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Existing RNA language models (RLMs) largely overlook structural information
in RNA sequences, leading to incomplete feature extraction and suboptimal
performance on downstream tasks. In this study, we present ERNIE-RNA
(Enhanced Representations with Base-Pairing Restriction for RNA Modeling),
an RNA pre-trained language model based on a modified BERT (Bidirectional
Encoder Representations from Transformers). Notably, ERNIE-RNA’s attention
maps exhibit superior ability to capture RNA structural features through zero-
shot prediction, outperforming conventional methods like RNAfold and
RNAstructure, suggesting that ERNIE-RNA naturally develops comprehensive
representations of RNA architecture during pre-training. Moreover, after fine-
tuning, ERNIE-RNA achieves state-of-the-art (SOTA) performance across var-
ious downstream tasks, including RNA structure and function predictions. In

summary, ERNIE-RNA provides versatile features that can be effectively
applied to a wide range of research tasks. Our findings highlight that inte-
grating key knowledge-based priors into the BERT framework may enhance
the performance of other language models.

Ribonucleic acids (RNAs) are versatile macromolecules that not only
serve as carriers of genetic information, but also act as essential reg-
ulators and structural components influencing numerous biological
processes”. RNA can be categorized into two main types: protein-
coding RNA and non-coding RNA (ncRNA)**. Protein-coding RNA pri-
marily refers to messenger RNA (mRNA)®, which mainly functions by
encoding genetic information through codons. ncRNA does not
encode proteins; instead, it regulates gene expression. ncRNA includes
microRNA (miRNA), long non-coding RNA (IncRNA), among others.
Short miRNAs govern the post-transcriptional gene regulation, while
longer IncRNAs contribute to various cellular activities, from chro-
matin remodeling to epigenetic control.

RNA molecules exhibit a hierarchical organization where their
primary sequences fold into specific structural conformations that

ultimately determine their biological functions®’. Understanding the
structure of RNA is crucial for enhancing our overall knowledge of
cellular biology and developing RNA-based therapeutics. Traditional
experimental methods including nuclear magnetic resonance®, X-ray
crystallography’, cryogenic electron microscopy'’, and icSHAPE (in
vivo RNA secondary structure profiles)" have been developed to study
the structure and function of RNA. However, these approaches are
expensive and time-consuming, which has motivated the development
of computational methods for RNA structure and function prediction.
These computational approaches can be broadly categorized into
three classes: thermodynamics-based”®, alignment-based”®*°, and
deep learning-based” *. Despite their promise, each computational
approach faces distinct challenges. Thermodynamics-based methods
are constrained by the accuracy of their underlying thermodynamic
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parameters. Alignment-based methods show limited effectiveness
when handling RNA sequences that lack sufficient homologous
sequences for multiple sequence alignment. While deep learning-
based models have demonstrated improved prediction accuracy on
various benchmark datasets, they often struggle with generalization,
showing much lower performance when confronted with previously
unseen RNA families.

The advancements in high-throughput sequencing technology*
have produced a wealth of unlabeled data, which contain rich infor-
mation about RNA structures and functions. To leverage these vast
datasets, many BERT-style” RNA language models have emerged.
Initial efforts focused on general-purpose RNA modeling: RNA-FM?%,
trained on 23 million unannotated RNA sequences, pioneered appli-
cations in both structural and functional predictions; UNI-RNA* and
RiINALMo™® further scaled up this approach to 400M and 650 M
parameters respectively, with RiNALMo trained on 36 M sequences
showing notable generalization capability, and UNI-RNA utilizing an
unprecedented 1 billion RNA sequences. Other general-purpose
models explored different strategies: RNABERT®' incorporated Struc-
ture Alignment Learning during pre-training, while RNA-MSM** lever-
aged evolutionary information through multiple sequence alignment.
Meanwhile, RNAErnie*® enhanced performance through innovative
motif-aware pretraining and type-guided fine-tuning strategies. Sev-
eral mRNA-focused language models have also been developed with
different specializations. UTR-LM** was trained specifically on mRNA
untranslated regions, while CaLM* and CodonBERT?® were pre-trained
on complementary DNA (cDNA) and mRNA coding sequences
respectively, with applications in protein engineering and various
coding sequence predictions. However, these specialized models, due
to their narrow focus on specific mRNA regions or features, demon-
strate limited capability in understanding the broader semantic pat-
terns across diverse RNA types and functions.

Understanding RNA structure is pivotal for elucidating its func-
tional roles, but existing pre-trained RNA language models fail to
adequately incorporate structural information. The self-attention
mechanism® in transformer-based models offers a potential solution
by assigning varying levels of importance to different parts of the input
sequence, and attention maps can visually represent these importance
weights, illustrating how the model attends to different sequence
positions. While this attention mechanism has shown promise in cap-
turing long-range dependencies in sequences, current general-
purpose RNA language models like RNA-FM and UNI-RNA, which rely
on standard attention mechanisms and are trained solely on one-
dimensional sequences, struggle to effectively extract structural and
functional features. This limitation is evidenced by their embeddings
being inferior to simple one-hot encoding in certain tasks®. Although
UTR-LM attempts to address this challenge by incorporating predicted
secondary structures from RNAfold during pre-training, it faces sig-
nificant drawbacks: compared to experimental data, the predicted
structures often contain errors, and using specific structure prediction
tools as prior knowledge limits the model’s generalization ability
across diverse RNA families. These limitations suggest that BERT-
based models, originally designed for text feature extraction, need a
more principled approach to capture RNA structural features. Given
that RNA structure and function are intrinsically linked through spe-
cific biological mechanisms, developing an innovative attention
mechanism that can learn generalizable structural patterns directly
from sequence data presents a promising direction for improving RNA
language models.

Building upon the transformative potential of self-attention
mechanisms, as exemplified by AlphaFold2* and Uni-Mol*® we posit
that a similar paradigm shift can be achieved in RNA modeling.
AlphaFold2 demonstrated the power of incorporating evolutionary
and structural information to guide the iterative refinement of protein
structures, while Uni-Mol leveraged atom-coordinate-based pair-wise

interactions to enhance molecular representations. Drawing inspira-
tion from these advancements, we hypothesized that integrating cru-
cial RNA-specific structural information into the self-attention
framework could facilitate the extraction of comprehensive and
nuanced RNA features. The inherent base-pairing interactions that
dictate RNA folding present a unique opportunity to inform the model
with biologically relevant priors.

