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Augmenting microbial phylogenomic signal
with tailored marker gene sets

Henry Secaira-Morocho 1,2, Xiaofang Jiang 2 & Qiyun Zhu 1

Phylogenetic marker genes are traditionally selected from a fixed collection
of whole genomes representing major microbial phyla, covering only a
small fraction of gene families. However, most microbial diversity resides in
metagenome-assembled genomes, which exhibit taxonomic imbalance and
harbor gene families that do not fit the criteria for universal orthologs. To
address these limitations, we introduce TMarSel, a software tool for auto-
mated, free-from-expert opinion, and tailored marker selection for deep
microbial phylogenomics. TMarSel allows users to select a variable number of
markers and copies based on KEGG and EggNOG gene family annotations,
enabling a systematic evaluation of the phylogenetic signal from the entire
gene family pool. We show that an expanded marker selection tailored to the
input genomes improves the accuracy of phylogenetic trees across simulated
and real-world datasets of whole genomes and metagenome-assembled gen-
omes compared to previous markers, even when metagenome-assembled
genomes lack a fraction of open reading frames. The selected markers have
functional annotations related to metabolism, cellular processes, and envir-
onmental information processing, in addition to replication, translation, and
transcription. TMarSel provides flexibility in the number of markers, copies,
and annotation databases while remaining robust against taxonomic imbal-
ance and incomplete genomic data.

Phylogenetic trees serve as the cornerstone for studies ranging from
estimating the age of lineages1,2 to comparative genomics3 and
microbial community ecology4,5, as they recapitulate the evolutionary
history of species6,7. Inference of phylogenetic trees relies on identi-
fying phylogeneticmarkers fromhomologous sequences that descend
vertically from a common ancestor (orthologs)8–10. In addition to
orthologs, microbes harbor homologous genes that have been
exchanged through horizontal gene transfer (HGT)11,12. The deep
divergence times of microbes, estimated at around 4 billion years1,
have entangled homologs into complex relationships that obscure the
precise identification of orthologs8,10. Nonetheless, new tree inference
methods have been developed to bypass the identification of ortho-
logs, thereby enabling the usage of all homologous sequences of a
gene family as potential markers13,14. Because the downstream

applications of phylogeny heavily depend on the tree quality, it is
critical to select a combination of markers that yields the most accu-
rate tree.

Metagenome-assembled genomes (MAGs) comprise the major
genomic source ofmicrobial diversity15. And yet, the gold standard 16S
rRNA marker used for phylogenetic surveys of microbial diversity16 is
rarely recovered from shotgunmetagenomic sequences17,18. Moreover,
16S rRNA-based trees reflect only the evolution of the gene rather than
the set of species19. To improve the tree accuracy, modern phyloge-
netic surveys have adopted a larger number of markers involved in
housekeeping functions, such as ribosomal proteins or aminoacyl-
tRNA synthetases20–24. These markers have been selected from a
fixed collection of whole genomes spanning the major microbial
phyla, thereby biasing the representation of markers toward

Received: 17 March 2025

Accepted: 25 September 2025

Check for updates

1Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ, USA. 2National Library of Medicine,
National Institutes of Health, Bethesda, MD, USA. e-mail: qiyun.zhu@asu.edu

Nature Communications |         (2025) 16:9943 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3409-1284
http://orcid.org/0000-0002-3409-1284
http://orcid.org/0000-0002-3409-1284
http://orcid.org/0000-0002-3409-1284
http://orcid.org/0000-0002-3409-1284
http://orcid.org/0000-0002-0955-8284
http://orcid.org/0000-0002-0955-8284
http://orcid.org/0000-0002-0955-8284
http://orcid.org/0000-0002-0955-8284
http://orcid.org/0000-0002-0955-8284
http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0002-3568-6271
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64881-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64881-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64881-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64881-2&domain=pdf
mailto:qiyun.zhu@asu.edu
www.nature.com/naturecommunications


well-characterized taxa. In contrast, MAGs seldom contain the entire
genomic repertoire of a population25,26, and some even lack ribosomal
proteins due to assembly errors27, reducing the number of markers
available for tree inference. Therefore, no one-size-fits-all set of mar-
kers exists. To account for the novel diversity and heterogeneous
quality of MAGs, marker selection needs to be flexible and tailored to
the input genome collection.

Although the inference ofmicrobial trees has shifted from using a
singlemarker28,29 tomultiplemarkers20–24,30, their selection is restricted
to universal orthologous genes, which are commonly defined as being
present in 90% of genomes and existing as a single copy in at least 95%
of them31–33, severely limiting the number of markers considered.
However, recent studies have shown that including gene families
beyond standard universal orthologous genes leads to improvements
in the accuracyof inferred trees13,14.While these studies highlighted the
necessity for a comprehensive assessment of the phylogenetic signal
from a broader set of genes, they did not attempt to select new mar-
kers. Here, we systematically select gene families to serve as markers
for deep microbial phylogenomics tailored to the input genome col-
lection. Leveraging recent advances in tree inference methods and
genome annotation databases, we show that an expanded selection of
markers yields species trees with higher accuracy than previous sets of
markers in real-world datasets of whole genomes and MAGs derived
from a wide range of environments. In addition to genes involved in
replication, translation, and transcription, we found thatmarkers have
functional annotations related to metabolism, cellular processes, and
environmental information processing, and all of them provide phy-
logenetic signals for tree inference. We also show that our automated,
systematic, free-of-domain expertise, and tailored marker selection is
robust against uneven taxon sampling and incomplete MAGs while
remaining flexible in the number ofmarkers to select and the choice of
annotation database. Overall, we present a new method for Tailored
Marker Selection (TMarSel), available as a software tool, that can be
applied tomodern genomic datasets, providing a foundation formore
robust and accurate phylogenomic reconstruction.

