’, an NIH/3T3 embryonic fibroblast cell line data by
seqFISH+", and a brain data by MERFISH*.

We first analyzed the Seq-Scope mouse liver data (Figs. 2a,
S23 and S35), which contains 497-1349 genes measured on 870 cells
from four cell types, with 82 to 276 cells per cell type (Figs. S36 and S37).
The four cell types include periportal hepatocyte (PP; n=276) and
pericentral hepatocyte (PC; n=276) in normal mice, and PP (n=236)
and PC (n=82) cells in early-onset liver failure mice (TD?; Fig. S38). We
were only able to apply ELLA to the data, as SPRAWL and Bento are not
applicable to sequencing-based data, and the nuclear boundary infor-
mation required for Wilcox and Bento was not available.

At an FDR of 5%, ELLA identified 317, 308, 315, and 129 genes that
display subcellular expression patterns in normal PP, PC cells, and TD
PP, PC cells, respectively. 300 of these genes, including six transcrip-
tion factors (Mlxipl, Jarid2, Zbtb20, Thrb, Sox5, and Creb3l3), were
detected in two or more cell types. Based on their subcellular spatial
expression patterns, we clustered the detected genes into five distinct
pattern clusters (Fig. 2b, “Methods”): 150 genes (13%) display a nuclear
expression pattern (cluster 1), 175 (16%) genes display a nuclear edge
expression pattern (clusters 2-3), and 788 (71%) genes display one of
the two cytoplasmic expression patterns near the cellular membrane
(clusters 4-5). Example cells from the five clusters are shown in Fig. 2c.

We carefully examined the basic properties of the genes detected
by ELLA in each of the five pattern clusters. For genes with subcellular
enrichment near the nuclear center (cluster 1), we found them to have
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Fig. 2 | Seq-Scope mouse liver data analysis. a Representative data snapshot tile
2107 (experiment on 10 tiles). Left panel displays the full tile with four gene sets (PC
marker genes, blue; PP marker genes, green; Table S10; mitochondria genes, black;
nuclear genes, red; Table S13) and cell segmentations. Middle panel zooms into a
subregion and displays unspliced expression densities (green), nuclear centers
(crosses), gene expressions, and cell segmentations. Right panel displays the H&E
staining image. b Estimated spatial expression patterns for genes in five ELLA
clusters, the upper panel shows gene counts and proportions, the middle panel
shows expression intensities, and the lower panel shows pattern scores. ¢ For each
cluster, one representative gene is displayed with its name, P value (3.13e-12, 0.030,
3.27e-14, 0.002, 0.032), and expression intensities overlaid on density maps. Cor-
responding gene expressions in five selected cells are illustrated with cell bound-
aries and aligned nuclear centers (crosses). d Bar plot shows the average sn/sc RNA
ratio across genes in pattern clusters 1 (red), 2-5 (green; P value = 5e-36), and non-
cluster 1 genes (i.e., clusters 2-5 plus the nonsignificant genes; gray; P value = 1e-

Median length Longest isoform Merged exons Clusters

20). Nuclear-enriched genes (cluster 1) exhibit higher relative snRNA levels. e Bar
plot shows the average unspliced/spliced expression ratio across genes in pattern
clusters 1, 2-5 (P value = 2e-26), and non-cluster 1 genes (P value = 2e-3). Nuclear-
enriched genes (cluster 1) exhibit higher unspliced/spliced ratios. f Bar plot displays
the average gene length, measured by four metrics (x-axis), across genes in pattern
clusters 1, 2-5, and non-cluster 1 genes. Nuclear-enriched genes (cluster 1) exhibit
longer gene lengths. g Bar plot displays the proportions of SRP-coded genes for
genes in pattern clusters 1, 2-5 (P value = 3e-7), and non-cluster 1 genes (P value =
3e-33). Cytoplasmic enriched genes (clusters 2-5) frequently encode SRP. Statis-
tical significance for pair-wise comparisons (*<0.05; **<0.01; ***<0.001; without
adjustments for multiple comparisons) is based on two-sided Mann-Whitney U test
(d-f) or Fisher’s exact test (g) sample size n = 4145 genes (d, e), data are presented
as mean values + the interquartile range (25th-75th percentile, d-f). Source data
are provided as a Source data file.

significantly higher snRNA expression in a similar cell type from a
separate study”* (cluster 1 vs clusters 2-5 fold enrichment=9.38,
Mann-Whitney U test P value =5e-36; cluster 1 vs all the remaining
genes fold enrichment = 4.42, P value = 1e-20; Fig. 2d) with significantly
higher unsplice/splice ratio supporting their nuclear enrichment
(cluster 1vs clusters 2-5 fold enrichment = 1.55, Mann-Whitney U test P
value =2e-26; cluster 1 vs all the other genes fold enrichment=1.12, P
value =2e-3; Fig. 2e). In addition, these genes have significantly longer
gene lengths compared to genes in the other clusters or the remaining

genes, both in terms of the average isoform length (Mann-Whitney U
test Pvalue =2e-6 and 1e-3), the longest isoform length (P value = 5e-12
and 3e-7), and the total length across exons (P value =2e-13 and 4e-7;
Fig. 2f). Long genes require additional time to be transcribed and
exported” and their enrichment in the nucleus may serve as a reservoir
so that they can be quickly exported to the cytoplasm for translation in
response to stimuli’.

For genes with subcellular enrichment in the cytoplasm (clusters
4-5), we found them to frequently encode a signal recognition peptide
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(SRPs; proportion =29.60%) as compared to the genes in the nuclear
cluster 1 (proportion =10.67%; Fisher’s exact test P value = 3e-7) or the
remaining genes (proportion =16.45%; P value =3e-33; Fig. 2g). SRPs
are short sequence segments located at the N-termini of newly syn-
thesized proteins that are sorted towards the secretory pathway?”.
Proteins with SRPs typically reside in the endoplasmic reticulum, Golgi
apparatus, or plasma membrane, and include secreted proteins. The
enrichment of genes with SRPs among cytoplasmic genes suggests
that mRNAs for the secretory pathway also tend to localize in the
cytoplasm or near the membrane. This localization likely aids in
directing the translated proteins toward their designated subcellular
compartments.

We narrow down our focus to the normal PC cell type, which has
the largest number of genes with subcellular spatial expression pat-
terns, to carefully examine the 317 genes detected by ELLA (Fig. S38).
Among the 52 nuclear (cluster 1) genes (Fig. S39a, Table S9), four of
them (Malatl, Neatl, Gm13775, and 1700095BIORik) are long non-
coding RNAs that are previously known to be localized to the nucleus®.
45 of them are protein-encoding genes, including two previously
known nuclear-enriched mRNAs, Chd9 and Ppara, dovetailing recent
findings that retention of mRNAs in the nucleus may help buffer noise
in the stochastic mRNA production process®. Seven of them (MalatI,
Neat, n-R5-8s1, Gm24601, Mlxipl, Mafb, and Echdc2) were also found
among the top 10 nuclear-enriched genes identified in the original Seq-
Scope study, which explicitly searched for genes enriched within
10 um from the nuclear center®. Among the seven genes, four encode
transcription factors or proteins with transcription factor activity. For
example, Mixipl, one of these genes, is a transcription factor retained
in the nuclear speckles in the liver®. Finally, all 12 significant mito-
chondrial genes were detected as cytoplasmic localized (clusters 4-5;
Fig. S39b, Table S10), and all four significant PC cell type marker genes
were detected as cytoplasmic or membrane localized (clusters 4-5;
Fig. S39c¢, Table S10).

Stereo-seq mouse embryo data

Next, we analyzed the Stereo-seq mouse embryo data, focusing on two
major cell types localized in the cardiothoracic region on slice E1S3 on
the 16.5 embryo (Figs. 3a, S40 and S41): precursor muscle cells, or
myoblasts (596 cells with 2008 genes); and mature muscle cells, or
cardiomyocytes (553 cells with 1743 genes; Fig. S42). We were only able
to apply ELLA to the data, as SPRAWL and Bento are not applicable to
sequencing-based data, and the nuclear boundary information
required for Wilcox and Bento was not available in this data.

At an FDR of 5%, ELLA identified 108 and 153 genes to be spatially
variable within myoblasts and cardiomyocytes, respectively (Fig. S43).
32 genes were detected in both cell types, including four transcription
factors. Based on their subcellular spatial expression patterns, we
clustered the detected genes into five distinct clusters (“Methods,”
Fig. 3b): 89 genes (34%) display a nuclear expression pattern (cluster 1),
114 genes (43%) display one of the two nuclear edge expression pat-
terns (clusters 2-3), and 58 genes (22%) display one of the two cyto-
plasmic expression patterns (clusters 4-5). Example cells from the five
clusters are shown in Fig. 3c.

We carefully examined the basic properties of the genes detected
by ELLA in each of the five pattern clusters. For genes with subcellular
enrichment near the nuclear center (clusters 1-3), we again found
them to have significantly higher unsplice/splice ratio (clusters 1-3 vs
clusters 4-5, fold enrichment =1.99, P value =1e-7; clusters 1-3 vs all
the remaining genes, fold enrichment = 3.20, P value = 7e-50; Fig. 3d),
which is also negatively correlated with the expression pattern score
(Pearson correlation = —0.355, P value = 9e-86). Nuclear genes (clusters
1-3) also tend to have longer gene lengths compared to genes in the
other clusters or the remaining genes, in terms of the average isoform
length (P value=4e-4 and 6e-30), the median isoform length (P
value = 2e-3 and 4e-19), the longest isoform length (P value = 2e-4 and

2e-38), and the total length across exons (P value =7e-6 and 4e-42;
Fig. 3e). Genes in clusters 1-3 contains a higher proportion of newly
synthesized RNA based on a separate SLAM-seq study® (clusters 1-3 vs
clusters 4-5 fold enrichment =1.12, Mann-Whitney U test P value =
0.169; clusters 1-3 vs all the remaining genes, fold enrichment = 1.10, P
value = 0.038; Fig. S44).