To this end, we introduce ERNIE-RNA (Enhanced Representations
with Base-pairing Restriction for RNA Modeling), an innovative pre-
trained RNA language model founded upon a modified BERT archi-
tecture. ERNIE-RNA distinguishes itself by incorporating a base-
pairing-informed attention bias during the calculation of attention
scores. This innovative approach augments the model’s capacity to
characterize RNA structure and enables a more holistic extraction of
RNA features. Notably, even in the absence of fine-tuning, ERNIE-RNA’s
attention maps exhibit a noteworthy ability to discern RNA structural
features in a zero-shot setting, attaining an Fl-score of up to 0.55.
Subsequent fine-tuning across a diverse array of downstream tasks
pertaining to RNA structure and function further demonstrates ERNIE-
RNA’s capabilities, achieving state-of-the-art (SOTA) performance
across most evaluated benchmarks. These results strongly suggest
that ERNIE-RNA captures a comprehensive representation of RNA
structural and functional information, thereby establishing its poten-
tial as a powerful tool for advancing RNA research.

Results

The architecture and pre-training of ERNIE-RNA

To address the limitations of traditional RNA language models, we
developed ERNIE-RNA based on the BERT architecture. The model
consists of 12 transformer blocks, each employing a multi-head
attention mechanism with 12 parallel ‘attention heads’ that allow the
model to jointly attend to information from different representational
subspaces at different positions. Specifically, for each attention
mechanism, the 768-dimensional token embedding is projected and
split into 12 sub-vectors (64 dimensions each), one for each head. Each
head then independently computes its own attention scores over the
sequence. The outputs from all 12 heads are concatenated and passed
through a final linear layer, enabling the model to capture a rich set of
token-to-token relationships in parallel. Overall, this architecture
results in a model with ~86 million parameters (Fig. 1a). While existing
approaches like UTR-LM incorporate predicted RNA secondary struc-
tures from algorithms such as RNAfold during pre-training, we intro-
duced an all-against-all attention bias mechanism that provides the
model with comprehensive prior knowledge about potential base-
pairing configurations. This innovative approach enables the model to
learn RNA structural patterns through self-supervised learning rather
than relying on potentially biased structural predictions. By avoiding
the incorporation of imperfect structural annotations during pre-
training, which could adversely affect model generalization, our
method allows ERNIE-RNA to discover more flexible and generalizable
structural representations directly from sequence data. In our imple-
mentation, we compute a pair-wise position matrix from one-
dimensional RNA sequences to replace the bias term in the first
transformer layer. From the second layer onward, the bias of each layer
is determined by the attention map of its preceding layer. In the pair-
wise matrix calculation, for any base pair (i,j) in a sequence of length L,
we assign values based on canonical base-pairing rules: 2 for AU pairs, 3
for CG pairs, and a tunable hyperparameter « (initially, 0.8) for GU
pairs, with diagonal elements set to O.

We initially collected 34 million RNA sequences from the RNA-
central database. After filtering sequences longer than 1022 nucleo-
tides, performing vocabulary refinement, and applying redundancy
removal using CD-HIT-EST at a 100% similarity threshold, we retained
20.4 million sequences for pre-training. Analysis of this dataset
revealed a substantial proportion of rRNA and tRNA sequences

Nature Communications | (2025)16:10076


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-64972-0

Pre-Training Stage

Fine-Turning Stage

b! MLM loss head 768 156
4 t Ouput Features
x! Token L Attention L
Embedding Map
NV
LayerNorm 12x768xL ‘ 186xLxL
D Structure Related Tasks
b
Feed Forward l
mc
B \ mu
\ - c
Pair-wise 7'y :
position bias W] \ N PAD
. - MSK
N \ i ) s
Structure- Secondary Structure Contact Map
T Lo 1 «| enhanced Attention Prediction Prediction  Other Tasks
3000-100... x12
<|o|ofofafo]2].. I_M
X Function Related Tasks
Blofofof[a]s]of. 1
I I I O I O I I B I |
é Position Embedding Layer l l l
Blofofs[4]0]a t t ot
.IO (U I R O ) Token Embedding Layer ibosome Ty \{*O
i .. 4 t T+ttt 1 ) )
CLS (A’ [iC) VS [iG) (UD --- MsK EGS SUTR
1t * 5'UTR MRL RNA-protein
Prediction Binding Prediction Other Tasks

A ClG u ..

Fig. 1| Overview of the ERNIE-RNA model architecture and application. ERNIE-
RNA incorporates RNA structural information into the self-attention mechanism.
aIn the pre-training stage, ERNIE-RNA, consisting of 12 transformer layers, was pre-
trained with 20.4 million non-coding RNA sequences from RNAcentral via self-

Input Sequence

supervised learning. b In the fine-tuning stage, ERNIE-RNA provides attention maps
and token embeddings that encode rich structural and semantic RNA features,
achieving state-of-the-art performance on diverse downstream tasks spanning
structure prediction and functional annotation.

(Supplementary Fig. 1b). To systematically investigate the impact of
data composition on model performance, we constructed several
training datasets with different characteristics (Supplementary
Table 1). These include: (1) a baseline dataset containing all sequences
under 1022nt after initial filtering, (2) a dataset excluding rRNA and
tRNA sequences to eliminate potential bias from these well-structured
RNA families, (3) a balanced dataset retaining only 20% of rRNA and
tRNA sequences to prevent their overrepresentation while maintaining
diversity, and (4) a dataset excluding IncRNA sequences to evaluate the
impact of these structurally flexible RNAs on model training. Addi-
tionally, we created subsets of varying sizes from the baseline dataset
for scaling analysis (Supplementary Table 1, Supplementary Table 2).

Our pre-training experiments yielded several crucial insights into
the learning process (Supplementary Fig. 2). The model’s perplexity on
the masked language modeling task exhibited consistent improve-
ment with increasing training data size, specifically from 86 million
tokens to 8 billion tokens. This trend, coupled with the zero-shot RNA
secondary structure prediction results (discussed in the subsequent
section), suggested that our chosen dataset size of 8 billion tokens
provides a good balance between computational efficiency and model
performance. Notably, the exclusion of rRNA/tRNA sequences or
IncRNAs exerted minimal influence on model perplexity (Supple-
mentary Table 3), signifying that ERNIE-RNA can effectively learn RNA
sequence patterns irrespective of specific RNA family biases within the
training data.