Results
A vast yet unexplored gene family space for microbial
phylogenomics
We surveyed a collection of 1510 whole reference genomes sampled
across the microbial tree of life from the Web of Life 2 (WoL2) dataset
to obtain an accurate representation of the gene family distribution in
microbes. Specifically, we selected complete bacterial and archaeal
genomes, ensuring that each taxonomicgroup, fromphylum to family,
had at least 10 taxa (Supplementary Fig. 1). We then annotated open
reading frames (ORFs) of genomes into gene families using the KEGG
and EggNOG databases, which resulted in 54% and 94% of ORFs
annotated, respectively. KEGG gene families are scattered throughout
genomes (Fig. 1a), ranging from universal to lineage-specific and from
single-copy to multi-copy. The traditional criteria for marker selection
are restricted to genes present in at least 90% of genomes and con-
taining one copy in at least 95%of them31–33. We observe that only 1% of
gene families annotated from theWoL2 genomes fall within the region
defined by traditional criteria. This pattern highlights the limited
number of gene families used for microbial phylogenomics. The lim-
itation is further exacerbated in gene families annotated from 793
MAGs of the Earth Microbiome Project (EMP), despite a lower anno-
tation rate, as only 47% and 87% of ORFs could be assigned to gene
families with KEGG and EggNOG databases, respectively. This lower
rate is mainly due to MAGs containing a large fraction of ORFs that
cannot be assigned to gene families34. We observe that MAGs do not
have gene families that conform to the traditional criteria. And yet,
genomes and MAGs harbor, on average, 1289 and 846 gene families,
respectively, that might add new phylogenetic signals to the tree
inference process. EggNOG gene families share the same

characteristics (Supplementary Fig. 2), suggesting that these trends are
independent of the annotation database.

To assess whether these overlooked gene families can contribute
phylogenetic signals to the inference process, we developed a robust
yet flexible method, TMarSel, to select gene families annotated with
the KEGG and EggNOG databases as markers for deep microbial phy-
logenomics. TMarSel takes as input a file mapping ORFs to gene
families. The user can then control the copy number per genome and
gene family using a threshold ranging from 0 to 1, where 0 includes all
ORFs and 1 includes only the ORFs with the highest bit scores obtained
during genome annotation. Next, TMarSel builds a matrix containing
the copy number of gene families across genomes upon which it
employs an algorithm to iteratively select k markers such that the
generalized mean number of markers per genome is maximized (see
Methods for details; Fig. 1b and 1c). TMarSel uses a single core and its
runtime scales sublinearly with the number of markers, while the
memory footprint remains constant (Supplementary Fig. 3). As a
reference, selecting 1000 markers fromWoL2 and EMP datasets takes
10min and requires 10GB of memory. The selected markers are fed
into a standard pipeline to infer species trees (Fig. 1b). Briefly, for each
marker, we generate a multiple sequence alignment, which is used to
infer a gene tree. Because gene trees can include all the homologs of a
gene family, we used the summary method ASTRAL-Pro235,36, which
takes as input a set of gene trees and all their homologs, to infer a
species tree. We then evaluate the quality of the inferred species trees
as a direct measure of the goodness of the selected marker sets.

A well-balanced marker selection produces highly accurate
trees in simulated data
TMarSel performs an iterative selection of markers tailored to the
input genome collection. Its behavior can be customized with two
parameters: the total number (k) ofmarkers to select and the exponent
pof the generalizedmean. Practically,pbiases the selection ofmarkers
toward families present in genomes with fewer gene families (if p <0)
or toward families present in genomes with more gene families (if
p >0; see Methods). To assess the impact these parameters have on
the inferred trees, we first simulated a toy dataset of 50 gene families
from 10 genomes across 25 replicates. In each replicate, we built a
matrix containing the copy number of gene families across genomes
(Supplementary Fig. 4a). We derived a species tree from the matrix
using neighbor-joining over the Jaccard distances between genomes,
upon which gene trees were also derived (see Methods). We then
performed a parameter sweep for k and p and varied the maximum
number of copies for each gene family and the noise present in gene
trees. Noise refers to the proportion of leaves that have been randomly
shuffled. We gauged the error in inferred trees as the normalized
Robinson-Foulds (nRF) distance37 between inferred and real trees,
where smaller distances indicate fewer errors and vice versa. Our
simulations show that selecting a large number ofmarkers reduces the
error in the species trees, primarily when noisy gene trees are used for
inference (Fig. 2a and standard deviations in Supplementary Fig. 5a).
The parameter sweep shows that p ≤0 yields the species trees with
fewer errors, with p = 0 as an inflection point. Moreover, we observe
that having multiple copies of the same marker does not improve the
inference process. Instead, they negatively impact quality, as errors
increase with the number of copies.

We further assessed the impact of parameters on tree quality
using a gene family space that resembles real datasets (Supplementary
Fig. 4b). We simulated prokaryotic gene families using realistic dupli-
cation, transfer, and loss values38 across 25 replicates using the phy-
logenetic simulator Zombi39. Each replicate yielded a species tree,
genomes for each taxon, and gene trees for each gene family. We then
built amatrix containing the copy number of gene families across taxa,
introduced noise to the gene trees, and performed a parameter sweep
for k and p (see Methods). In addition to the nRF, we gauged the
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proportion of confident branches in the inferred trees as the number
of branches with a Local Posterior Probability (LPP) score higher than
0.95 out of the total number of branches, as suggested in ref. 40. A
higher proportion is an indicator of a more accurate tree topology. As
in the previous simulations, our results indicate that a large number of
markers reduces the error and reinforces p = 0 as an inflection point
that achieves the lowest error in the inferred trees (Fig. 2b; standard
deviations are provided in Supplementary Fig. 5b). The proportion of
confident branches shows a similar pattern for k and p and is corre-
lated with the error in the inferred trees. This indicates that trees with
fewer errors have a higher proportion of confident branches and vice
versa. The simulations also show that a saturation value occurs for k, at
which the accuracy of inferred trees does not improve. In light of these
results, we choose p =0, which refers to maximizing the geometric
mean number of markers per genome, for all subsequent analyses
while varying k until reaching a plateau in quality.

Expanded marker selection improves the accuracy of the
microbial tree of life
Wenext evaluatedwhether gene families annotated from the genomes
of the WoL2 can serve as the foundational genetic elements for an
accurate microbial tree of life. Because the simulation results

suggested that multiple copies of the same gene family negatively
impact the tree inference process (Fig. 2a), we first evaluated how
many copies of each gene family should be included in the analyses.
Using the bit score threshold assigned during genome annotationwith
KEGG and EggNOG databases, we controlled the number of copies of
gene families (see Methods). Our results indicate that using a low
number of copies yields the tree with the highest quality as measured
by the proportion of confident branches (i.e., accuracy in topology)
and nRF distance to the reference phylogeny (Supplementary Fig. 6).
Consequently, we included only the ORFs with the highest bit score
assigned to each gene family during genome annotation for marker
selection.