In addition, genes in clusters 1-3 are enriched with transcription
factors (proportion =15.91%) as compared to the other clusters (clus-
ters 4-5, proportion = 4.55%, Fisher’s exact test P value = 0.325) or the
remaining genes (proportion =5.64%, P value =2e-6; Fig. 3f). For the
genes with subcellular enrichment in the cytoplasm (clusters 4-5), we
found them to contain a significantly higher proportion of RP genes
(clusters 4-5, 6.90% vs clusters 1-3, 0%, Fisher’s exact test P value = 2e-
3; clusters 3-4 vs all the remaining genes, 4.71%, P value = 0.327; Fig. 3g,
“Methods”), supporting their localized synthesis. Finally, in terms of
3'UTR length (Supplementary Note 1, Fig. S45), 19 genes display sig-
nificant variation across five expression pattern clusters (Fig. S46), 21
genes display significant correlation with expression pattern strength
(Fig. S47), and 18 genes display significant correlation with expression
pattern score (Fig. S48).

We investigated the shared and distinct features of the genes
detected by ELLA in both myoblasts and cardiomyocytes (Fig. S49).
Both cell types exhibit a similar proportion of genes across the five
expression pattern clusters, with common genes displaying similar
estimated expression intensities (Figs. S50 and S51). Among the
detected genes, 4 transcription factors are detected in both cell types
(14 unique in myoblasts and 21 unique in cardiomyocytes; Fig. S52a).
These transcription factors are enriched in GO gene sets related to
regulation of transcription, development, and various regulatory
categories (Fig. S52b, c). In addition, among the detected genes, two
long noncoding genes are detected in both cell types (four unique in
myoblasts and one unique in cardiomyocytes; Fig. S53), including
Malatl, which localized near the nuclear center (clusters 1-3).

SeqFish+ mouse embryonic fibroblast data

Next, we analyzed the NIH/3T3 mouse embryonic fibroblast cell line
data generated by seqFISH+", which contains 2,747 genes measured
on 171 embryonic fibroblast cells (Figs. 4a and S54). We were unable
to apply SPRAWL due to its heavy computational burden but were
able to apply Bento, as this data contains nucleus segmentation
information.

At an FDR of 5%, ELLA identified 2725 genes to display subcellular
spatial expression patterns, with 244 being transcription factors. The
subcellular expression patterns of the detected genes can be clustered
into five distinct clusters (Fig. 4b, “Methods”): 270 genes (10%) display
anuclear expression pattern (cluster 1), 878 genes (32%) display one of
the two nuclear edge expression patterns (clusters 2-3), and 1577
genes (58%) display one of the two cytoplasmic expression patterns
(clusters 4-5). The identified genes included 45 out of 55 genes with
subcellular localization patterns detected through an ad hoc proce-
dure in the seqFISH+ original study. The localization categorization of
the 45 genes closely aligns with the pattern reported in the original
study but with finer details: for example, 16 genes detected as enriched
generally in the nuclear and perinuclear regions in the original study
were clustered here as cluster 1 (2 genes), cluster 2 (7 genes), cluster 3
(4 genes), or cluster 4 (3 genes) genes (Fig. S55). Example cells from the
five clusters are shown in Fig. 4c.

Because Bento is only applicable to individual cells, we randomly
selected 20 cells (Fig. S56) and applied both ELLA and Bento to analyze
one cell at a time on 356-1213 (mean = 808) genes with more than 10
counts. Across cells, Bento classified 38.2% genes to one of the four
compartmental patterns, 21.5% genes to a pattern called “none,” and
the remaining 40.39% genes to either none of these five patterns or
multiple patterns (Fig. S57a). Certainly, Bento is unable to produce P
values nor quantifications of statistical significance for any of the
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Fig. 3 | Stereo-seq mouse embryo data analysis. a Data snapshot for slice E1S3, left
shows the nucleic acid staining image, middle shows expressions from three gene
sets (erythrocyte, gray; myoblast, blue; cardiomyocyte, green; Table S11), and right
zoom:s into a subregion showing myoblast (blue), cardiomyocyte (green), and
Malatl (red) expression with nuclear centers (crosses) overlaid on the staining
image. b Estimated spatial expression patterns for genes in five ELLA clusters:
upper panel shows gene counts and proportions, middle shows expression inten-
sities, and lower shows pattern scores. ¢ Example genes and cells for the five pattern
clusters. Upper panel lists gene name, P value (7e-4, 2.82e-4, 1.1e-4, 0.004, 9.11e-4),
and expression intensities overlaid on density maps. Lower panel shows the
expression of the corresponding genes in five selected cells, overlaid with cell
boundaries and aligned nuclear centers (crosses). d Bar plot shows the average
unspliced/spliced ratio across genes in pattern clusters 1-3 (red), 4-5 (green; P
value =1e-7), and non-cluster 1-3 genes (i.e., clusters 4-5 plus the nonsignificant
genes; gray; P value = 7e-50). Genes enriched close to the nuclear center (clusters

1-3) exhibit higher unspliced/spliced ratios. e Bar plot displays average gene length,
measured by four metrics (x-axis), across genes in pattern clusters 1-3, 4-5, and
non-cluster 1-3 genes. Genes enriched close to the nuclear center (clusters 1-3)
exhibit longer gene lengths. f Bar plot displays proportions of transcription factors
(TFs) for genes in pattern clusters 1-3, 4-5 (P value = 0.325), and non-cluster 1-3
genes (P value = 2e-6). Genes enriched close to the nuclear center (clusters 1-3)
contain a higher proportion of TFs. g Bar plot displays the proportions of ribosomal
protein (RP) genes for genes in pattern clusters 1-3, 4-5 (P value = 2e-3), and non-
cluster 1-3 genes (P value = 0.327). Cytoplasmic enriched genes (clusters 4-5)
contain a higher proportion of RP genes. Statistical significance for pair-wise
comparisons (*<0.05; **<0.01; **<0.001; without adjustments for multiple com-
parisons) is based on two-sided Mann-Whitney U test (d, e) or Fisher’s exact test
(f, g), sample size n=3683 genes (d, e), data are presented as mean values * the
interquartile range (25th-75th percentile, d, e). Source data are provided as a
Source data file.

genes. ELLA was able to allocate all genes to five identified patterns,
with 12.41% genes achieving statistical significance (5% FDR; Fig. S57b,
¢). For genes detected by ELLA and classified by Bento to patterns
other than none, their expression pattern classifications are largely
consistent with each other, although ELLA offers more detailed results
(Fig. S58). For example, 90.12% of the “nuclear” patterned genes
detected by Bento were also identified as nuclear genes by ELLA, and
these genes were classified by ELLA into two separate clusters (65.13%

genes in cluster 1 with nuclear pattern and 27.80% genes in cluster 2
with nuclear edge pattern).

We examined the basic properties of the genes detected by ELLA
in each of the five pattern clusters. For genes with subcellular
enrichment near the nuclear center (clusters 1-3), we found them to
have significantly longer gene lengths compared to genes in the
other clusters (clusters 4-5) or the remaining genes, in terms of the
average isoform length (P value=2e-16 and le-15), the median
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isoform length (P value = 1e-12 and 4e-12), the longest isoform length
(P value = 6e-11 and 2e-10), and the total length across exons (P
value = 7e-5 and 1e-4; Fig. 4c). These four types of gene lengths are
also significantly negatively correlated with the ELLA pattern scores
(Pearson correlation ranges from —0.15 to —0.08; P values range from
le-10 to 4e-3). Genes with enrichment near the nuclear center

(clusters 1-3) are also enriched with transcription factors (propor-
tion =10.63%) as compared to the other clusters (clusters 1 and 4-5,
proportion =7.61%, P value = 8e-3) or the remaining genes (propor-
tion="7.65%, P value = 8e-3; Fig. 4e).

Given that the data is collected from cultured cells that undergo
continuous cell division, we explored whether the cell cycle may
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Fig. 4 | SeqFISH+ mouse embryonic fibroblast data analysis. a Data snapshots.
Left shows all transcripts (gray) across 17 batches. Middle zooms into batch 14 with
transcripts (gray), nuclear centers (crosses), and nuclear (dashed gray) and cell

(solid gray) boundaries. Right shows expression of three gene sets (nuclear/edge,
red; cytoplasmic, green; protrusion, blue; Table S14) with nuclear centers (crosses)
and boundaries. b Estimated spatial expression. Upper panel shows gene numbers
and proportions, middle shows expression intensities, and lower shows pattern

scores. ¢ Example genes and cells for the five pattern clusters. Upper panel lists

gene name, P value (1.1e-23, 1.03e-34, 3.21e-23, 2.29¢e-29, 7.32e-10), and expression
intensity on density maps. Lower panel shows the expression of the corresponding
genes in one selected cell, overlaid with the cell boundary and the nuclear center
(cross). d Bar plot displays average gene length, measured by four metrics (x-axis),
across genes in pattern clusters 1-3 (red), 4-5 (green), and non-cluster 1-3 genes
(i.e., clusters 4-5 plus the nonsignificant genes; gray). Genes enriched close to the
nuclear center (clusters 1-3) exhibit longer gene lengths. e Bar plot displays the

proportions of transcription factors (TFs) for genes in pattern clusters 1-3, 4-5 (P
value = 8e-3), and non-cluster 1-3 genes (P value = 8e-3). Genes enriched close to
nuclear center (clusters 1-3) contain a higher proportion of TFs. f Estimated spatial
expression patterns of genes across cell cycle phases (Gl1, S, G2M). Upper panels
show expression intensities, middle panels show pattern scores, and lower panels
show score distributions. g Upper panel shows violin plots of pattern scores across
cell cycle phases for different clusters; G1-significant genes are less likely to be
nuclear-enriched and have larger scores than those in S and G2M (one-sided
Mann-Whitney U test). Lower panel shows line plots of score trajectories across
phases. Statistical significance for pair-wise comparisons (*<0.05; **<0.01;
***<0.001; without adjustments for multiple comparisons) is based on two-sided
Mann-Whitney U test (d) or Fisher’s exact test (e), sample size n=2738 genes (d, g),
data are presented as mean values * the interquartile range (25th-75th percentile,
d, g). Source data are provided as a Source data file.