Through this comprehensive pre-training approach, ERNIE-RNA
learned to encode both local and global RNA features in its attention

maps (LxLx156) and token embeddings (12x768xL) (Fig. 1b). The
model’s architecture and training strategy enable it to capture com-
plex RNA characteristics without requiring explicit structural annota-
tions during pre-training, making it broadly applicable across diverse
RNA families and structural motifs.

ERNIE-RNA learns functional and structural information
through pre-training

ERNIE-RNA employs multiple attention heads with an all-against-all
pair-wise attention bias mechanism to simultaneously extract diverse
information from input sequences. This architectural design provides
prior knowledge about potential base-pairing configurations, which
we hypothesized would guide the attention maps to better capture
structural features.

To assess the model’s structural understanding capabilities, we
conducted zero-shot RNA secondary structure prediction experiments
using the bpRNA-1m benchmark dataset*. Without any fine-tuning, we
directly interpreted ERNIE-RNA’s attention maps as base-pairing
probability matrices for RNA secondary structure prediction. Surpris-
ingly, we discovered that the introduction of our pair-wise attention
bias enabled ERNIE-RNA’s attention maps to exhibit emergent cap-
abilities in capturing RNA structural information without explicit
structural supervision during pre-training (Fig. 2). Our evaluation
reveals that the zero-shot performance of ERNIE-RNA, by directly
interpreting its attention maps, is highly effective. As shown in Table 1,
it achieves a median F1-score of 0.552 on the bpRNA-Im test set. This
result not only surpasses traditional thermodynamic methods like
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Fig. 2 | Zero-shot RNA secondary structure prediction experiment on the
bpRNA-1Im test set. Heatmap showing the binary F1-scores of attention maps from
different layers and heads of the ERNIE-RNA-L12 model (86 M parameters, 12

attention heads, 12 transformer layers) on the bpRNA-1m test set without any fine-
tuning. Higher F1-scores (darker colors) indicate better capture of RNA structural
information, with the highest score of 0.55 observed in the later layers.

RNAfold** (F1-score 0.492) and RNAstructure® (0.491), but also sig-
nificantly outperforms other large language models such as RNAErnie
(0.440) and RNA-BERT (0.365), even though these models were eval-
uated after fine-tuning on the same task®>*>, Notably, we observed
enhanced structural information capture in attention maps from
deeper layers, suggesting the model’s architecture enables effective
propagation and refinement of structural features through successive
transformer layers.

To investigate whether the presence of attention maps capturing
RNA structural information is a coincidence, we conducted compre-
hensive analyses across multiple model initializations and archi-
tectures. We pre-trained four independent ERNIE-RNA models (25
million parameters each) with different random initializations. Zero-
shot experiments consistently demonstrated activated attention
heads capable of capturing RNA structural information, though the
specific heads varied across models (Supplementary Fig. 3). This

variability reflects the stochastic nature of neural network training,
where different attention heads may specialize in capturing structural
features in different model instances. In contrast, control experiments
with a model lacking pair-wise position bias (Supplementary Fig. 4a) or
using random parameters without pre-training (Supplementary
Fig. 4b) showed no activated attention heads. Similarly, when testing
RNA-FM under identical conditions, none of its attention maps
demonstrated the capability to capture structural features (Supple-
mentary Fig. 5), further confirming that the introduction of all-against-
all pair-wise attention bias is crucial for enabling the emergence of
structural feature extraction capabilities.

The model’s ability to capture complex structural motifs was
further evaluated using RNA sequences containing pseudoknots*—
non-canonical secondary structures characterized by base pairings
between loop regions and external nucleotides. These structures are
particularly challenging for traditional algorithms based on
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Table 1| RNA secondary structure prediction performance on bpRNA-1Im dataset

Method Type Methods Model Size bpRNA-1m (80) test set
Precision Recall F1-Score Precision Recall F1-Score
(binary) (binary) (binary) (macro-avg) (macro-avg) (macro-avg)
LLM zero-shot ERNIE-RNA 86 M 0.508 0.655 0.549 0.753 0.826 0.773
zero shot?
LLM finetune ERNIE-RNA 86 M 0.780 0.735 0.748 0.887 0.867 0.873
attn-map?®
ERNIE-RNA 86M 0.564 0.684 0.601 0.780 0.831 0.803
attn-map frozen®
ERNIE-RNA? 86 M 0.755 0.735 0.736 0.866 0.859 0.862
ERNIE-RNA 86 M 0.598 0.700 0.632 0.797 0.833 0.814
frozen®
Uni-RNAP 400 M - 0.894 0.801 0.821
RNA-FM 100 M 0.633 0.640 0.617 0.808 0.819 0.808
RNA-MSM 96 M 0.542 0.556 0.508 0.756 0.776 0.753
RNA-BERT 0.5M 0.512 0.372 0.365 0.714 0.685 0.682
RNAErnie 105 M 0.455 0.592 0.440 0.724 0.745 0.719
RiINALMo 650 M 0.781 0.683 0.701 0.878 0.841 0.850
Deep learning (DL) Ufold 0.491 0.527 0.485 0.742 0.762 0.742
E2Efold 0.180 0.100 0.093 0.551 0.549 0.545
Dynamic Program- LinearFold 0.539 0.536 0.510 0.757 0.767 0.754
gl (1 Mfold 0.449 0.575 0.490 0.724 0.786 0.744
RNAstructure 0.448 0.575 0.491 0.723 0.786 0.744
RNAfold 0.446 0.582 0.492 0.722 0.789 0.745
CONTRAfold 0.482 0.603 0.522 0.740 0.800 0.760
Eternafold 0.480 0.596 0.518 0.739 0.796 0.758
DL+DP MXfold2 - 0.516 0.633 0.552 0.757 0.815 0.775

Despite not being specifically designed for RNA secondary structure prediction, ERNIE-RNA outperformed 14 other tested methods on all evaluation metrics. The benchmarks of the other tested

methods were adopted from Ufold, RNA-FM, and UNI-RNA paper.
“ERNIE-RNA L12 model.

The UNI-RNA model referred to here is UNI-RNA-L24 (400 M parameters). It is important to note that the training dataset used for UNI-RNA differs from the datasets used for the other models in this

comparison (see “Methods” section), which may affect the direct comparability of the results.
Numbers shown in bold within the table represent the best-performing results for each task.

thermodynamics and dynamic programming, such as Mfold*, which
often omit pseudoknot prediction due to computational complexity
constraints*®. Comparison of zero-shot prediction performance across
different datasets (Fig. 3a, b and Supplementary Fig. 6) demonstrates
that ERNIE-RNA achieves comparable or superior performance to tra-
ditional methods like RNAfold on the bpRNA-Im test set, and sig-
nificantly outperforms RNA-FM on challenging structure prediction
datasets such as RIVAS TestSetB*’.