We then benchmarked the performance of an expanded selection
of markers for inferring the microbial tree of life. Fig. 3a, b show the
quality of trees inferred using an increasing number of markers, ran-
ging from k = 10 to 1000. For comparison, we also included four sets of
previously proposed universal markers widely adopted for deep
microbial phylogenomics1,23,30,41. Trees inferred with our markers
exhibit the highest accuracy in topology and lower error to the WoL2
reference phylogeny compared to previous markers. However, the
400 universal markers from PhyloPhlAn3 achieve the lowest error,
which is expected because the WoL2 phylogeny was reconstructed
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Fig. 1 | Expanding the set of phylogenetic markers with TMarSel. a Summary
statistics of KEGG gene families annotated from 1510WoL2 genomes (top) and 793
EMP MAGs (bottom). The left panels show the gene family space defined by the
proportion of genomes in which each gene family is present and the proportion of
genomes in which the gene family exists as a single copy. Dashed orange lines
represent traditional marker selection criteria (i.e., present in 90% of genomes and
containing a single copy in at least 95% of them), and the orange region highlights
the area defined by these criteria. Each dot corresponds to a gene family. The
middle panels show the number of gene families outside and within the region

defined by traditional criteria. The left panels show thedistributionof gene families
across genomes and MAGs, with dashed vertical lines indicating the arithmetic
mean. b Illustration of the pipeline used for species tree inference (top) and
detailed overview of TMarSel’s steps for marker selection (bottom). c A simple toy
case with 5 genomes and all 32 combinations of gene presence (black squares) or
absence (white squares). TMarSel iteratively selects k = 10markers (crimson shade)
that maximize the generalized mean of the number of selected genes per species,
as denoted on top. Source data are provided as a Source Data file.
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using the PhyloplhAn3 markers. And yet, the high quality of trees
inferred from either KEGG or EggNOG gene families speaks for the
robustness of TMarSel for selecting markers. Moreover, the smooth
saturation curve in tree quality suggests that for any given k, our
method can select the best set of gene families for tree inference.
Filtering genomes with less than 25% of markers leads to trees with
slightly lower quality across marker sets. Nonetheless, more markers
per genome result in better species placement within the tree (Sup-
plementary Fig. 7). Additionally, trees inferred from all marker sets
exhibit clades consistent with the GTDB taxonomy (Supplementary
Fig. 8), according to taxonomic accuracy metrics that measure the
consistency between taxonomy and phylogeny (see Methods). Alto-
gether, these results suggest that all marker sets recover known rela-
tionships among clades, while markers derived from KEGG and
EggNOG gene families yield more accurate trees compared to pre-
vious sets.

Because TMarSel iteratively selects more than twice the markers
compared to the largest set available (i.e., 400 markers from Phy-
loPhlAn3), we investigated the functional classification of these new
markers. Fig. 3b shows the abundance of higher functional categories
of markers selected from KEGG gene families. 60%, 66%, and 53% of
markers have functions related to genetic information processing
when 10, 50, and 100 markers are selected, suggesting that genes
involved in replication, transcription, and translation are preferred.
Yet, as more markers are added, the selection shifts toward gene

families annotated as carrier proteins, shape-determining proteins,
and others that are not assigned to higher functional categories (see
Supplementary Data 1 for a complete description). 38% of gene
families are involved in metabolic functions, while 4% and 5% are
involved in cellular processes and environmental information pro-
cessing, respectively, when more than 600 markers are selected. We
also observe an overlap in the functional descriptions of KEGG and
EggNOG gene families (Supplementary Data 1), which speaks to the
robustness of selection. These results highlight the diverse functional
roles of these new markers that contribute to the phylogenetic signal.

The prevalence of mobile genetic elements (MGEs) in genomes
from major microbial phyla42, suggests that genome annotations are
likely to yield multiple MGE gene families. Therefore, we assessed
whether gene families annotated asMGEs were selected as markers by
surveying their functional description terms (see Methods). We found
that putative transposases, integrases, and competence proteins were
selected. Nonetheless, they account for less than 2% of markers and
represent less than 13% and 6% of the total number of gene families
annotated withMGE descriptions in the KEGG and EggNOG databases,
respectively (Supplementary Fig. 9). This showcases the robustness of
TMarSel against the over-selection of MGEs.

We also assessed the impact of imbalanced taxonomic distribu-
tions on the tree topology. To achieve this, we generated skewed
datasets with many poorly represented taxa and a few over-
represented taxa at the phylum level, based on the WoL2 genomes,
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across 10 replicates (see Methods). We gauged the taxonomic imbal-
ance of a dataset using the Gini index, as suggested in ref. 23. Index
values range from0 to 1, where 1 indicates a highly imbalanced dataset
and vice versa. The WoL2 dataset has a Gini index of 0.59, while the
generated datasets show an average Gini index of 0.66 ±0.04, indi-
cating a greater imbalance. For each dataset, we then selected an
increasing number of markers from KEGG and EggNOG gene families
and inferred trees from genomes containing at least one marker. We
also included universal marker sets for comparison. As previously
suggested, taxonomic imbalance decreases the quality of tree
topology43. However, trees inferred from markers selected with our
method show a higher quality than trees from previous sets. Specifi-
cally, as the number of KEGG markers increases, the average propor-
tion of confident branches increases from 0.60 ±0.05 to 0.78 ±0.05
compared to 0.71 ± 0.08 from the best-performing marker set (two-
sided two-sample Mann–Whitney U test, p =0.121; Fig. 3d). The error
relative to the WoL2 reference phylogeny decreases from 0.22 ± 0.02
to 0.18 ± 0.02, matching the error of PhyloPhlAn3 markers at
0.18 ± 0.02 (two-sided two-sample Mann–Whitney U test, p =0.650;

Fig. 3e), from which the WoL2 phylogeny was reconstructed. Trees
inferred from EggNOG markers show the same trends. Overall, these
results suggest thatTMarSelmarkersmitigate the impact of taxonomic
imbalance on tree quality, making it particularly suitable for metage-
nomic datasets where taxonomic imbalance is prevalent. For instance,
the EMP dataset has a Gini index of 0.73, indicating a greater taxo-
nomic imbalance than the WoL2 dataset.