influence the subcellular spatial localization of gene expression. To do
so, we first clustered fibroblast cells into three distinct cell-cycle pha-
ses, including G1 (n=36, 21%), S (n= 83, 49%), and G2M (n =52, 30%).
We then applied ELLA to analyze each cell phase separately and
detected 728, 2368, and 1726 genes with subcellular spatial expression
patterns, respectively (Fig. 4f). We found that genes significant in the
Gl phase are less likely to be enriched close to the nuclear center and
display larger pattern scores compared to the genes in the S and G2M
phases, regardless which cluster the genes belong to (pattern score
fold enrichment in G1 vs S and G2M =1.53, 1.14, 1.1, 1.15, and 1.07, for
the five clusters, respectively; one side Mann-Whitney U test P
value =2e-3, 0.21, 8e-3, 3e-48, 6e-7; Fig. 4g), suggesting that DNA
replication during the S phase enhances nuclear enrichment in S and
G2M phases. Among the detected genes, 723 are shared across three
cell cycles, including 49 (7%), 47 (7%), 129 (18%), 407 (56%), and 84
(12%) genes for each of the five clusters, respectively. ELLA was able to
detect dynamics of subcellular expression patterns across cell cycle
phases. For example, in each pattern cluster, a subset of genes displays
decreasing pattern scores through Gl, S, and G2M phases, corre-
sponding to increasing enrichment towards the nucleus
(Figs. 4g and S59, “Methods”).

MERFISH mouse brain data

Lastly, we analyzed the adult mouse brain data generated by
MERFISH?* (Figs. 5a and S60). We focused on four major cell types
residing in the midbrain: excitatory neurons (EX, n=577), inhibitory
neurons (IN, n=525), astrocytes (Astr, n=480), and oligoden-
drocytes (Olig, n =948) with 557-878 genes per cell type (Fig. S57).
Besides ELLA, we were also able to apply SPRAWL to the data, but
were unable to apply Wilcox and Bento as the nuclear boundary
information required for these two methods was not available in
this data.

At an FDR of 5%, ELLA identified 298, 261, 154, and 151 (total = 864,
total distinct =485) genes that display subcellular spatial expression
patterns in EX, IN, Astr, and Olig cells, respectively (Fig. S61). 256 of
these genes, including 47 transcription factors, were detected in two or
more cell types. The subcellular spatial expression patterns of the
detected genes can be clustered into four distinct pattern clusters
(Fig. 5b, “Methods”): 171 genes (20%) display a nuclear expression
pattern (cluster 1), 298 (34%) genes display a nuclear edge expression
pattern (cluster 2), and 395 genes (46%) display one of the two cyto-
plasmic expression patterns (clusters 3-4). Example cells from the four
clusters are shown in Fig. 5c. Compared to the number of genes (864)
detected by ELLA, the peripheral, central, radial, and punctate metrics
of SPRAWL detected 572, 305, 138, and 238 genes, respectively, with
434 distinct genes in total, the majority of which (345; 79.49%) are
overlapped with ELLA (Fig. S62). Note that SPRAWL radial and punc-
tate metrics excluded 57.8% of the unqualified gene-cell pairs that have
less than two counts of a gene in a cell, which likely leads to their lower

power as well as their failure in producing P values for a small per-
centage of genes across cell types (2.3%, 272 genes).

We carefully examined the basic properties of the genes
detected by ELLA in each of the four pattern clusters. For genes with
subcellular enrichment near the nuclear center (clusters 1-2), we
found them to have significantly higher snRNA expression in the
same cell types from a separate study (clusters 1-2 vs clusters 3-4,
fold enrichment =1.36, P value = 7e-26; clusters 1-2 vs all remaining
genes fold enrichment=1.17, P value =1e-13; Fig. 5d*?). We also
found them to have significantly longer gene lengths compared to
genes in the other clusters or the remaining genes, in terms of the
average isoform length (P value =4e-4 and le-4), the median iso-
form length (P value = 0.03 and 8e-3), the longest isoform length (P
value =1e-6 and 3e-9), and the total length across exons (P value =
2e-7 and 9e-12; Fig. 5e). In addition, the cluster 4 genes contain a
lower proportion of transcription factors (proportion=3.90%) as
compared to the other clusters (clusters 1-3, proportion = 21.22%, P
value =6e-5) or the remaining genes (proportion=16.01%, P
value = 1e-3; Fig. 5f). Gene sets enriched with the clusters 1-2 genes
are related to various functions including transcription regulation
(Fig. S63), while gene sets enriched with clusters 3-4 genes are
particularly related to dendrites and synaptic transmission and
signaling (Fig. 5g, h). Several detected genes in clusters 3-4 are
associated with cell-cell communication®. For example, several
secreted factor/modulator-related genes, such as Penk, Cxcll4, Agt,
and Serpine2, and receptor genes like Gabbr2, Gpr3711, and Siprl,
are detected to be enriched close to the cell membrane, suggesting
potential signaling between neighboring cells. Adhesion-related
genes such as Gjal and Cldnli1 are enriched close to the membrane,
indicating potential roles in physical cell-cell contact. These pat-
terns support a link between mRNA localization and cellular inter-
action interfaces.

We investigated the shared and distinct features of the genes
detected by ELLA in the two neuronal cell types, excitatory and inhi-
bitory neurons. Excitatory neurons contain a slightly higher propor-
tion of nuclear localized genes (cluster 1), and a lower proportion of
cell membrane localized genes (cluster 4) compared to inhibitory
neurons (Fig. S64). A fraction of the detected genes (Jaccard index =
47.5%) are shared between the two neuronal types, with 13, 39, 53, and
2 shared genes detected across clusters 1-4 and with similar estimated
expression patterns (Figs. S65 and S66). In addition, the majority of the
detected transcription factors (126) are shared between the two neu-
ronal types, while 20 are uniquely detected in excitatory neurons and 9
are uniquely detected in inhibitory neurons (Fig. S67). The 126 share-
d transcription factors are enriched in 112 gene sets related to
various transcription regulations and neuron differentiation
(Figs. S68 and S69). Three out of eight long noncoding genes are
detected in both cell types (Fig. S70a). All of the three common long
noncoding genes are localized close to the nucleus in both cell types
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(cluster 2; Fig. S70b). Most cell type marker genes (9 out of 14)
detected by ELLA belong to clusters 3-4 with cytoplasmic or mem-
brane localization patterns (Fig. S71).

We evaluated ELLA’s performance across multiple data replica-
tions by analyzing all three tissue sections from the 10x Xenium mouse
brain data. ELLA detected 192, 197, and 199 genes to have subcellular

o

3 4 5
-log10(P)

spatial patterns in neuron cells across the three sections, respectively,
with a substantial number of overlaps (175 genes). These genes were
clustered into three pattern clusters in each section. Within each pat-
tern cluster, a substantial proportion of genes were commonly
detected across all replicate sections (Fig. S72a), with most genes
displaying similar estimated expression patterns (Fig. S72b).
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Fig. 5 | MERFISH mouse brain data analysis. a Data snapshot. Left shows the DAPI
image, middle shows expression of four gene sets (EX, blue; IN, green; Astr, red;
Olig, orange; Table S12), and right zooms into a subregion showing the same gene
sets with cell centroids (crosses) and segmentation boundaries across five z-stacks.
b Estimated spatial expression. Upper panel shows gene numbers and proportions,
middle shows expression intensities, and lower shows pattern scores. ¢ Example
genes and cells for the four pattern clusters. Upper panel lists gene name, P value
(1.97e-14, 3.67e-5, 1.23e-4, 2.05e-12), and expression intensities on density maps.
Lower panel shows gene expression in five selected cells, overlaid with cell
boundaries and aligned nuclear centers (crosses). d Bar plot shows the average sn/
sc RNA ratio across genes in clusters 1-2 (red), 3-4 (green; P value = 7e-26), and
non-cluster 1-2 genes (i.e., clusters 3-4 plus the nonsignificant genes; gray; P
value =1e-13). Genes enriched close to the nuclear center (clusters 1-2) exhibit
higher snRNA levels. e Bar plot displays average gene length, measured by four

metrics (x-axis), in pattern clusters 1-2, 3-4, and non-cluster 1-2 genes. Genes
enriched close to the nuclear center (clusters 1-2) exhibit longer gene lengths. f Bar
plot displays proportions of transcription factors (TFs) for genes in pattern clusters
1-3 (orange), 4 (blue; P value = 6e-5), and non-cluster 4 genes (i.e., clusters 1-3 plus
the nonsignificant genes; gray; P value =1e-3). Genes enriched close to the cell
boundary (cluster 4) contain a lower proportion of TFs. g, h Stem plots show the
-logl0 P values of the top 10 enriched gene sets in GSEA analysis for genes in
pattern cluster 3 and 4, respectively. Gene sets enriched with cluster 3 or 4 genes
are related to dendrites and synaptic transmission, and signaling. Statistical sig-
nificance for pair-wise comparisons (*<0.05; **<0.01; ***<0.001; without adjust-
ments for multiple comparisons) is based on two-sided Mann-Whitney U test (d, e)
or Fisher’s exact test (f), sample size n=2923 genes (d, e), data are presented as
mean values + the interquartile range (25th-75th percentile, d, e). Source data are
provided as a Source data file.