Building upon these structural insights, we further investigated
ERNIE-RNA’s ability to distinguish different RNA families through
learned representations. We conducted dimensionality reduction and
clustering experiments using a diverse dataset of 244 RNA families
from Rfam*. Through repeated sampling experiments across 10
rounds, each analyzing 10 randomly selected RNA categories
(sequences shorter than 200 nucleotides), we compared the clustering
performance of various feature representations. Both ERNIE-RNA’s
CLS token embeddings and attention maps demonstrated superior
clustering capability compared to RNA-FM embeddings, and one-hot
encoding, as quantified by Fowlkes-Mallows and Rand indices (Fig. 4).
This suggests that ERNIE-RNA learns meaningful representations that
effectively capture RNA family-specific characteristics during pre-
training.

ERNIE-RNA improves the performance of downstream tasks by
fine-tuning on labeled data

The effectiveness of pre-trained RNA language models lies in their
ability to extract comprehensive sequence features that can benefit

various downstream tasks through fine-tuning. We evaluated ERNIE-
RNA’s performance across a broad range of RNA-related tasks, span-
ning structural analysis, functional studies, and regulatory mechan-
isms. Despite having fewer parameters and being trained on a smaller
dataset than current state-of-the-art models like UNI-RNA, ERNIE-RNA
achieves superior or competitive performance in these applications,
highlighting the effectiveness of our structure-enhanced pre-training
strategy. Below, we present detailed evaluations of these tasks, com-
paring them against baseline methods and demonstrating ERNIE-
RNA’s potential to address key challenges in computational RNA
biology.

RNA secondary structure prediction

We conducted a comprehensive evaluation of ERNIE-RNA’s secondary
structure prediction capabilities. To establish a fair and rigorous
comparison, we adopted a unified evaluation framework where all
models were retrained from scratch on the specific training set of each
benchmark. As illustrated in Fig. 5a, we extracted the token embed-
dings from all language models, except for the closed-source Uni-RNA,
and fed them into an identical downstream prediction network. This
standardized setup ensures that performance differences primarily
reflect the quality of the representations learned by each LLM. In
addition to its token embeddings, ERNIE-RNA offers two unique modes
of prediction: a zero-shot capability derived directly from its pre-
trained attention heads, and a fine-tuning mode using these structure-
enhanced attention maps (ERNIE-RNA attn-map) as direct input to the
downstream network. For baseline comparisons, traditional deep
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learning models like Ufold were also retrained solely on the respective
benchmark’s training set, which eliminates potential biases from the
mixed-source training data used in their original publications. Our
evaluation spans a range of datasets (Supplementary Table 4), from
standard benchmarks like bpRNA-Im*, Archivell*” and RIVASY, to
challenging cross-family generalization tests bpRNA-new” and
RNA3DB, to thoroughly assess both performance and robustness.
On the standard bpRNA-1Im benchmark, ERNIE-RNA establishes its
state-of-the-art (SOTA) performance. As detailed in Table 1 and Fig. 5b,
the ERNIE-RNA attn-map model achieves the highest overall macro-
average Fl-score of 0.873. Importantly, for direct comparison with
other LLMs, the ERNIE-RNA model using token embeddings also deli-
vers an exceptional Fl-score of 0.862. This result surpasses other
prominent language models, including the 650M-parameter RiNALMo
(0.850) and 400M-parameter UNI-RNA (0.821), as well as other clas-
sical dynamic programming (DP) methods like Eternafold (0.758) and
non-LLM deep learning methods. This performance leadership is
consistently maintained across other key benchmarks. On the Archi-
vell dataset (Supplementary Table 6), ERNIE-RNA attn-map achieves an
F1-score of 0.954, while its embedding-based counterpart (0.951) also
significantly outperforms competitors like RiNALMo (0.892). Fur-
thermore, on the challenging RIVAS TestSetB (Fig. 5c and Supplemen-
tary Table 7), ERNIE-RNA’s models again secure the top two positions
with Fl-scores of 0.721 (attn-map) and 0.706 (embedding), creating a

substantial performance gap to the next-best LLM, RiNALMo (0.555).
The consistent, per-sequence superiority of ERNIE-RNA’s representa-
tions is visually corroborated in the head-to-head scatter plots (Sup-
plementary Fig. 7), where the majority of data points lie above the
diagonal across all four datasets when comparing the ERNIE-RNA
embedding model to RiNALMo.

To rigorously test the limits of generalization and directly address
concerns about data leakage, we further evaluated all models on
bpRNA-new and RNA3DB-2D dataset. These two datasets represent the
most stringent test scenarios: bpRNA-new contains RNA families from
a newer Rfam release completely absent from the training data, while
our RNA3DB-2D dataset is meticulously constructed to ensure struc-
tural dissimilarity between training and test sets at the component
level (see “Methods”). On bpRNA-new, a notable trend emerged: most
deep learning models, both LLM-based and non-LLM, underperformed
relative to traditional dynamic programming (DP) methods like Eter-
nafold (Fl-score 0.639), as shown in Fig. 5d and Table 2. However,
when we evaluated ERNIE-RNA with its pre-trained parameters frozen
(ERNIE-RNA attn-map frozen and ERNIE-RNA frozen), they surpassed
the DP methods, achieving Fl-scores of 0.646 and 0.634, respectively.
This striking result suggests that ERNIE-RNA’s pre-training phase suc-
cessfully imbues the model with robust, generalizable structural
representations that transfer effectively to other families, even more
so than aggressive fine-tuning.
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Fig. 4 | RNA family classification performance through dimensionality reduc-
tion analysis. t-SNE visualization comparing clustering results using different
feature representations: one-hot encoding (top left), RNA-FM CLS token embed-
dings (top right), ERNIE-RNA CLS token embeddings (bottom left), and ERNIE-RNA

pan motif
SL1 RNA

RNA-FM CLS token

Rand Index: 0.64
Fowlkes Mallows: 0.68

microRNA mir-154
Selenocysteine insertion sequence 1

Small nucleolar RNA SNORD36
Hammerhead ribozyme (type I)

ERNIE-RNA attn-map

Rand Index: 0.79
Fowlkes Mallows: 0.81

attention maps (bottom right). Each color represents a distinct RNA family cate-
gory. The Rand Index and Fowlkes-Mallows scores, displayed in the top-left corner
of each panel, quantitatively measure the clustering quality.