Robust marker selection yields accurate trees for MAGs despite
incomplete genomic data
Most of the microbial diversity comes from MAGs derived from
environmental samples15. Microbial communities from environments
as diverse as seawater, soil, sediment, or animal gut sequenced in the
EMP dataset have contributed to the genomic corpus of microbial
diversity44. To test whether marker selection with TMarSel yields
accurate phylogenies for MAGs, we used 793 high-quality MAGs from
the EMP dataset annotated with KEGG and EggNOG databases.
Because no reference phylogeny exists for the EMP dataset, we eval-
uated the quality of the inferred trees using only the proportion of
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corresponds to a tree inferred from different sets of markers (color-coded). Solid
lines and filled symbols indicate trees derived from genomes containing at least
25% of markers, while dashed lines and unfilled symbols indicate trees from gen-
omes with at least one marker. c Relative abundance of KEGG higher functional
categories (color-coded) across markers selected from KEGG gene families.

d Topological accuracy of trees inferred from taxonomically imbalanced datasets
generated from the WoL2 genomes across n = 10 replicates and e nRF distance
between inferred trees and the WoL2 reference phylogeny. Unfilled bars indicate
that trees were inferred from genomes with at least one marker, and their color
displays the marker set (color-coded). Data are presented as the mean ± standard
deviations. Asterisks show the significance level of two-sided two-sample Mann-
Whitney U tests after Benjamini–Hochberg correction between trees inferred from
KEGG (left) and EggNOG (right) markers versus previous markers. Significance
levels: n. s.: p >0.05; *: p ≤0.05; **: p ≤0.01; ***: p ≤0.001. Source data and test
statistics are provided as a Source Data file.
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confident branches, whichmeasures the accuracy of topology. Similar
to the WoL2 results, we found that using the ORFs with the highest
bit score for each marker results in more accurate topologies (Sup-
plementary Fig. 10). Despite the overall quality of trees being lower
than those from the WoL dataset, the TMarSel markers selected from
KEGG and EggNOG gene families produce trees with the highest
accuracy compared to previous sets of universal genes (Fig. 4a). The
increase in accuracy ismore pronouncedwhenmoremarkers are used
in the inference process (k ≥ 400), though a plateau is reached at
k = 800. Moreover, filtering MAGs with less than 25% of marker yields
trees with ~5% more confident branches. Although the filtering step
decreases the number of MAGs across all marker sets, trees inferred
with TMarSel retain more MAGs than the next-best set of universal
genes from PhyloPhlAn3 (Supplementary Fig. 11). The functional
annotation and proportion ofMGEs in TMarSelmarkers are congruent
with those selected from theWoL2dataset (Supplementary Fig. 12a, b).

MAGs represent draft microbial genomes, but most MAGs do not
capture all the genomic content of a microbe25. To assess whether
accurate trees can still be inferred, we simulated increasingly incom-
plete MAGs across 10 replicates. The incompleteness threshold is
defined as the proportion of ORFs removed from a MAG (see Meth-
ods). We then selected markers (k = 400) from KEGG-derived gene
families, as they produced the most accurate trees. To obtain a com-
prehensivepictureof the impactof incompleteness,MAGswith at least
one marker were included. We then measured the accuracy in the
topology of trees inferred from incomplete MAGs and the mean nRF
distance (error) between trees inferred from complete MAGs and
incomplete MAGs. We also included trees inferred with the 400 uni-
versal genes from PhyloPhlAn3 for comparison and performed Mann-

Whitney U tests with multiple testing corrections to assess whether
differences in tree quality were significant. As expected, the accuracy
of the trees decreases with the incompleteness threshold because
fewer gene families are available for selection. Nonetheless, on aver-
age, trees inferred from TMarSel markers have 8% more confident
branches than trees inferred from PhyloPhlAn3 universal genes across
incompleteness thresholds (Fig. 4b). In addition, the robustness of
our markers is evident in the low errors of inferred trees, which
increase slower at higher thresholds compared to the trees inferred
from PhyloPhlAn3markers (Fig. 4c). Overall, these results suggest that
a tailored marker selection from MAGs yields more accurate trees
compared to previous sets ofmarkers, evenwhenMAGs lack a fraction
of ORFs.

Discussion
In this study, we assessed the phylogenetic signal of gene families for
microbial phylogenomics using TMarSel, a robust yet flexible method
formarker selection.We show that an expanded and tailored selection
of markers can improve the accuracy of phylogenetic trees across
simulated and real-world datasets of whole genomes as well as
incomplete MAGs.

TMarSel provides a systematic exploration of the gene family
space because it expands the source of markers to gene families
instead of only orthologs. Among the currently available methods that
model the evolutionary histories of gene families for tree inference,
only ASTRAL-pro2 scales efficiently with a large number of genomes
and genes14, allowing us to assess the impact of different parameter
combinations on the quality of the species trees. Although ASTRAL-
pro2 only accounts for gene duplication and loss, its quartet-based
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Fig. 4 | Performance of TMarSel-selected markers on MAGs from the EMP
dataset. a Topological accuracy, measured as the proportion of confident bran-
ches, of trees inferred from 793 complete MAGs from the EMP dataset. Left panels
indicate the tree quality of previous marker sets, whereas middle and right panels
show the tree quality of KEGG and EggNOGmarkers, respectively. Symbols indicate
trees inferred fromdifferentmarker sets (color-coded), while line style and filled or
unfilled symbols distinguish trees inferred from MAGs containing at least 25% of
markers versus those containing only one marker. bMean topological accuracy of
trees inferred from simulations of increasingly 793 incomplete MAGs across n = 10

replicates. c nRF distance between trees inferred from incomplete MAGs to com-
plete MAGs. The incompleteness threshold refers to the proportion of ORFs
removed from each MAG. Unfilled bars indicate that MAGs contained at least one
marker. Data are presented as the mean ± standard deviations. Asterisks show the
significance level of two-sided two-sample Mann-Whitney U tests after
Benjamini–Hochberg correction between the quality of trees inferred from KEGG
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p ≤0.01; ***: p ≤0.001. Source data and test statistics are provided as a Source
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approach is robust against HGT45. Moreover, the taxonomic con-
sistency of clades, from the phylum to the genus levels, in trees
inferred fromTMarSelmarkers speaks for the robustness ofour results
despite the pervasiveness of HGT among microbes. Because we select
gene families as markers, TMarSel is also compatible with other tree
inferencemethods that actively account for geneduplication, loss, and
transfer46–48.