Discussion

We have presented ELLA, a statistical method for modeling and
detecting spatially variable genes within cells that display various
subcellular spatial expression patterns in high-resolution spatial tran-
scriptomic studies. ELLA models the spatial distribution of gene
expression measurements along the cellular radius using an over-
dispersed NHPP, leverages multiple kernel functions to detect a variety
of subcellular spatial expression patterns, and is capable of analyzing a
large number of genes and cells. We have illustrated the benefits of
ELLA through simulations and real data applications across diverse
experimental setups. Specifically, we examined Seq-Scope and Stereo-
seq, which represent sequencing-based technologies, with Seq-Scope
offering high throughput in a small capture area and Stereo-seq cov-
ering a large area with relatively sparse capture. We also examined
seqFISH+ and MERFISH represent imaging-based technologies, with
seqFISH+ capturing dense signals in small areas and MERFISH covering
larger areas with lower density. We also tested ELLA on other popular
datasets, such as 10x Xenium, highlighting ELLA’s applicability across
diverse subcellular spatial transcriptomics platforms and data types.

Across all four datasets, we consistently observed that genes
enriched in the nuclear compartment tend to exhibit longer gene
lengths and are more frequently associated with IncRNAs and tran-
scription factors. This pattern supports the hypothesis that longer or
regulatory transcripts may be retained in the nucleus for functional or
kinetic reasons. Conversely, genes enriched in the cytoplasm or at the
membrane frequently contain signal peptides or encode RPs, a trend
observed repeatedly across multiple datasets. At the same time, ELLA
also revealed dataset-specific findings. For example, the influence of
the cell cycle on subcellular localization was revealed in the fibroblast
dataset due to the suitability of this dataset for capturing cell cycles. In
the MERFISH mouse brain data, we identified membrane-enriched
genes related to ligand-receptor interactions and cell signaling path-
ways. While some detected subcellular patterns may reflect technical
artifacts, such as technological variations, segmentation inaccuracies,
and detection biases, these sources of noise are likely mitigated in
ELLA through joint analysis of multiple cells and effective error con-
trols. The consistent finding across datasets and platforms further
suggests that the main discoveries are unlikely to be driven by tech-
nical confounders. These findings highlight that while ELLA reliably
recovers robust biological patterns across technologies and tissues, it
is also capable of conducting dataset-specific analysis to uncover
dataset-specific biology, underscoring its utility for both comparative
and targeted subcellular transcriptomic analysis.

We have primarily focused on utilizing ELLA to capture the spatial
variation of gene expression along the cellular radius within cells,
which is inherently one-dimensional and rotation invariant. Detecting
rotation-invariant and radially symmetric patterns enables information
sharing across multiple cells, thereby enhancing statistical power. In
addition, rotation-invariant patterns facilitate results interpretation, as
the detected genes can be naturally categorized into cellular

compartments, including the nucleus, nuclear membrane, and cellular
membrane. The framework of ELLA, however, is general and can be
extended to two- or three-dimensional cellular space, enabling mod-
eling of 2D cellular space with kernels defined on a unit circle or 3D
cellular space with kernels defined on a unit ball. Use of different
kernels in higher-dimensional spaces may further enhance the power
of ELLA. For example, radial kernel functions may be particularly
effective in detecting genes with radial patterns in 2D cellular space—a
pattern that, although unlikely to be biological, the one-dimensional
version of ELLA is ill-equipped to detect, as shown in the simulations.
Such extensions, however, necessitate careful consideration, as addi-
tional modeling features, such as rotation invariance, may need to be
incorporated into the kernel structure to effectively utilize information
from multiple cells. Additionally, the mRNA subcellular enrichment
revealed by ELLA is tied to the mRNA metabolism, such as nuclear
exportation and degradation. Thus, integrating spatial transcriptomics
localization analysis with mRNA metabolism measurements such as
SLAM-seq* represents a promising future direction.

ELLA leverages nuclear center and cellular boundary information
extracted from the spatial transcriptomics data or its accompanying
histology image data to register and segment cells through multiple
pre-processing steps. These pre-processing steps can vary substantially
across different spatial transcriptomics technologies. For example, the
accompanying H&E and nucleic acid staining images in Seq-Scope and
Stereo-seq need to be registered with the spatial transcriptomics data to
obtain the cellular boundary information, while the DAPI images in the
imaging-based datasets have already aligned with the spatial tran-
scriptomics data without the need for further registration. Similarly, the
nucleus center in sequencing-based datasets is determined based on
the enrichment of unspliced sequencing read counts, while in imaging-
based datasets is determined as the geometric center of the nuclear
segmentation. Importantly, ELLA provides accompanying scripts tai-
lored to distinct spatial transcriptomics platforms to streamline these
pre-processing steps. While ELLA, in principle, can accommodate any
cell segmentation method, in practice, the accuracy of these segmen-
tations can influence the results (Methods). More accurate segmenta-
tion methods that better capture true cell shapes and boundaries are
likely to enhance the fidelity of spatial localization pattern analysis.
Therefore, we recommend using high-quality, biologically relevant cell
segmentation methods when applying ELLA to real datasets. We also
offer several recommendations to mitigate the effects of segmentation
contamination. First, obtaining accurate cell segmentation, either by
leveraging the state-of-the-art computational tools or through expert
curation, is crucial. Second, accurate segmentation, under-segmenta-
tion, or noisy segmentation is generally preferable to consistently over-
segmentation. Third, in multi-cell analysis, a heterogeneous mix of
segmentation types, where some cells are over-segmented and others
are under-segmented, can help mitigate the impact of segmentation
contamination. Finally, we note that accurate cell segmentation using
existing tools can be challenging for cells with complex shapes or non-
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mononuclear structures. Adapting ELLA to accommodate these com-
plexities represents an important direction for future work.

In addition to the nuclear center and cellular boundary informa-
tion, additional data, such as nuclear boundary information, can also
be integrated into ELLA as needed. In such cases, the registration step
of ELLA can be extended to register cells based on the nuclear center,
nuclear boundary, as well as cellular boundary. Furthermore, the
modeling framework of ELLA can be extended to accommodate this
additional information. Investigating the effectiveness of ELLA in the
context of additional feature information represents an important
avenue for future research.

Finally, the computational complexity of ELLA scales linearly with
the number of cells, the number of transcripts per cell, and the number
of kernels used in the model, making it computationally efficient. For
example, the runtimes for analyzing one gene across 50 cells with
varying transcript counts (from 1 to 100) range from 7.7 min to
13.9 min (Fig. S73a), and the runtimes for analyzing one gene with 5
transcripts per cell as the number of cells increases (from 5 to 300)
range from 0.9 min to 75.5min (Fig. S73b). When modeling genes
across multiple cell types, ELLA can be applied independently to each
gene in each cell type to take advantage of parallel computation.

Methods

ELLA overview

Subcellular resolution spatial transcriptomics and data pre-
processing. We consider a high-resolution spatial transcriptomics
study that collects gene expression measurements at the subcellular
level for G genes on S spatial locations. These locations have known
two-dimensional x and y spatial coordinates that are recorded during
the experiment. For a gene g, its raw expression measurement at each
location is represented either as a count or as a binary label, depending
on the spatial transcriptomic technique. Specifically, for sequencing-
based techniques such as Seq-Scope® and Stereo-seq’, the expression
of a gene on a given location is measured as the number of read counts
mapped to the gene. For imaging-based techniques such as seqFISH+"
and MERFISH', the expression of a gene is measured as the presence
(1) or the absence(0) of a hybridization signal at a given location.

To facilitate joint modeling across cells, we create a unified
cellular coordinate system to anchor diverse cell shapes and
morphologies. To do so, for the high-resolution spatial tran-
scriptomics data, we first follow standard data pre-processing pro-
cedures to segment the tissue into cells. We cluster these cells into
different cell types based on marker gene expression. For each cell in
turn, we obtain the center of its nucleus and assign the spatial
coordinates to all expression measurement locations within the cell.
For each measured location inside the cell, we calculate two dis-
tances: its distance to the nuclear center d;, and its distance to the
cell boundary d,, in the opposite direction from the nuclear center
(Fig. S74a). With these two distances, we further calculate the relative
position of the measured location inside the cell as the ratio between
the nuclear distance and the summation of the two distances
d, =d,/(d, +d,). The relative position ranges between 0 and 1 and
allows us to create a unified coordinate system across cells, enabling
the joint modeling of multiple cells regardless of their sizes and
shapes (Fig. S74b). Importantly, we compute the cellular distances
for each measured location efficiently using a binning-based
numerical approximation approach. Specifically, we first divided
each cell from the center of the nucleus into 100 circular sectors of
equal angle measure. In each sector v, we denote r, as the maximum
distance between the center of the nucleus and the cellular boundary
in the sector using the cell segmentation boundary or mask. For each
expression measurement location within the sector, we obtain its
distance from the center of the nucleus and normalize it by r, to
obtain its relative position. This binning-based approximation
approach speeds up computation by eliminating the requirement of

computing the distance of each measurement location to the cell
boundary, facilitating parallel computation across cells and sectors.

ELLA model for detecting genes with subcellular spatial expression
patterns. With the expression measurements and their relative posi-
tions within each cell, we aim to identify spatially variable genes that
display subcellular spatial expression patterns along the cellular radius
that points from the center of the nucleus towards the cellular
boundary. The genes with subcellular spatial expression patterns are
often localized in certain cellular compartments such as the nucleus,
cytoplasm, Golgi apparatus, or cell membrane, and may display dis-
tinct enrichment associated with such compartmentalization. To
identify those genes, we examine one gene at a time and jointly model
its expression measurements within n cells that belong to a given cell
type. Fortheith cell (i=1, ..., n), we assume that the gene is measured
on m; spatial locations. For the jth measured location (j=1, ..., m;),
we denote the measured gene expression value as y;;, which is either a
count or a binary value. We denote the relative position of the jth
measured location as r;; € [0, 1], where O corresponds to the center of
the nucleus and 1 corresponds to the cellular boundary.