On the even more challenging RNA3DB-2D dataset, which has a
very small training set (N =401), all deep learning methods fell short of
the DP baselines (Fig. 5e and Table 2). Nevertheless, ERNIE-RNA frozen
and ERNIE-RNA attn-map remained the top-performing deep learning
approaches, maintaining a significant lead over all others. This resilience
is further highlighted when comparing ERNIE-RNA directly with its
strongest competitor, RINALMo. While RiNALMo’s performance drops
sharply on these generalization sets, ERNIE-RNA maintains a more stable
and superior performance, as visually confirmed by the head-to-head
scatter plots where most points lie above the diagonal (Fig. 6a, b).
Finally, Fig. 6¢c provides qualitative examples of this advantage,

showcasing ERNIE-RNA’s ability to accurately predict the complex
structures of both a pemK RNA (Rfam RF02913) from the bpRNA-new
dataset and a c-di-GMP-I riboswitch aptamer (Rfam RF01051, PDB
4YB1 R) from the RNA3DB-2D test set. For both of these unseen families,
ERNIE-RNA attn-map and ERNIE-RNA attn-map frozen delivers near-
perfect or highly accurate predictions, starkly contrasting with the sig-
nificant errors produced by other language and traditional methods.
To address the crucial question of model performance across
different training data scales, we conducted systematic experiments
using varying sizes of training data, from 1000 to 58,000 sequences
(Supplementary Table 5 and Supplementary Fig. 8). ERNIE-RNA attn-
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Fig. 5 | Comprehensive benchmark of RNA language models for secondary
structure prediction across diverse datasets. a Schematic of the unified eva-
luation framework. For all language models, token embeddings are extracted and
fed into a common downstream network for fine-tuning. ERNIE-RNA uniquely
offers its attention maps as an alternative feature and allows for zero-shot pre-
diction directly from its pre-trained heads. b-e Violin plots comparing the F1score
distributions of various models on four benchmark datasets with increasing gen-
eralization difficulty: b the standard bpRNA-1Im TSO testset (sample size n=1305);

c the RIVAS TestSetB (n=430); d the bpRNA-new dataset (n =5388); and e, the
RNA3DB-2D testset (n=158). The red dashed line represents the performance of
the best-performing traditional dynamic programming (DP) method on that spe-
cific dataset for reference. Within each violin plot, the white center line of the inner
box indicates the median, the box represents the interquartile range (IQR, 25th and
75th percentiles), and the whiskers extend to 1.5 times the IQR. The red star marker
indicates the mean F1-score.

map demonstrates consistent performance advantages across all
training set sizes, achieving a macro-average Fl-score of 0.821 even
with just 1000 training sequences, compared to RNA-FM’s 0.728. This
robust performance at limited data scales, combined with continued
improvements as training data increases, suggests that ERNIE-RNA’s
structure-enhanced pre-training provides a strong foundation for RNA
secondary structure prediction regardless of downstream training
data availability.

These results collectively highlight the robustness, scalability, and
efficiency of ERNIE-RNA for RNA secondary structure prediction, even

with limited pre-trained data or a smaller model size compared to
other methods. The consistent improvements across diverse datasets
and evaluation metrics establish ERNIE-RNA as a powerful tool for
downstream RNA analysis tasks.

RNA contact map prediction

RNA contact map prediction task refers to predicting the spatial dis-
tances between nucleotides within RNA molecules based on their one-
dimensional sequence. An RNA contact map employs a two-
dimensional matrix wherein each cell indicates whether the distance
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Table 2 | RNA secondary structure prediction performance on cross-family generalization datasets

Method Type Methods Model Size  bpRNA-new RNA3DB-2D
Precision Recall F1-Score Precision Recall F1-Score
(binary) (binary) (binary) (binary) (binary) (binary)
LLM zero-shot ERNIE-RNA 86 M 0.519 0.689 0.575 0.523 0.607 0.542
zero shot®
LLM finetune ERNIE-RNA 86 M 0.622 0.570 0.580 0.532 0.734 0.581
attn-map?
ERNIE-RNA 86 M 0.603 0.719 0.646 0.476 0.726 0.542
attn-map frozen®
ERNIE-RNA® 86 M 0.616 0.570 0.578 0.486 0.577 0.480
ERNIE-RNA 86 M 0.588 0.713 0.634 0.602 0.693 0.590
frozen®
RNA-FM 100M 0.448 0.433 0.422 0.256 0.283 0.218
RNA-MSM 96 M 0.485 0.485 0.464 0.536 0.503 0.455
RNA-BERT 0.5M 0.529 0.344 0.353 0.645 0.236 0.224
RNAErnie 105M 0.476 0.569 0.505 0.468 0.551 0.462
RiINALMo 650 M 0.616 0.313 0.355 0.554 0.533 0.495
Deep learning (DL) Ufold 0.494 0.502 0.484 0.487 0.393 0.379
E2Efold 0.207 0.018 0.026 0.349 0.129 0.095
Dynamic Program- LinearFold 0.643 0.646 0.614 0.720 0.708 0.661
g (1) Mfold 0535 0.693 0.596 0.610 0.741 0.633
RNAstructure 0.538 0.704 0.602 0.605 0.737 0.630
RNAfold 0.547 0.721 0.614 0.612 0.759 0.641
CONTRAfold 0.573 0.737 0.636 0.622 0.774 0.655
Eternafold 0.579 0.735 0.639 0.620 0.765 0.650
DL+DP MXfold2 - 0.580 0.718 0.633 0.604 0.725 0.622

Binary precision, recall, and F1-scores are reported for ERNIE-RNA and a comprehensive set of contemporary methods on the bpRNA-new and RNA3DB-2D test sets. These benchmarks are
specifically designed to evaluate model generalization on RNA families not seen during training. For bpRNA-new, models were trained on the bpRNA-1m (80) training set. For RNA3DB, models were

trained on its own structurally dissimilar training set.
“ERNIE-RNA L12 model.
Numbers shown in bold within the table represent the best-performing results for each task.

between nucleotides at corresponding positions in the RNA molecule’s
three-dimensional structure is below a predefined threshold (typically
8 A). Nucleotides falling within this threshold are in closer spatial
proximity. We downloaded the benchmark datasets from
RNAcontact™, which contains 301 sequences with more than 5 con-
tacts, and divided the dataset into 221 training (TR221) and 80 testing
(TS80) sets.