While previous marker sets were selected from a pre-defined
collection of sequences and had a fixed number of markers, we offer
more flexibility in both aspects. First, we rely on functional databases
to obtain gene families from the input genomes, upon which TMarSel
is applied. Our results show thatmarkers selected from either KEGG or
EggNOG yield trees with similar accuracy. This suggests a potential
generalization to alternative databases, such as PFAM, UniRef, and
MetaCyc. The choice of the database may depend on the focus of the
study and downstream applications. For instance, KEGG links gene
families to metabolic pathways, chemical reactions, enzymes, and
other high-level functions49–51. Whereas EggNOG, in addition to func-
tional annotations, provides evolutionary details of gene families52,53.
Because TMarSel relies on functional annotations, ORFs not assigned
to gene families, the so-called microbial dark matter34, are not con-
sidered during the selection of markers. Therefore, novel potential
marker genes are omitted. Theprevalenceof themicrobial darkmatter
is more pronounced onMAGs, as only 49% and 87% of ORFs have been
annotated with KEGG and EggNOG databases, respectively. However,
an increasing number of databases are being developed to identify a
greater fraction of the microbial dark matter54–56, which TMarSel can
leverage to provide a state-of-the-art set of markers. Moreover, since
TMarSel requires a file mapping ORFs to gene families, users may also
provide gene families inferred de novo. It is worth noting, however,
that the quality of families can greatly impact the tree topology.
Therefore, we suggest prioritizing the use of sound gene family
inference methods.

Regarding the second aspect, rather than setting a fixed number
of markers, TMarSel can select the best k markers despite taxonomic
imbalance (Fig. 3d, e). We show that increasing the number ofmarkers
yields more accurate trees. The increase in accuracy follows a satura-
tion curve that suggests an optimal range for k, which can be identified
by selecting an increasing number of markers until reaching a plateau.
Since our selection method follows an iterative approach, smaller sets
are distilled versions of larger marker sets. The iterative nature of
TMarSel also suggests that the first selected markers contribute more
phylogenetic signal, as shown in the saturation curves of tree quality
(Figs. 3a, b, and 4a). Therefore, if computational resources are limited,
especially for tree inference, a small set of markers still yields accurate
trees. It has been suggested that at least 30markers should be used for
microbial phylogenomics57. However, the minimum number depends
on the input data, as 50markers yield trees with different proportions
of confident branches when genomes or MAGs are used. As a result,
the minimum number of markers increases when inferring phylo-
genies from MAGs.

MAGs comprise a large portion of the prokaryotic diversity, and
their representation in genomic databases will only grow as more
environmental samples are sequenced15,58. However, the integration of
MAGs into phylogenomic pipelines comes with challenges. First, as we
have shown, MAGs do not have gene families that conform to the
traditional criteria for selection. Second, even high-quality MAGs,
gauged as complete by CheckM, do not contain the entire genomic
diversity of a microbial population25,26, and some MAGs even lack
ribosomal RNA and ribosomal protein genes due to assembly errors27.
TMarSel effectively addresses the first challenge, as it can system-
atically explore the gene family space and select the best k markers
tailored to the input set of MAGs. The second challenge is more
complex because incompleteMAGs inherently lack genomic data. And
yet, we show that it is still possible to select markers with strong

phylogenetic signals, yielding trees with high accuracy while allowing
for partial recovery of the tree topology.

TMarSel effectively selects the optimal combination of markers
from gene families that serve as the foundational genetic elements for
inferring accurate phylogenetic trees from a tailored input of whole
genomes and MAGs, despite taxonomic imbalance and incomplete
genomic data. Since TMarSel primarily relies on the presence-absence
patterns of gene families, it remains agnostic to the taxonomy of the
input genomes or MAGs, as well as functional constraints, allowing for
the selection of markers with diverse functional roles. We also show
that marker selection can be agnostic to evolutionary rate, alignment
quality, and non-vertical evolution. However, further evaluations of
these properties are desirable to identify rogue markers that are det-
rimental to the inference process. In addition, we have only assessed
the performance of ourmethod for taxa spanning across themicrobial
tree of life. And yet, the robustness of our results indicates a potential
generalization to fine-grained taxonomic groups, as well as other
annotation databases and tree inference methods.

Methods
Marker gene selection
We represented gene families U = {u1, . . . , um} across genomes
V = {v1, . . . , vn} as a 2D matrix Am×n where entries are positive if gene
family ui exists in genome vj and its values correspond to the number
of times the gene is identified in the genome (i.e., copy number). Gene
families not existing in a given genomewere representedwith a zero in
A. To select a set of kmarker genesG = {g1, . . . , gk}, k <m, wedevised an
algorithm that, in each k iteration, selects the gene g that maximizes

the objective function: argmax 1
n

Pn
j = 1 ck�1 +Ai, j

� �p� �1
p

� �

, where c1×n

is a cumulative vector containing the copy number of genes already
selected that were removed from A (see Appendix 1 in Supplementary
Information). Note that our cost function is analogous to the gen-
eralizedmeanwith exponentp. Small values ofp shift the cost function
toward small values, selecting genes present in genomes with fewer
gene families. In contrast, large values of p will select genes from
genomes with many genes. Because A contains zeroes, our cost
function will return zero for p ≤0 (Supplementary Fig. 4A). To avoid
this issue, we added a pseudocount of 0.1 to A when selecting marker
genes for all values of p.