We model the subcellular spatial localization of gene expression
within each cell using a one-dimensional over-dispersed NHPP model,
which is effectively a tailored Cox Process model. Specifically, we
assume that the gene expression counts summed across all relative
positions within a given interval [a, b] c [0,1] on the cellular radius
follow an over-dispersed Poisson distribution, with the rate parameter
being the integration of an underlying NHPP density function in the
interval [a, b], where the NHPP density function may vary with respect
to the relative position within the cell. Mathematically, the model is
expressed as:

b
~ Poi( / A;(rydr) @

Zyy<y
r

€la, b]

where Poi denotes a Poisson distribution and A;(r) is the unknown
NHPP density function depending on the relative position r. We
assume that the NHPP density function A;(r) is decomposed as follows

A(r) = cS(NA(r) + €(r) )

where c;, the total read depth for the ith cell, calculated as the sum-
mation of the total read counts of the gene of focus within the cell, is
used for normalization purpose and for addressing the over-dispersion
across cells (Supplementary Note 2); s(r)=2mr is another normal-
ization term to adjust for the area of the annular region between r and
r+Ar (the annular area between r and r+Ar is
m(r+ Ar)? — mr? = 2mrAr + m(Ar)? = 2mrAr + o(A(r)); Supplementary
Note 3); A(r) is the key term of interest—the subcellular spatial
expression intensity function that captures the subcellular spatial
expression pattern along the cellular radius; and €;(r) is the random
effects term that models additional over-dispersion across cells not
accounted for by the total read depth ¢; and is assumed to follow a
normal distribution €;(r) ~ N[O, o.(r)], with o.(r) being an unknown
variance parameter to be estimated from the data. Importantly, we
enforce the non-negativity of the density function A;(r) by applying a
ReLU operation within the inference algorithm (Supplementary Note
4) and constraining the two parameters associated with A;(r) to be non-
negative (details below).

With the above over-dispersed NHPP model, we can write down
the joint likelihood of the subcellular gene expression across n cells as:

11/

(/1 (r)) )d/l (r) 3)
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Note that we have assumed that the subcellular spatial expression
intensity function A(r) is shared across cells, allowing us to borrow
information across cells to enhance the detection of subcellular spatial
expression patterns.

The intensity function A(r) is key for modeling the subcellular
spatial expression pattern of the given gene. In particular, if a gene
does not display subcellular spatial expression pattern and is instead
uniformly distributed within the cells, then A(r) is expected to be a
constant that is invariant to the relative positionr. In contrast, if a gene
displays subcellular spatial expression pattern, then A(r) is expected to
vary as a function of the relative position r.

Therefore, in the above over-dispersed NHPP model, identifying
genes that display subcellular spatial expression pattern within cells is
equivalent to testing whether A(r) is a constant or not. The statistical
power of such hypothesis test will inevitably vary depending on how
the specified expression intensity function A(r) matches the true
underlying subcellular spatial expression pattern displayed by the
gene of focus. For example, an intensity function enriched near zero
will be particularly useful for detecting subcellular expression patterns
that are also enriched in the nuclear, while an intensity function enri-
ched near one will be particularly useful for detecting subcellular
expression patterns that are also enriched near the cellular membrane.
However, the true underlying subcellular spatial pattern for any gene is
unfortunately unknown and may vary across genes. To ensure robust
identification of subcellular spatial expression genes across various
spatial patterns, we consider using a total of k=22 different kernel
functions @;(r), ..., @,(r) inside the intensity function A(r) to capture a
wide variety of possible subcellular spatial expression patterns
(Fig. S74c¢). In particular, each function is a Beta probability density
function defined on the interval [0, 1], characterized by one of the
22 sets of shape parameters (Table S11) with a mode centering on 0,
0.1, 0.2, ..., or 1. Note that, while we use these 22 kernel functions as
default kernels in the present study, our method and software imple-
mentation can easily incorporate various numbers or types of intensity
kernels as desired by the user.

Foreachkernel /=1, ..., k inturn, we model the intensity function
in the form of A(r)=a; + B,¢,(r), where a; is the nonnegative intercept
parameter and f; is the nonnegative scaling parameter for the ith
kernel function. With the functional form of A(r), we can test the null
hypothesis H, : f;=0, that A(r) is a constant. Rejecting the null
hypothesis allows us to detect genes that display subcellular spatial
expression patterns captured by the particular kernel. We perform
inference and hypothesis test for each kernel in turn using a likelihood
ratio test. In particular, we first maximize the log likelihood both under
the null and under the alternative using a policy gradient approach
(Supplementary Note 4) with PyTorch®. Afterwards, we obtain the
corresponding P value asymptotically based on an equal mixture of
two chi-square distributions with degrees of freedom being zero and
one*. Afterwards, we combine the k different P values calculated using
different kernels into a single P value using the Cauchy combination
rule®*%, Specifically, we convert each of the k P values into a Cauchy
statistic, aggregate the k Cauchy statistics through summation, and
convert the summation back to a single P value based on the standard
Cauchy distribution. The Cauchy rule takes advantage of the fact that a
combination of Cauchy random variables also follows a Cauchy dis-
tribution regardless of whether these random variables are correlated
or not. Therefore, the Cauchy combination rule allows us to effectively
combine multiple potentially correlated P values into a single P value
for every gene. Finally, we control FDR across genes using the
Benjamini-Yekutieli procedure, which is effective for arbitrary
dependency among test statistics. We used an FDR cutoff of 0.05 for
declaring significance.

Estimation of the subcellular spatial expression pattern with ELLA.
While the primary focus of ELLA is on hypothesis testing, it can also be

used to estimate the subcellular spatial expression pattern for the
detected genes. Specifically, for gene g we can first obtain the k esti-
mated intensity functions for each of the k kernel functions as

A =a+Boyn), 1=1, ... k. “)

where a; and B, are the estimates for the corresponding parameters.
Because each of the k estimated intensity functions captures a parti-
cular aspect of the overall subcellular spatial expression intensity
function A(r), we estimate A(r) with a weighted combination of the
estimated intensity functions in the form of

k
Ary="Y " wik(r), )
=1
where w, is the weight for the Ith intensity function with 35w, =1.
The weights can be derived based on Bayesian model averaging®. In
particular, we denote the model with Ith kernel function as M, and
denote the data as D. The posterior distribution for A(r) is in the form
of: P(/l(r),|,D)=ZI":IP(A(r)\M,,D)P(MAD), with the posterior mean
estimate  being A(r):E[P(/l(r)|D)]:ZleE[P(/l(r)W,,D)]P(M,|D) =
Zf‘: A(r)P(M,|D). Therefore, the weights are in the form

POIMYP(M) _ P(DIM))
w;=P(M,|D)= - 6
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where the last equation holds due to the equal prior assumption on
each model, with P(M;)=1/k (j=1,...,k). And Zf‘:lw, =Zf‘:1

POM)  _ Zf:IP(D\Mz)
S POMy) S POIM)
imized reward function (R(t,s)) to obtain the weights and subse-
quently Ar) (Supplementary Note 5).

ELLA isimplemented in python, with an underlying PyTorch Adam
for efficient CPU or GPU computation. The software ELLA, together
with all analysis code used in the present study, are freely available at
https://xiangzhou.github.io/software/.

=1. We approximate P(D|M,) with the max-

Compared methods

We compared ELLA with three methods: (1) SPRAWL?, (2) Bento?, and
(3) Wilcox. For both SPRAWL and Bento, we followed the tutorial on
their corresponding GitHub pages and used the recommended default
parameter settings.

SPRAWL takes RNA location information from subcellular multi-
plexed imaging datasets as inputs and does not explicitly require
nuclear boundary or nuclear center information. SPRAWL examines
one gene at a time and uses four localization metrics to capture four
different types of subcellular spatial enrichment patterns that include
peripheral, central, radial, and punctate. Specifically, the peripheral
metric is used to identify peripheral/anti-peripheral patterns where the
expression enrichment is either proximal or distal from the cell
membrane. The central metric is used to identify central/anti-central
patterns where the expression enrichment is either proximal or distal
from the cell centroid. The radial metric is used to identify radial/anti-
radial patterns where a gene is either aggregated or depleted in a
sector of the cell. The punctate metric is used to identify punctate/anti-
punctate patterns where a gene displays either self-colocalizing/self-
aggregating or self-repulsion inside the cell. Because the radial and
punctate metrics can only be computed for cells with no less than two
expression counts, we had to filter out cells with less than two counts
when analyzing a given gene for these two metrics. For each gene and
each metric in turn, SPRAWL computes a score for every cell and
averages them across cells in a particular cell type to obtain the per-
cell-type score. SPRAWL then converted the per-cell-type score to a P
value based on a standard normal distribution and used the
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Benjamini-Hochberg procedure for FDR control. We used an FDR
threshold of 0.05 to obtain significant genes. SPRAWL is designed for
working with multiple cells and does not support analysis on a single
cell because it computes per-gene, per-cell localization scores (e.g.,
peripheral, central, radial, punctate scores) and aggregates these
scores across cells of the same cell type to produce statistically
meaningful results. SPRAWL uses the Lyapunov Central Limit Theorem
to justify statistical testing, which requires estimating variance across
multiple cells. As such, SPRAWL requires at least two cells to compute
variance, and typically many more to obtain reliable variance estimates
and corresponding P values.

Bento takes RNA location information from subcellular multi-
plexed imaging datasets as inputs and requires nuclear and cell
boundaries as additional information. For each gene-cell pair in turn,
Bento computes 13 spatial summary statistics and uses its RNAforest
function, which consists of five independent pre-trained binary ran-
dom forest classifiers, to produce five binary labels that classify gene
expression patterns into one of the five patterns, including nuclear,
nuclear edge, cytoplasmic, cell edge, and none. For each gene in the
cell, we obtained the classification probability p. for each pattern c and
used 1 — p, to rank genes for the pattern, which allowed us to measure
powers based on FDR in the simulations. However, due to its use of
classification probability, it is not feasible to obtain FDR control in any
real datasets with Bento.