We designed various models based on the ResNet downstream
architecture, with different combinations of features, including one-
hot, MSA (named Cov), RNA secondary structure predicted by
PETfold* (named SS), attention maps extracted from ERNIE-RNA and
token embeddings extracted from ERNIE-RNA and RNA-FM. Notably,
the ResNet using features from ERNIE-RNA achieved state-of-the-art
performance. As shown in Supplementary Table 8, the model lever-
aging ERNIE-RNA’s attention maps as input surpassed all other meth-
ods, including the highly complex RNAcontact (100-model ensemble),
achieving a Top-L/1 precision of 0.68. This represents a significant
improvement over both traditional feature sets like Cov+SS (0.46) and
one-hot encodings (0.33). Furthermore, when using standard token
embeddings for a direct comparison with other LLMs, ERNIE-RNA
(Top-L/1 precision of 0.47) also consistently outperformed all other
language models, such as RNA-FM (0.42). These results, visualized in
Fig. 7a, strongly indicate that the superior performance stems from the
rich structural features effectively encoded by ERNIE-RNA’s pair-wise
position bias during pre-training, making its representations excep-
tionally well-suited for 3D contact prediction.

5'UTR sequence mean ribosomal loading (MRL) prediction
The 5’'UTR (untranslated region) MRL prediction task refers to pre-
dicting the mean ribosomal loading onto the 5UTR sequences, which

is often used to evaluate the translation efficiency of corresponding
RNA sequences. We downloaded the benchmark dataset from Opti-
mus 5-prime®, which comprises 83,919 artificially synthesized random
5’'UTRs and 7600 real human 5’'UTRs along with corresponding MRL
values.

We selected 7600 synthesized random 5’'UTRs as the random test
set with the remaining 76,319 synthesized random 5’'UTR sequences as
the training set. The 7600 human 5’'UTRs was used as the human test
set to assess the model’s ability to generalize beyond synthetic SUTR
sequences. We found that the performance of all tested models was
worse on the human test set than on the random test set. This may be
due to distributional differences between the two datasets. As shown
in Supplementary Table 9, ERNIE-RNA-conv achieved the best perfor-
mance on the random test set (R?=0.92) and the human test set
(R%2=0.86), outperforming all other tested RNA language models.
Although ERNIE-RNA-mlp utilized only two simple MLP layers as its
downstream architecture, fine-tuning performance is close to the
SOTA (R?=0.91 on the random test set and R? = 0.84 on the human test
set). Despite having the smallest model size and the least pre-training
data, ERNIE-RNA demonstrated the best generalizability for SUTR
sequences MRL prediction task among all tested language models.

RNA-protein binding prediction

RNA-protein binding is a common biological phenomenon within cells
and plays a critical role in various cellular activities, including cell-
signaling and translation. We conducted experiments using the
benchmark dataset from PrismNet*, which included icSHAPE data. We
divided the dataset into several sub-datasets according to different
RNA-binding proteins (RBPs) and cell environments. We finally chose
17 RBPs in the Hela cell environment. We designed models using two
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representative Rfam sequences: a pemK RNA (RF02913, top) from bpRNA-new
dataset and a c-di-GMP-I riboswitch aptamer (RFO1051, PDB 4YB1 R, bottom) from
RNA3DB-2D testset. Ground truth structures (leftmost) are compared with pre-
dictions from ERNIE-RNA attn-map, ERNIE-RNA attn-map frozen, mxfold2, RNA-
fold, RNA-FM and RiNALMo. Binary Fl-scores below each structure quantify
prediction accuracy.

downstream architectures: a simple MLP network was used for evalu-
ating the CLS token from all language models, while the more complex
PrismNet network was used for models with sequence-level features
like one-hot encoding, icSHAPE data, or ERNIE-RNA’s full token
embeddings.

As shown in Supplementary Table 10 and Fig. 7b, the model using
icSHAPE and one-hot encoding features as input has a higher mean
AUPRC than that only with one-hot encoding features, which may be
due to the RNA secondary structure information provided by icSHAPE.
Notably, the ERNIE-RNA (MLP), which only use CLS token embedding
as input performed better than all previous methods and all other
tested RNA language models, including RINALMo and RNA-MSM.
Furthermore, the model replacing icSHAPE with token embeddings
extracted by ERNIE-RNA is the best among all tested models, sug-
gesting that ERNIE-RNA can learn sufficient information about struc-
tures and functions from raw RNA sequences, benefiting the
downstream functional prediction task.

ncRNA family classification
Accurate classification of non-coding RNAs (ncRNAs) into functional
families is essential for understanding their diverse roles in gene reg-
ulation and cellular processes. This task presents significant compu-
tational challenges due to the high dimensionality of sequence space
and the subtle differences between ncRNA families. Although tradi-
tional methods rely heavily on predicted secondary structures for
classification, they are computationally intensive and may not fully
capture the sequence-structure-function relationships. Following the
established benchmark by Noviello et al.**, we formulated ncRNA
family classification as a closed-set multi-class classification task,
where sequences are assigned to one of 88 predefined Rfam families.
This standard formulation enables direct comparison with previous
state-of-the-art methods and focuses on evaluating the model’s ability
to distinguish between known ncRNA families.

We tested the model’s robustness by introducing boundary noise -
random nucleotides added to both ends of the sequences while
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proteins compared to Seq baseline, denoted by the horizontal dashed line. ERNIE-
RNA outperforms all other tested methods in most cases.

maintaining the original nucleotide frequencies - ranging from 0% to
200% of sequence length. ERNIE-RNA achieved superior accuracies of
0.9844 and 0.9820 under 0% and 200% boundary noise conditions,
respectively (Supplementary Table 11), outperforming previous
methods while using significantly fewer parameters (86 M) than UNI-
RNA (169 M). This consistent performance across varying noise levels
demonstrates ERNIE-RNA’s robust feature extraction capabilities and
suggests that its structure-enhanced representations provide a more
efficient framework for ncRNA classification than previous
approaches.