To assess the wall clock time and memory usage of our selection
method, we simulated multiple copy number matrices with a varying
number of gene families (m = 50 to 100, 000) and genomes (n = 707 to
50, 118) and a maximum copy number of five following the protocol
described in the next section. For each combination of m and n, we
selected an increasing number of markers from k = 10 to m − 1 if
n < 10,000 or up to k = 10, 000 otherwise. All steps were executed on a
computer with an Xeon E5-2697 v2 processor, using the time com-
mand to record both statistics. The scaling exponent of each line
depicting the computational requirements as a function of the number
of markers was calculated using the curve fit function implemented in
SciPy v1.11.359. For this, we fitted a power law of the form kb to the data
and took the average exponent across m, where k is the number of
markers and b is the scaling exponent (Supplementary Fig. 3).

Toy simulations
To assess the impact of parameters p and k, we simulated multiple
copy number matrices as follows: (i) Fix the number of gene families
(m = 50) and genomes (n = 10). (ii) For each genome, randomly draw a
number between zero and one from a uniform distribution to repre-
sent the fraction of gene families in the genome. For instance, a value
close to zero corresponds to a genomewith few gene families and vice
versa. (iii) For each genome, generate a presence-absence vector of
gene families, where a value of one (i.e., presence) is sampled with a
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probability equal to the fraction of gene families from step ii. In con-
trast, a value of zero (i.e., absence) is sampled with a probability of 1 -
fraction of gene families. Thus, step iii produces a presence-absence
matrix of gene families across genomes. (iv) To add copy numbers
over the presence-absence matrix from step iii, we sampled a number
between one and a maximum number of copies, set beforehand, for
each gene present within a gene family. All steps were implemented
using NumPy v1.26.060 while fixing a seed for reproducibility. This
procedure was repeated for 25 replicates, yielding 25 different copy
number matrices later used to selectmarker genes. For each replicate,
we then performed a parameter sweep for 11 values of k and p ranging
from k = 1 to k =m − 1 and from p = −100 to p = 100 (Supplemen-
tary Fig. 4a).

To generate a species tree from the copy number matrix, we first
calculated the Jaccard distance for each pair of genomes to obtain a
distance matrix. We then applied neighbor-joining implemented in
Scikit-bio v0.6.2 over the distancematrix to generate a species tree. To
obtain gene trees, we took the species tree as a template, and for each
gene family, we removed the genomes that did not contain the gene
family. Hence, at this stage, gene trees contain only a single copy of
each genome.We then added gene copies as sister branches of a given
genome. Thus, for example, if a gene family is present in four out of ten
genomes with copy numbers ranging from one to five (e.g., 1, 3, 5, 2),
the resulting gene tree will have 11 leaves in total from four genomes,
representing all the copies that stem from duplication or transfer
events. Because we do not infer gene trees from sequences, we
introduced noise into gene trees to simulate uncertainties that may
arise during multiple sequence alignment and impact the gene tree
inference process. Specifically, noise here refers to the proportion of
branches that are randomly shuffled. Scikit-bio v0.6.2 was used to
manipulate trees.

Realistic simulations
Because the toy simulations are unrealistic, we simulated realistic
prokaryotic gene families using Zombi39. We first generated a species
tree under a birth-death model for 500 units of time with speciation
and extinction rates per unit of time set to 0.04 and 0.03 per unit of
time, as suggested by Louca et al.61. We then simulated genomes along
the branches of the species tree using 10,755 and 5577 bacterial and
archaeal gene family-wise values of duplication (D), transfer (T), and
loss (L) benchmarked in ref. 38while leaving the rest of the parameters
as default. At the end of the simulation, Zombi outputs the real species
tree and the genomes of each taxon along with real gene trees of each
gene family. From the genomes, we built the copy number matrix that
was later used to selectmarker genes.We repeated the simulations for
25 replicates while fixing a seed for reproducibility. For each replicate,
we then performed a parameter sweep for 11 values of k and p ranging
from k = 1 to k =m − 1 and fromp = −100 to p = 100.We also introduced
noise to the gene trees to simulate uncertainties that may arise during
multiple sequence alignment.

Web of Life 2 and earth microbiome project datasets
The Web of Life (WoL2) contains 15,953 prokaryotic species with a
single representative high-quality genome and taxonomic annotations
from the Genome Taxonomy Database (GTDB) R207, as well as a
reference phylogeny62. The WoL2 dataset is publicly available at
https://ftp.microbio.me/pub/wol2/. Due to the burden of computa-
tional resources, we selected complete reference genomes from the
WoL2, ensuring that each taxonomic group, from phylum to family,
had at least 10 taxa. This resulted in 1510 genomes spanning the entire
microbial diversity that will be used for genome annotation and mar-
ker selection.

The Earth Microbiome Project (EMP)44 contains 811 high-quality
Metagenome Assembled Genomes (MAGs) from 32 environments
across the globe and are publicly available at https://www.globus.org/,

endpoint emp_500_public. After genome annotation (see below), we
inspected whether the number of Open Reading Frames (ORFs) mat-
ched the number of gene families. We discarded 18 poorly annotated
MAGs with a low number of gene families compared to the number of
ORFs. This resulted in 793 MAGs that will be used for all subsequent
analyses.

Genome annotation
To generate the copy number matrix for marker gene selection, we
need to annotate the genomes and MAGs. First, we used Prodigal
v2.6.363, in single-genome mode with the genetic code table specified
according to taxonomy, to predict ORFs for genomes of the WoL2.
ORFs from MAGs of the EMP dataset were predicted with Prokka
v1.14.664. We then used the KEGG Orthology release 102.0+51 and evo-
lutionary genealogy of genes: Non-supervised Orthologous Groups
(EggNOG) v5.052 databases to annotate the ORFs into gene families
with KOfam-Scan and EggNOG-mapper v265, respectively. In the KEGG
annotation, we selected only prokaryotic KEGG Orthologs (KOs) with
an e-value lower than the threshold defined in the database66, thus
minimizing false positive assignments. In the EggNOG annotation, we
only selected the assignments at thebroadest taxonomic level sincewe
are interested in inferring a tree for diverse microbial species. The
annotation of ORFs into gene families was then used to generate a
copy number matrix Am×n with m gene families and n genomes.