Wilcox, a Wilcoxon rank sum test-based approach developed in
the present study, detects genes that are differentially expressed
between two subcellular regions: the nucleus and the cytoplasm. We
focus on these two subcellular regions because we can extract the
nuclear boundary and cell boundary in many spatial transcriptomics
studies. To detect those genes, for each cell in turn, we first extracted
the gene expression counts within the nucleus as well as the gene
expression counts in the cytoplasm. We then normalized the two
counts by the corresponding cellular areas for the two subcellular
regions. Afterwards, we performed the Wilcoxon rank sum test across
cells to detect genes that are differentially expressed between the
nucleus and the cytoplasm.

Simulations
We performed comprehensive simulations based on imaging data to
evaluate the performance of ELLA and compare it with other methods.
We did not perform simulations based on sequencing data, as neither
SPARWL nor Bento can be applied to analyze these data. For simula-
tions, we first extracted the cell boundaries of the embryonic fibroblast
cells from the seqFISH+ data, calculated the minimal and maximal
radius of each cell, obtained a list of 90 reasonably shaped cells with
the ratio of minimal and maximal radius >0.3, and extracted their
nuclear centers and boundaries. We then sampled with replacement n
cells from these cells. For each cell in turn, we applied the same binning
strategy used in ELLA preprocess to divide the cell from the center of
the nucleus into 100 circular sectors of equal angle measure. In each
sector v, we denote r, as the maximum distance between the center of
the nucleus and the cellular boundary in the sector. We calculated the
approximate area of the sector v as 1r2/100. We also denote 6, ;, and
0, max as the minimum and maximum angle measurements of the
sector, respectively. For the alternative simulations, we further divided
each circular sector into 25 annulus sectors with equal distances.
With the above preparations, we simulated gene expression for
1000 genes, where each gene is expressed as a binary count on m
subcellular localizations in each cell as imaging data. In the null
simulations, none of these genes display cellular spatial expression
patterns. In the alternative simulations, 800 genes are null, while 200
genes display different types of subcellular expression patterns. Spe-
cifically, in the null simulations, we first randomly sampled the number
of measured locations inside each sector (m,). We set m,, to be pro-
portional to the area of the sector using the function

“np.random.choice” with the constraint >,m, =m. For each of the m,
locations in sector v, we obtained two independent random variables,
u; and u,, from a uniform distribution U(0, 1), and converted them into
the radius (r) and angle (6) coordinates for the location, where
r=r,/u; and 0=0, ., +u(0, nax — 0, min)- The radius and angle
coordinates are further converted to the x and y coordinates in the
form of x =r cos(8) and y=rsin(6).

In the alternative simulations, we simulated gene expression to
exhibit subcellular expression patterns from three pattern categories:
symmetric, radial, and punctate. For the symmetric pattern category,
we considered eleven different expression patterns, including two
patterns with nucleus enrichment, two patterns with nuclear edge
enrichment, five patterns with cytoplasmic enrichment, and two pat-
terns with membrane enrichment. For each pattern, we first randomly
sampled the number of measured locations inside each sector (m,).
We set m, to be proportional to the area of the sector using the
function “np.random.choice” with the constraint >",m,=m. We then
constructed the expression intensity function A"*(r) in the form of
A"™(ry=a+ Bep(r), where @(r) is set to be one of the eleven beta
probability density functions described earlier (upper panel in
Fig. S68c). Each beta probability density function is characterized by
one of the eleven sets of shape parameters (Set 1 in Table S11), with a
mode centering on 0, 0.1, 0.2, ..., or 1. With A"™¢(r), we define the
pattern strength s as (maxA™(r)-minA™(r))/minA"™(r). We also
compute A;™(r)=2mrA™(r) and further p,= jfz :?:/l:"”e(r)dr“o,
which represents the probability of observing an expression mea-
surement in the gth annulus sector. Afterwards, we simulated the
number of expression measurement locations in each annulus sector,
my, ..., My, ~ Multinomial(m,, p;, ..., Pyg), With the total number of
measured locations in the sector being m, =3, m,,. We then applied
the same strategy described in the above paragraph to simulate the x
and y coordinates for each of the m,, locations within each annular
sector q.

In the symmetric pattern, we created different simulation settings
by varying the number of cells (n), expression level (m), the subcellular
expression patterns, and pattern strength (s). To do so, for each pat-
tern, we first create a baseline simulation setting where we set the
number of cells to be n =100, the expression level to be m=35, and, in
the case of alternative simulations, the pattern strength to be moder-
ate (s=0.6). We then varied the cell number (n=10, 20, 50, 100, 200,
300 or 500), expression level (m=1, 2, 10, 20, 50, 100), and pattern
strength (s ranges from 0.1 to 1.0 with increments of 0.1), one para-
meter at a time on top of the baseline settings for each of the 11 sym-
metric patterns to create 22 simulations settings. The detailed
parameters for each simulation setting are listed in Table S12. We
performed 10 simulation replicates in each setting. Additionally, we
created another 11 settings based on the 11 baseline symmetric pat-
terns but with over-dispersed single-cell total counts (c;). Specifically,
the single cell total counts of a gene (c;) were generated from an
NB[1,0.16] distribution, yielding mean counts per cell=5.25, var-
iance =32.81, and Fano Factor = 6.25. To evaluate the influence of cell
segmentation contamination, we created another 16 settings. We first
considered one gene in one cell, with an expression pattern enriched
close to the cell membrane—a scenario particularly sensitive to cell
segmentation accuracy, and an expression pattern enriched in the
nucleus—a scenario not as sensitive to cell segmentation accuracy. In
the first setting (ideal segmentation), we generated 50 transcript
counts with cellular membrane (or nucleus) enriched expression based
on the true cell segmentation. The second setting simulates under-
segmentation by shrinking the cell boundary to 90% of its radius
toward the nuclear center, while keeping the expression data identical
to the first setting. The third setting simulates over-segmentation by
expanding the cell boundary to 110% of its radius outward from the
nuclear center. The fourth setting introduces boundary noise, with
50% of the boundary being under-segmented and the other 50% over-
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segmented. We then considered cell segmentation contamination in
the analysis of multiple cells by creating eight similar simulation set-
tings involving 50 cells.

For the radial patterns, we first consider a radial-unif setting where
gene expression is enriched in one sector of the cell, with the
expression counts within the sector being randomly distributed. For
each cell and each gene in turn, we randomly selected a sector with a
central angle /2. We sampled the number of measuring locations in
the sector, m;, from a binomial distribution Bin(m,0.5). We also
sampled the number of measuring locations in the complementary
sector with a central angle of 3/2m, m,, to be m — m;. Afterwards, we
randomly sampled the x and y coordinates for each measurement
location in the same way as described in the null simulations. There-
fore, the gene expression is enriched in one sector of the cell with a
fold enrichment of 3.0. Next, we consider a radial-cyto setting where
the gene expression is not only enriched within the sector but is also
further enriched in the cytoplasm. To do so, on top of the radial-
uniform setting, we used the intensity function described in the sym-
metric pattern #7 to simulate the x and y coordinates for the mea-
surement locations in the selected circular sector that has a central
angle of /2. In addition, we randomly sampled the x and y coordinates
in the complementary circular sector with a central angle of 3/2m for
the measurement locations in the same way as described in the null
simulations. Therefore, the average gene expression inside the sector
is also 3.0 times higher than that in the remaining parts of the cell,
while the expression within the sector is enriched in the cytoplasmic
region due to symmetric pattern #7 with a fold enrichment of
approximately 5.1.

For the punctate pattern, we consider a punctate-cyto setting
where gene expression is enriched in a small subcellular disc in the
cytoplasm. To do so, we set the radius coordinate for the center of the
punctate disc to be 0.8 and randomly sampled the corresponding
angle coordinate 6 from a uniform distribution U(0,2m). We then
converted the radius and angle coordinates to the location coordi-
nates (x.,y.). Afterwards, we set the radius of the punctate disc to be 1/
10 of the average cell diameter, which consists of 30 pixels for seqFISH
+ cells. We sampled the number of measurement locations within the
punctate disc, m;, from a binomial distribution Bin(m, 0.2). We ran-
domly sampled the x and y coordinates for the m, locations inside the
punctate disc, as well as those for the remaining m — m; locations in
the entire cell, including the punctate disc, using the same strategy in
the null simulations. The expression in the punctate disc is, on average,
5.03 times higher than that in the remaining parts of the cell. For radial
and punctate patterns, we also performed 10 simulation replicates for
each of the three settings.

Analyzed datasets
We examined four public high-resolution spatial transcriptomics
datasets described below.

Seq-Scope mouse liver data. Seq-Scope is a spatial barcoding tech-
nology with a spatial resolution comparable to an optical microscope.
It is based on a solid-phase amplification of randomly barcoded single-
molecule oligonucleotides using an Illumina sequencing platform.
These RNA-capturing barcoded clusters represent the pixels of Seq-
Scope and are ~-0.5-0.8 pm apart from each other with an average
distance of 0.6 um, capturing 848 UMI on average per 10 pm
diameter bin.

We downloaded the mouse liver data from the Seq-Scope
resources website*. The data contains 5.88 +4.22 (mean +sd) num-
ber of genes per pixel, with a total of 32,976 genes measured across
~2x107 locations. The Seq-Scope mouse liver data contains 10 tiles
sequenced on one MiSeq flow cell, with each tile being a Imm-wide
circular imaging area. Among these 10 tiles, six of them are from a
normal mouse fragmented frozen liver section, and four of them are

from an early-onset liver failure mouse model section (TD*). The tiles
cover liver portal-central tissue zonation and contain two main cell
types: hepatocytes and non-parenchymal cells (NPC) such as macro-
phages, hepatic stellate cells, endothelial cells, and red blood cells. Our
analyses focus on the hepatocytes, which can be further divided into
periportal (PP) and pericentral (PC) cells. The two Seq-Scope tissue
sections (normal and TD) each come with multiple H&E staining ima-
ges, including high-resolution images (10x) covering a portion of the
normal and TD tile areas and low-resolution images (4x) covering
nearly all the normal and TD tile areas. We used the low-resolution (4x)
images to ensure high coverage of the tiles.