Multi-species splice site prediction
Accurate prediction of splice sites—the boundaries between exons and
introns in pre-messenger RNA (pre-mRNA)—is essential for precise

gene annotation and understanding gene expression regulation. This
task is computationally challenging due to the short, highly conserved
motifs defining splice sites and the presence of non-canonical splice
sites that deviate from the GT-AG consensus sequence®. We evaluated
ERNIE-RNA’s capability to predict splice sites using two distinct
benchmark datasets: (1) A multi-species dataset from Spliceator®,
comprising curated, confirmed splice sites from over 100 eukaryotic
species, with four species (zebrafish, fruit fly, worm, and Arabidopsis)
held out for testing; and (2) A dataset from the BEACON benchmark®’
using the SpliceAl dataset™, containing -15,000 splice sites from
human pre-mRNAs.

On the multi-species dataset, ERNIE-RNA achieved Fl-scores of
0.9612, 0.9180, 0.9203, and 0.9294 for zebrafish, fruit fly, worm, and
Arabidopsis respectively (Supplementary Table 12). While UNI-RNA
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and SpliceBERT demonstrate slightly higher F1-scores (ranging from
0.9343 to 0.9635), ERNIE-RNA shows strong and consistent perfor-
mance across all species, with a more parameter-efficient architecture
(86 M parameters compared to UNI-RNA’s 169 M). These minor per-
formance differences may be attributed to UNI-RNA’s incorporation of
mRNA and pre-mRNA sequences in its pre-training data, which natu-
rally contain rich information about splice sites.

On the SpliceAl dataset, ERNIE-RNA significantly outperformed
existing methods with a top-K accuracy of 55.37%, compared to RNA-
FM (34.84%), RNABERT (0.18%), and RNA-MSM (38.33%) (Supplemen-
tary Table 13). This substantial improvement demonstrates ERNIE-
RNA'’s superior capability in capturing complex splicing patterns from
the primary sequence alone, which is particularly valuable for anno-
tating splice sites in non-model organisms, where experimental vali-
dation data may be limited.

Alternative polyadenylation prediction

Alternative polyadenylation (APA) is a crucial post-transcriptional reg-
ulatory mechanism that generates mRNA isoforms with distinct 3’
untranslated regions (3’ UTRs), influencing gene expression and protein
function. The process is controlled through a complex interplay
between cis-regulatory elements - primarily polyadenylation signals
(PAS) centered around the AATAAA hexamer motif - and trans-acting
RNA-binding proteins that recognize these sequences®. We evaluated
ERNIE-RNA’s performance on this task using the BEACON benchmark’s
APA dataset derived from the APARENT study*”® - a massively parallel
reporter assay measuring isoform ratios from over 3 million unique UTR
sequences constructed from 13 libraries, including both synthetic
sequences with randomized regulatory regions and natural human PAS.

ERNIE-RNA achieved a significantly higher R? score (78.39%)
compared to existing methods such as RNA-FM (70.32%), RNABERT
(57.66%), and RNA-MSM (70.40%) on the BEACON benchmark (Sup-
plementary Table 14). This improvement is particularly noteworthy
given the established complexity of APA regulation, which is known to
involve the coordinated action of core polyadenylation machinery
components, including CPSF, CstF, and CFIm, along with numerous
auxiliary factors that bind to upstream and downstream sequence
elements®®. This finding suggests that ERNIE-RNA is able to effectively
model these complex interactions.

This superior performance suggests that ERNIE-RNA effectively
models the multiple sequence determinants governing PAS selection,
from the core hexamer to the extended regulatory context. The model
maintains robust prediction accuracy, even on challenging held-out
test sets containing diverse UTR contexts, demonstrating its ability to
generalize beyond its training scenarios. This capability has important
implications for understanding post-transcriptional gene regulation
mechanisms and, potentially, for engineering synthetic 3’ UTRs with
desired polyadenylation patterns for therapeutic applications.

Discussions

To effectively utilize the vast amount of unlabeled RNA sequences and
extract RNA features with more comprehensive semantic information,
we trained an RNA language model, named ERNIE-RNA, using
20.4 million non-coding RNAs from RNAcentral. Our results demon-
strate that ERNIE-RNA’s attention maps inherently capture RNA
structural features through pre-training alone. Upon fine-tuning,
ERNIE-RNA achieves SOTA performance in downstream tasks like RNA
secondary structure, RNA contact map, UTR-MRL and RNA-protein
binding prediction.

While ERNIE-RNA has demonstrated promising results, several
limitations and future directions warrant consideration. First, the
current model has a sequence length constraint of 1024 nucleotides,
which may limit its applicability to longer RNA molecules, such as
certain IncRNAs. Second, our pre-training solely focused on ncRNA
sequences, potentially limiting the model’s downstream applications

compared to methods like UTR-LM* and CaLM* that specifically
incorporate mRNA and UTR sequences in their training data. Third,
while our pair-wise attention bias mechanism enables emergent
structural feature extraction capabilities, the mathematical principles
underlying this emergent phenomenon lack thorough theoretical
understanding and require further investigation.

Looking ahead, several promising directions could further
enhance ERNIE-RNA’s capabilities. First, exploring larger-scale pre-
training with more diverse RNA sequences, particularly mRNA and
UTR data, may unlock additional emergent abilities. Second, incor-
porating multi-modal data, such as experimental structure probing
data or evolutionary information, could provide complementary sig-
nals for more accurate predictions. Third, adapting ERNIE-RNA for
RNA therapeutic applications represents a valuable future direction.
Given its strong performance in capturing RNA structural and func-
tional features, ERNIE-RNA could potentially accelerate the develop-
ment of RNA therapeutics through applications such as mRNA vaccine
sequence optimization, RNA-based drug design, and RNA-small
molecule interaction prediction.

In summary, our results show that ERNIE-RNA offers informative
features for RNA modeling and may contribute to future investigations
of RNA biology. The success of our structure-enhanced attention
mechanism also suggests that incorporating domain-specific prior
knowledge into language model architectures may be a broadly
applicable strategy for improving biological sequence analysis. This
approach could potentially benefit pre-trained language models for
other biomolecules, such as proteins, DNA, and complex molecular
assemblies.

Methods

Training dataset

We collected a dataset of 34 million raw non-coding RNA (ncRNA)
sequences from RNAcentral database (release 21), which is the largest
dataset of ncRNA to date. We substituted T with U within the
sequences and used 11 different symbols, namely ‘N, Y,” ‘R, ‘S, ‘K,” ‘W,
‘M, ‘D, ‘H,’ ‘V,” and ‘B,’ to represent distinct degenerate bases, as illu-
strated in Supplementary Table 15. After refining the vocabulary, CD-
HIT-EST*® was used to remove redundant sequences above 100%
similarity, resulting in 25 million non-redundant sequences. We further
filtered out sequences longer than 1024 and obtained a large-scale pre-
training dataset consisting of 20.4 million ncRNA sequences ulti-
mately. Supplementary Fig. 1 shows the length distribution and type
distribution of this dataset.