We used the hierarchical classification from KEGG to map KOs to
higher functional categories. For this, we counted the number of times
a given gene is mapped onto a functional category. The counts in each
category were then normalized by the total number of counts and
multiplied by 100 to obtain a relative abundance. EggNOG only pro-
vides a functional description for each gene family. Therefore, we
could not map its gene families to higher functional categories.

In addition, we identified Mobile Genetic Elements from KEGG
and EggNOG gene families using the following description terms:
baseplate, capsid, excisionase, DUF4102, pf00665, KilA-N, ORF11CD3,
phage, portal, tail, terminase, tape, T5orf172, viral, virion, conjugal,
conjugation, conjugative, DotD, IV secretory, IV secretion, MobA,
mobilization, mobilization, MobL, DUF955, plasmid, relaxase, TcpE,
TraG, TraL, TraM, DDE, pf01609, IS66, IstB, transposase, transposon,
transposition, anti-restriction, antirestriction, integrase, integration,
K02238, K02242, K02243, K02244, K02245, K02246, K12296, K04096,
K06198, K07343, as suggested in ref. 67.

Controlling copy numbers
Since ORFs mapped to gene families by KOfamScan or EggNOG con-
tain summary statistics, we focused on the bit score value to control
the number of copies of a gene family present within a genome. We
used the bit score rather than the e-value, as the former is independent
of the database size. For every genome, we identified themaximumbit
score assigned to each gene family. We then excluded ORFs that had a
bit score below a certain threshold that represents proximity to the
maximum bit score. For example, a threshold of one will only include
the best hits of each gene family per genome. In contrast, a zero
threshold will include all the ORFs. Thus, the threshold represents the
number of gene copies of each gene family per genome to include for
marker selection.

Impact of taxonomic imbalance on tree topology
We first calculated the Gini index to measure the taxonomic imbal-
ance, as suggested in ref. 23, at the phylum level. Index values range
from 0 to 1, where 0 indicates a perfectly balanced set and vice versa.
We observed that the 1510 genomes from the WoL2 belong to 17
bacterial and archaeal phyla, and have a Gini index of 0.59.

To generate datasets with a Gini index greater than the WoL2
tested in the manuscript, we focused on the entire WoL2 dataset. We
set themaximumnumber of genomes to 500 and the number of phyla
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to 17 for each dataset. We then sampled the genome abundance of
each phylum from a β-distribution with parameters a =0.1 and b = 1,
ensuring highly right-skewed distributions where a few phyla contain
themajority of genomes. Theminimumgenome abundancewas set to
four because the ASTRAL-Pro2 inferencemethod is based on quartets.
For each abundance, we then randomly sampled a phylum and
checked whether the phylum had enough genomes to sample. If yes,
then we randomly sampled genomes according to the abundance.
Otherwise, we sampled another phylum until it had enough genomes.
This procedure was repeated for ten replicates while fixing a seed for
reproducibility. The generated datasets have an average Gini index of
0.66 ±0.04, indicating a greater imbalance than theWoL2 dataset, but
lower than the EMP dataset, which has a Gini index of 0.73.

For each dataset, we selected an increasing number of markers
(k = 50, 100, 200, and 400) with exponent p = 0 from KEGG and Egg-
NOG gene families with TMarSel. We also extracted previously pro-
posed markers for comparison. Species trees were inferred with the
pipeline described below. The quality of trees was then assessed as
described below. We also performed two-sided two-sample
Mann–Whitney U tests with multiple testing correction using the
Benjamini–Hochberg method to test for significant differences in
quality. Scikit-bio v0.6.2 was used to calculate the Gini index, while
Scipy v1.11.3 was used for statistical analyses.

Pipeline for species tree inference
Once markers have been selected, we retrieved all the ORF sequences
associated with them. Depending on the experimental condition, we
excluded those genomes with less than k ×0.25 marker genes. Protein
sequences of each marker gene were then aligned using UPP268 with
default parameters. UPP2 is a multiple-sequence aligner designed for
large datasets containing sequence length heterogeneity that might
arise under large insertion or deletion events or due to incomplete
assembly69,70. In the first stage, UPP2 selects a set of full-length
sequences and computes a backbone alignment and an unrooted tree.
A collection of profile HiddenMarkovModels (pHMM) is then built for
each subset of sequences in the backbone tree, and the remaining
sequences are inserted into the backbone alignment. We chose the
optimal number of backbone sequences using the backbone query
split algorithm from UPP2. Data pipeline errors, such as sequencing,
assembly, genome annotation, or alignment errors, substantially
impact phylogenetic reconstruction as they increase the noise in the
dataset. We used TAPER71 with default parameters to remove such
errors within alignments. TAPER is an outlier section algorithm that
removes amino acids based on a divergence score computed along
genomic positions and species71.

We used the clean alignments for Maximum Likelihood tree
reconstruction with FastTree v2.172 using the Lee-Gascuel (LG) model
of amino acid substitution, as a previous study showed that the LG
model best explains substitutions in a majority of prokaryotic marker
genes62. This step produced a set of k gene trees.We used TreeShrink73

to remove pipeline errors that have escaped detection at the sequence
level and resurfaced as suspiciously long branches in the phylogeny.
TreeShrink removes leaves that inflate the tree diameter, defined as
the maximum distance between any two leaves in the tree73. In our
case, a leaf corresponds to a protein sequence of a gene within a
genome.

We then used ASTRAL-Pro236 to estimate a species tree from the
set of gene trees. ASTRAL-Pro2 combines information from gene trees
to maximize a measure of quartet similarity between them and the
species tree35. The quartet similarity measure is defined as the fraction
of partitions between all combinations of four species, with a common
ancestor originating from a speciation event that shares the same
branching structure (i.e., topology) as the real species tree under gene
duplication and loss scenarios35. Because only speciation events count
toward themeasure, ASTRAL-Pro2 identifies orthologs fromgene trees

containing all the homologs of a gene family35,36. This flexibility is ideal
because the genome annotation step produces gene families that
contain orthologs, paralogs, and xenologs.