The Seq-Scope mouse liver data consists of two data modalities,
namely the spatial transcriptomics data and the accompanying H&E
staining images. For the spatial transcriptomics data, we obtained the
unspliced and spliced gene expression counts on each measured
location using STARsolo from the raw fastq files. For the H&E staining
images, we concatenated all the images from the normal tissue section
or the TD tissue section, segmented individual cells on the con-
catenated image using Cellpose (ref. 42; Figs. S27 and S28), and
obtained cells that overlapped with the tile areas. On each tile, we
plotted the unspliced expression reads to visualize the cell nucleus and
plotted the total UMI counts to visualize the tissue boundaries
(Figs. S29 and S31). This nucleus and tissue boundary information was
used to manually align each spatial transcriptomics tile to the con-
catenated normal or TD H&E images (Figs. S32 and S33). After modality
alignment, we assigned each spatial location to a cell based on the
aligned cell segmentation results (Figs. S34 and S35). For each cell in
turn, we used numpy.argmax function in Python to declare its nuclear
center, which is defined to be the location within 200 units (-2 pm)
from the cell boundary where the maximum of unspliced read counts
density is observed. In each tile, we filtered out cells with a low-quality
nuclear center where the unspliced read count density values at the
nuclear center are below the 95% quantile value across locations or
where the spliced read count density at the nuclear center is above the
95% quantile value across locations. In addition, we obtained cell type
marker genes for each of the three cell types (PP, PC, and NPC;
Table S13°) and obtained the total counts of cell type marker genes for
each cell. Note that the NPC cells, such as macrophages, hepatic stel-
late cells, endothelial cells, and red blood cells, are relatively rare
across the tiles and are hard to segment due to their small sizes on the
H&E-based images. Therefore, following the original Seq-Scope study,
we removed NPC cells that are characterized by NPC marker gene
counts above the 95% quantile across all cells. Afterwards, we nor-
malized the PP and PC marker gene counts for the remaining cells first
across genes to have zero mean and unit standard deviation, and then
across cells to have zero mean and unit standard deviation. We then
summed the normalized PP and PC marker genes separately in each
cell to obtaina PP score and a PC score per cell. We annotated acell asa
PP cell if its PP score is greater than the PC score, and annotated a cell
as a PC cell otherwise. Such annotations largely align with Seq-Scope’s
original cell type annotations (Fig. S37). We removed cells with
extreme sizes, including extremely large cells with x or y coordinate
range (max-min) exceeding the 95% quantile value across cells within
the cell type, or extremely small cells with x or y coordinate range
below the 5% quantile value. After quality control, we obtained 276
normal PP cells, 276 normal PC cells, 236 TD PP cells, and 82 TD PC
cells. Genes expressed in more than 50 cells and with more than 3
counts in at least 5 cells were retained, leading to 497 to 1349 genes per
cell type.

Stereo-seq mouse embryo data. Stereo-seq combined DNA nanoball
(DNB)-patterned arrays and in situ RNA capture to enhance the spatial
resolution of omics-sequencing. Standard DNB chips have spots with
approximately 0.22 pm diameter and a center-to-center distance of 0.5
or 0.715 pm, providing up to 400 spots per 100 pm? for tissue RNA
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capture. Stereo-seq captured UMI counts range on average from 69
per 2 um diameter bin (for bin3, 3 x 3 DNB) to 1450 per 10 pm diameter
bin (for bin 14, 14 x 14 DNB, equivalent to ~one medium-sized cell).

We downloaded the raw sequencing data in slice E1S3 on day 16.5
(E16.5) of the Stereo-seq mouse embryo data from CNGB Nucleotide
Sequence Archive®’. We downloaded the processed gene expression
(binl) data and the accompanying nucleic acid staining image from
MOSTA*, Slice E1S3 is a profiled sagittal frozen tissue section with
10 pm thickness from a C57BL/6 mouse embryo on day E16.5. It
covers all major tissues and organs, including Epidermis, Meninges,
Cartilage, Jaw and tooth, Choroid plexus, Kidney, GI tract, Spinal
cord, Muscle, Heart, Bone, Cartilage primordium, Brain, Adrenal
gland, Connective tissue, Thymus, Blood vessel, Liver, Olfactory
epithelium, Lung, Pancreas, and Mucosal epithelium. The nucleic
acid staining image of the slice was stained using BM purple and was
imaged using a Ti-7 Nikon Eclipse microscope. We considered 25 cell
types along with cell type marker genes from the Stereo-seq study
(Table S14). The 25 cell types include Cardiomyocyte, Chondrocyte,
Choroid plexus, Dorsal midbrain neuron, Ganglion, Endothelial cell,
Keratinocyte, Epithelial cell, Erythrocyte, Facial fibroblast, Fibroblast,
Forebrain neuron, Forebrain radial glia, Hepatocyte, Immune cell,
Limb fibroblast, Macrophage, Meninges cell, Mid-/hindbrain and
spinal cord neuron, Myoblast, Olfactory epithelial cell, Radial glia,
Smooth muscle cell, Spinal cord neuron, and Diencephalon neuron.
We processed the Stereo-seq data in the same way as we did for the
Seq-Scope data, except for the modality alignment step, which is
omitted here as the Stereo-seq slice was accompanied by nucleic acid
staining that had already been aligned with the slices (Fig. S40). The
processed data contains the cell label of each location, cell center,
cell boundary, cell type, and read depth of each cell (Fig. S41). We
annotated cell types based on 75 cell type marker genes provided by
the original study, resulting in an average of 3689 cells (median=
3968, min = 782, max = 5314) per cell type (Fig. S32). We focused on a
cardiothoracic region on slice E1S3 (Fig. 3a) and two major cell types:
precursor muscle cells, or myoblasts, and mature muscle cells, or
cardiomyocytes. Similar quality control steps were conducted as
described in the Seq-Scope data pre-processing. We retained genes
expressed in more than 30 cells.

SegFISH+ mouse fibroblast data. SeqFish+ performs super-
resolution imaging and multiplexing of 10,000 genes in a single cell
using sequential hybridizations and imaging with a standard confocal
microscope. We obtained the seqFISH+ NIH/3T3 fibroblast data pre-
processed by Bento from ref. 45. The raw seqFISH+ data consists of
two modalities: the spatial transcriptomics measurements and an
accompanying DAPI staining image. The spatial transcriptomics
modality of the data contains 3726 genes with at least 10 counts
expressed in at least one cell and 179 cells with nuclear segmentation
results, with a resolution of 103 nm. The downloaded seqFISH+ data
comes with cell segmentation boundaries and nuclear segmentation
boundaries, each represented by a set of points densely scattered
along the boundaries. With the nucleus segmentation information, we
computed the nuclear center of each cell as the k-means center of all
nucleus boundary points. We computed the average nuclear radius of
each cell by averaging the distance of all nuclear boundary points to
the nuclear center. We computed the average cell radius of each cell by
averaging the distances of all cell boundary points to the nuclear
center. Afterwards, we computed the nucleus-cell ratio of each cell by
dividing the average nuclear radius by the average cell radius. We
excluded eight cells that had a nuclear-cell ratio beyond two standard
deviations from the mean (Fig. S54a). We focused on the remaining
171 cells for analysis. These cells have an average nuclear-cell ratio of
0.46 (Fig. S54b). We retained genes expressed in more than 50 cells
and with more than 3 counts in at least 5 cells, resulting in 2747 genes
for analysis.

MERFISH adult mouse brain data. The mouse brain MERFISH dataset
contains over 200 adult mouse brain slices from 4 mice and covers a
panel of 1100 selected genes with around 8 million cells. The dataset
consists of two data modalities, namely the spatial transcriptomics
data and the accompanying DAPI and polyA staining images. We
focused on one coronal slice of mouse 2 from the
220501 wb3_co02_15 5z18R _merfish5 experiment and obtained the
preprocessed data from ref. 46. The obtained data were measured on a
coronal tissue slice with 10 pm thickness and contains five 1.5-um-thick
optical z-stacks, with 1147 genes measured on ~100,000 cells. The data
also include cell segmentation information in the form of sets of points
densely scattered along the boundaries for each z-stack(0-4), along
with cell centroid information shared across z-stacks (Fig. S60). For
each measured transcript, we calculated its relative position to the
nuclear center based on the cell segmentation on the z-stack that it
belongs to, as well as the shared cell centroid. We exclude cells whose
centroid is outside or too close to (<0.5pm) its segmentation
boundaries on the baseline stack (z=0). In addition, we measured the
variability of cell segmentation boundaries on each non-baseline stack
(z>0) versus that on the baseline stack (z=0) by KL divergence. We
excluded cells whose cell segmentation boundaries are highly variable
across z-stacks based on a KL divergence threshold of 0.5. We obtained
cell type marker genes (Table S15) from the Stereo-seq study for four
cell types that include excitatory neurons (EX), inhibitory neurons (IN),
astrocytes (Astr), and oligodendrites (Olig). We then carried out the
same cell typing procedure as described in the Seq-Scope and Stereo-
seq datasets above. We focused on four major cell types residing in the
midbrain: excitatory neurons (EX, n=577), inhibitory neurons (IN,
n=>525), astrocytes (Astr, n=480), and oligodendrocytes (Olig,
n=948), with 557-878 genes per cell type. Similar quality control steps
were conducted as described in the Seq-Scope data pre-processing.
After quality control, we retained 480-948 cells per cell type. We
retained genes expressed in more than 50 cells, resulting in 557-878
genes per cell type for analysis.

Xenium mouse brain data. 10x Genomics obtained tissue from a
C57BL/6 mouse from Charles River Laboratories. Three adjacent 10 pm
sections were placed on the same slide. Tissues were prepared fol-
lowing the demonstrated protocols Xenium in Situ for Fresh Frozen
Tissues—Tissue Preparation Guide (CG0O00579) and Xenium in Situ for
Fresh Frozen Tissues—Fixation & Permeabilization (CGO00581). For
each section/replicate, we extracted transcript information and cell
and nucleus segmentation information for the first 500 cells from the
10x website. We computed the total transcript counts of all neuron cell
marker genes and selected 200 cells with the largest counts. For each
cell, its nuclear center was computed as the geometric center of the
nucleus segmentation. 246, 247, and 244 genes were available for
analysis in each replicate, respectively.

Real data analysis details
Subcellular expression pattern score. After obtaining the estimated

subcellular expression intensity function A(r), we computed a sub-
cellular expression pattern score r’, defined as the relative position
corresponding to the mode/peak of the estimated expression intensity

function: " = argmax A(r). Therefore, r* ranges from zero to one, with a
ref0,1]

value close to zero indicating expression enrichment in the center of
the cell nucleus and a value close to one indicating expression
enrichment on the cell boundary.

Gene clustering based on the estimated expression pattern. We
clustered genes into different spatial pattern clusters based on their
estimated intensity functions. To do so, for each detected gene, we
evaluated its estimated intensity function A(r) at 21 equidistant points,
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ranging from r=0 to r=1 with increments of 0.05. Additionally, we
calculated the difference between consecutive functional values to
obtain 20 differences. We then pooled the 21 functional values and 20
differences for each gene and used them as input for k-means clus-
tering. We determined the optimal number of gene clusters using the
Elbow method*. We also provide the option of using a soft clustering
method based on Gaussian Mixture Models (GMMs), which assign
probabilistic memberships and can be better suited for genes with
ambiguous patterns. Both k-means and GMM yielded similar clustering
results in our real data analyses (Fig. S79). To address the modality of
gene expression patterns, we also enable a mode detection step using
peak detection via “find_peaks,” enabling the classification of genes as
unimodal or multimodal based on the number of detected modes.

Transcription factor analysis. To examine the subcellular localization
of transcription factors, we obtained a list of 1358 mouse transcription
factors from FANTOMS SSTAR®. For all datasets, we examined the
proportions of transcription factors that are measured in the datasets
between pairs of gene clusters with Fisher’s exact tests.

Computing the unspliced-spliced ratio. In the sequencing-based
datasets (Seq-Scope and Stereo-seq), for each gene in turn, we calcu-
lated the unspliced-spliced ratio for each cell by dividing the total
unspliced counts (plus a pseudo count of one) by the total spliced
counts (plus a pseudo count of one). We then computed the average
value of this ratio across cells. We applied Mann-Whitney U tests to
test the unspliced-spliced ratios between pairs of gene clusters across
cell types.

snRNA-seq analysis. We examined the genes detected in the Seq-
Scope dataset using a matched single-nucleus RNA-sequencing
(snRNA-seq) dataset. The snRNA-seq data were collected on mouse
hepatocytes and were downloaded from the BRAIN Initiative Cell
Census Network consortium 2021%*. For each gene in turn, we defined
its sn-sc ratio as the average gene counts per nucleus in the snRNA-seq
data divided by the average gene counts per cell in the Seq-Scope data.
We applied Mann-Whitney U tests to test the sn-sc ratios between
pairs of clusters across cell types. We also examined the genes detec-
ted in the MERFISH adult mouse brain dataset using a matched snRNA-
seq dataset® that was collected on adult brain sections and calculated
sn-sc ratios for the corresponding four cell types (EX, IN, Astr, and Olig)
in the same way. We filtered out lowly expressed nonsignificant genes
(average sc counts <1.5) due to the sparsity of the data.

Gene length analysis. We performed gene length analysis in the four
datasets. To do so, we excluded mitochondrial genes and genes that
have not been mapped to a chromosome, as their gene length infor-
mation is unavailable. We extracted four types of gene length mea-
surements using GTF tools*® from the same reference genome
(mm10.gtf) that was used for alignment. The four measurements
include (i) mean, (ii) median, (iii) longest single isoform, and (iv) total
length across exons, all in units of base pairs. We then applied
Mann-Whitney U tests to test the difference between pairs of gene
clusters for each measurement.

SRP and RP analysis. In the Seq-Scope data, for each gene in turn, we
used DeepSig*’ with Gencode to predict whether the corresponding
protein contains SRP. To do so, we downloaded protein sequences in
the form of protein-coding transcripts fasta files from Gencode release
M28, used DeepSig to analyze the protein sequence, and referred to
the genes corresponding to proteins with SRPs as SRP-coded genes.
For genes with multiple protein isoforms, we used the longest isoform
for SRP prediction. We examined the proportions of SRP-coded genes
between pairs of gene clusters with Fisher’s exact tests. In the Stereo-
seq data, we identified a list of RP genes whose gene ID starts with RPS

or RPL. These are genes of the nuclear genome that encode the protein
subunits of the ribosome. These genes are expected to be enriched in
the cytoplasm as ribosomal subunits are exported from the nucleus to
the cytoplasm after their assembly in the nucleolus. We examined the
proportions of RP genes between pairs of gene clusters with Fisher’s
exact tests.

Cell-by-cell analysis in the seqFISH+ data. We randomly picked 20
cells from the seqFISH+ data. For each cell in turn, we kept genes with
more than 10 counts in this analysis. We applied Bento following its
instructions to classify each gene in each cell into five binary labels,
corresponding to “nuclear,” “nuclear edge,” “cytoplasmic,” “cell edge,”
and “none” patterns. We also applied ELLA to analyze each cell sepa-
rately. We collected the estimated expression intensities A(r) of all
genes and carried out k-means clustering (Methods) to obtain their
pattern cluster labels.

»au

Cell cycle-based analysis in the seqFISH+ data. In the seqFISH+
data, we computed the single-cell gene counts and used Seurat to
classify the fibroblasts into three cell subclusters corresponding to
Gl (n=36, 21%), S (n=83, 49%), and G2M (n=52, 30%) cell cycle
phases. We kept genes that are expressed in at least 30 cells and that
have more than 3 counts in at least 5 cells, resulting in 756, 2475, and
1776 genes for Gl1, S, and G2M cells, respectively. We then applied
ELLA to analyze one gene at a time for each cell cycle subcluster.
Afterwards, we retrieved ELLA gene pattern cluster labels (1-5)
obtained using all fibroblasts, calculated pattern scores for genes
obtained in the cell cycle-specific ELLA analysis, examined these
pattern cores across gene clusters, and carried out a one-sided
Mann-Whitney U test to compare the pattern scores between G1 and
S/G2M subclusters (Fig. 4g, upper panel). We also focused on 723
genes commonly detected across the three cell-cycle subclusters and
identified a set of genes in each gene pattern cluster with decreasing
pattern scores from G1 to S and from S to G2M. Specifically, in each
pattern cluster, we computed the increase in pattern scores for each
gene from G1 to S (denoted as s1) and another increase in pattern
score from S to G2M (denoted as s2). We identified a set of genes with
increasing pattern scores from G1 to S to G2M, characterized by
s1<0, s2<0, and s1+s2<0. We applied Mann-Whitney U tests to
compare the pattern scores between the identified genes and the
remaining genes at G1, S, and G2M phases across gene pattern clus-
ters (Fig. 4g, lower panel).

SLAM-seq data analysis. We reviewed the literature and identified
several publicly available SLAM-seq datasets, including those from
mouse embryonic stem cells**', human K562 leukemia cells®, and
Hela-S3 cells*. However, we did not find datasets that are directly
paired with spatial transcriptomics data or that match the specific
cell types used in our real data analysis. The closest match is the
mouse embryonic stem cells data in ref. 31, which we obtained to
partially validate our findings from the Stereo-seq mouse embryo-
nic myoblast data. Specifically, for each gene, we computed the
ratio of tcReadCount/readCount in the SLAM-seq data, which
reflects the proportion of newly synthesized RNA. We applied
Mann-Whitney U tests to test the tcReadCount/readCount ratios
between pairs of gene clusters in the mouse embryonic myoblast
cell type.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study made use of publicly available datasets. The Seq-Scope
mouse liver data are available at https://www.ncbi.nlm.nih.gov/geo/
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query/acc.cgi?acc=GSE169706 (raw sequencing data) and https://
deepblue.lib.umich.edu/data/concern/data_sets/9c67wn05f (H&E
images). Stereo-seq data are available at https://db.cngb.org/search/
project/CNP0001543/ (raw sequencing data) and https://db.cngb.org/
stomics/mosta/ (processed binl gene expression data and nucleic acid
staining images). The seqFISH+ mouse fibroblast processed data are
available  at  https://figshare.com/articles/dataset/Bento_spatial_
AnnData_formatted_datasets/15109236/2. The MERFISH adult mouse
brain data are available at https://download.brainimagelibrary.org/29/
3¢/293cc39ceea87f6d/. The Xenium mouse brain data are available at
https://www.10xgenomics.com/datasets/fresh-frozen-mouse-brain-
replicates-1-standard. Source data are provided with this paper.

Code availability

The ELLA software code is publicly available at https://xiangzhou.
github.io/software/ and https://github.com/jadexq/ELLA®. The source
code is released under the MIT license. Example codes for using ELLA,
as well as codes for reproducing the results of the present study, are
publicly available at https://jadexq.github.io/ELLA/ and have been
archived at Zenodo under https://doi.org/10.5281/zenodo.17065820.
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