Sets of previous markers
To benchmark the usefulness of our marker genes for inferring phy-
logenetic trees, we compiled four datasets of marker genes previously
proposed and used for deep microbial phylogenomics. (i) 41 single-
copy universal marker genes tested for their phylogenetic signal in
multidomain phylogenetic reconstruction23. (ii) 57 single-copy uni-
versal markers, which were used to estimate the age of the Last Uni-
versal CommonAncestor1. In the case of the 41 universalmarkers from
Martinez-Gutierrez, the pHMMs of each gene were already provided,
whereas, for the 57 universal markers from Moody, we built the
pHMMs from the multiple sequence alignments with hmmbuild from
HMMER v3.474. We then used hmmsearch to search for homologs of
the markers in the genomes of the WoL2 and MAGs from the EMP
dataset. For each gene, only the ORF with the top bit score was
extracted and used in the pipeline for species tree inference. Other
marker sets we benchmarked are: (iii) 136 universal markers from
AMPHORA230 available in PhyloPhlAn341, and (iv) 400 single-copy
universalmarkersfirst proposed in refs. 24,75 and part of PhyloPhlAn3.
To identify homologs of these two last sets of universal genes on the
WoL2 and EMP datasets, we ran PhyloPhlAn3 v3.1.68 with high diver-
sity and fast parameters. We then took the identified ORFs and used
them in the pipeline for species tree inference. This approach ensures
that species trees from all marker genes were inferred using the same
pipeline, thus guaranteeing a fair comparison.

Quality of species trees
To evaluate the quality of species trees inferredwith ourmarker genes,
(i) we calculated the Robinson-Foulds distance between the inferred
tree and theWoL2 reference phylogenetic. The RF distance counts the
different number ofways todivide a set of taxaby removing abranch37.
We further normalized the RFdistance by the sumof internal branches
between the two trees to obtain a number between zero and one,
where zero indicates two identical trees and vice versa. DendroPy
v4.6.176 was used for all tree distance calculations. (ii) We also mea-
sured the quality of the inferred trees using the Local Posterior Prob-
ability (LPP) scores from ASTRAL-Pro2, which is a measure of
confidence of each branch based on gene tree quartet frequencies. An
LPP higher than 0.95 was used to classify a branch as highly confident,
as suggested in ref. 40.

(iii) We gauged the taxonomic consistency of clades in a phylo-
genetic tree using the taxonomic accuracymetrics from ref. 75 and the
standard microbial GTDB taxonomy R207. Taxonomic precision cap-
tures the notion that phylogenetically closer species must share a
common taxonomic label. The precision of a clade is calculated as LC

LLCA
,

where LC is the sum of branch lengths of the members of the clade (C)
and LLCA is the sum of branch lengths of all the descendants of the
Lowest Common Ancestor (LCA) of the clade. Thus, if all themembers
of the clade form amonophyletic subtree, the precision is one (highest
possible). If any member of the clade is scattered, the denominator
grows faster than the numerator, thereby reducing the precision.
Taxonomic recall, on the other hand, captures whether taxonomically
similar taxa are grouped close in the phylogeny. The recall of a clade is
calculated as ∣fc2C :dðc, LCTSÞ ≤ DLCTSg∣

jCj , where d is the distance between a
member of the clade c and the Longest Consistent Taxonomic Subtree
(LCTS) and D is the diameter (i.e., the branch length separating the
most distant leaves) of the LCTS. The recall, therefore, calculates the
number of taxa outside the LCTS. The LCTS is defined as the internal
node with the largest number of children that are part of the clade and
are monophyletic themselves.

(iv) In addition, we assessed the placement of each taxon from an
inferred tree relative to the reference tree. We first calculated a
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distance matrix from the number of edges (i.e., internal branches)
connecting every pair of taxa in the inferred and reference trees. Since
each row in the distance matrix represents a vector containing the
distance of a taxon to the other taxa in the tree, we calculated the
cosine distance between the vectors of the same taxa in inferred and
reference trees. Thus, if a taxon has the sameplacement in the inferred
tree as in the reference tree, the distance vectors have the same
direction, resulting in a cosine distance of zero. We expect well-placed
taxa to have lower cosine distances to the reference tree. To assess the
overall trend of placement, we applied a least squares regression
implemented in SciPy v1.11.3.

Simulations of incomplete MAGs
To simulate genome incompleteness, we randomly sampled contigs
and sequentially selected ORFs in each contig until satisfying an
incompleteness threshold, defined as the proportion of ORFs to be
removed. The threshold is specified as a proportion of the total
number of ORFs in the MAG. For instance, a threshold of 0.1 in a MAG
containing 1000 ORFs will result in 100 ORFs removed. Once all the
ORFs to be removed had been selected, we removed them from the
genome annotation files that relate ORFs to gene families produced by
KOfamScan and EggNOG mapper. We then used the remaining gene
families to build the copy number matrix for marker gene selection.
For each incompleteness threshold, we repeated the simulation for ten
replicates while fixing a seed for reproducibility. In each replicate, a
different contig and, subsequently, ORFs were sampled. Thus, our
simulations yield MAGs with different genomic compositions.

For each replicate, we selected markers (k = 400) from the
incomplete set of MAGs and inferred a species tree. We also inferred
trees using the 400 universal markers from PhyloPhlAn3 for compar-
ison. The trees were then evaluated for the proportion of confident
branches. In addition, we calculated the nRF between trees inferred
from incomplete MAGs and trees inferred from complete MAGs. To
assess whether the differences in quality between our markers and
PhyloPhlAn3 markers were statistically significant, we performed
Mann-Whitney tests and corrected the p-values with the
Benjamini–Hochberg method implemented in SciPy v1.11.3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided as a Source Data file. The datasets generated
and analyzed, aswell as the codeused toproduce the results and all the
figures presented in this manuscript, are publicly available on
Zenodo78, under the BSD 3-Clause license. Exact p-values of statistical
tests are provided in the Source Data file. Source data are provided
with this paper.

Code availability
The code used to produce the results and all the figures presented in
this manuscript are publicly available on GitHub (https://github.com/
HSecaira/AugmentingPhyloSignalMicrobes78), under the BSD 3-Clause
license. The source code of TMarSel is hosted on GitHub (https://
github.com/HSecaira/TMarSel/tree/main), together with documenta-
tion and test data sets.
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