Model architecture

In this work, we introduced a RNA pre-trained language model, named
ERNIE-RNA, which enhances structural information based on the
modified BERT architecture. ERNIE-RNA consists of 12 transformer
blocks and each block contains 12 attention heads. Every token in the
sequence is mapped to a 768-dimensional vector, resulting in 86 mil-
lion parameters. Specifically, we used the one-dimensional RNA
sequence to compute a pair-wise position matrix to replace the bias of
the first layer in the ERNIE-RNA. From the second layer onward, the
bias of each layer is determined by the attention map of the previous
layer. This integration introduces RNA structural information into the
attention map calculation at each layer, allowing for the extraction of
more comprehensive semantic features. The improved self-attention
formula is as follows:
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Attention(Q, K, V)= \', 3

EncoderLayer(x)=Norm(x + FFN(Norm(x + Attention(x, X, X)))) (4)

For a RNA sequence with length L, ERNIE-RNA takes raw sequen-
tial tokens as input, resulting in an L x 768 x 12 embedding matrix and
an L x L x 156 attention maps, where 156 equals 12 x 13, 12 represents
the num of attention heads and 13 represents the num of transformer
blocks plus 1 (manually calculated pair-wise position matrix).

Training details

For pre-training, we followed a self-supervised training manner in RNA-
FM. Around 15% of nucleotide tokens are randomly replaced with a
special token. (If the i-th token is chosen, we replace the i-th token with
(1) the [MASK] token 80% of the time (2) a random token 10% of the
time (3) the unchanged i-th token 10% of the time). We train ERNIE-RNA
with masked language modeling (MLM), which predict the masked
token with cross-entropy loss.

We use fairseq® to train ERNIE-RNA for about 20 days on 24 32G-
V100. During the pre-training process, we adopted the following
hyperparameter configuration: the base learning rate was set to
0.0001, the warmup step was set to 20000 steps, and the weight-
decay was set to 0.01. In order to speed up the training of the network
while reducing the memory usage, we constrain the maximum length
of the input sequence to 1024.

Downstream dataset

RNA secondary structure dataset

bpRNA-1m:. This dataset, introduced by Danaee et al., is a large-scale
collection of RNA secondary structures. We used three versions of this
dataset: bpRNA-1Im (all): Contains 102,318 single-molecule RNA sec-
ondary structures annotated using bpRNA; bpRNA-Im (90): A dedu-
plicated version of bpRNA-Im (all) with sequences filtered at 90%
similarity, yielding a cleaner dataset with 28,370 training sequences;
bpRNA-Im (80): The standard benchmark dataset for secondary
structure prediction, filtered at 80% similarity, with 10,814 training
sequences (TRO), 1300 validation sequences (VLO), and 1305 testing
sequences (TSO). This is the version used for our primary secondary
structure prediction experiments, and our data splitting ensures con-
sistency with previous work (Ufold, RNA-FM) to allow fair comparison.
Unlike UNI-RNA, which used both RNAstralign and TRO for training, we
only used TRO to train ERNIE-RNA and tested it on TSO.

Archivell:. This dataset, originally curated by Sloma and Mathews
(2016), is a comprehensive benchmark containing 2975 RNA sequen-
ces with known secondary structures across 10 diverse RNA families.
The sequence lengths range from 28 to 2968 nucleotides. We used
Archivell to evaluate the performance of models on a dataset with
diverse RNA families, including those not seen during training. It is
complementary to the RNAStrAlign dataset.

bpRNA-new:. To further assess cross-family generalization, we utilized
the bpRNA-new dataset. This test set, derived from Rfam 14.2, com-
prises 5,401 sequences from RNA families that are entirely different
from those in the bpRNA-Im benchmark. For this evaluation, models
were trained on the bpRNA-1m (80) training set and tested on bpRNA-
new, providing a direct measure of their ability to generalize to unseen
RNA families.

RNA3DB-2D dataset: To provide rigorous evaluation of general-
ization and to explicitly address concerns about data leakage from
structural homology, we constructed a new benchmark dataset based
on the RNA3DB (v. 2024-12-04) release. The core advantage of RNA3DB
is its methodology for creating structurally-dissimilar dataset splits. It

first groups all RNA chains into “Components” based on structural
homology, ensuring that different RNA family (Components) are
structurally non-redundant. These Components are then assigned to
train, validation, or test sets, which fundamentally prevents structural
information from leaking between the splits. We have made our entire
data processing pipeline, which transforms the 3D structures from
RNA3DB into 2D secondary structure data in BPSEQ format, publicly
available for full reproducibility (see our repository at https://github.
com/ZYZhangl7/RNA3DB-2D-Structures).

Briefly, the pipeline (Supplementary Fig. 9) begins by down-
loading all required RNA3DB mmCIF files from the PDB. Each file is
then parsed using rnapolis-py to extract RNA chains and their sec-
ondary structures, followed by a critical sequence correction step. We
apply a series of filters (e.g., based on sequence length and resolution)
and select a single, high-quality representative chain for each
structurally-dissimilar cluster defined by RNA3DB. These selected
clusters are then partitioned into training, validation, and test sets
using RNA3DB's core splitting logic. Finally, the secondary structures
of the selected chains are converted into BPSEQ and then a pickle
format suitable for machine learning. This entire process yielded a final
benchmark with 401 training, 127 validation, and 161 testing sequen-
ces, forming the basis of our most stringent generalization tests.

RIVAS dataset:. This dataset, introduced by Rivas et al., is specifically
designed to assess cross-family generalization of RNA secondary
structure prediction methods. It contains three subsets: TrainSetA
(3166 sequences), TestSetA (697 sequences), and TestSetB
(430 sequences). TestSetB is particularly challenging as it contains
RNA families distinct from both training and validation sets. We used
TestSetB to evaluate the model’s ability to generalize to previously
unseen RNA families.

Following data acquisition from their original sources.all datasets
underwent cross-validation against the standardized versions available
in multimolecule (https://doi.org/10.5281/zenodo.12638419), a com-
prehensive library for molecular biology machine learning. Multi-
molecule provides curated biomolecular datasets and standardized
data processing pipelines, enabling reproducible benchmarking across
different studies. This validation step ensures data consistency and
reliability while aligning with community standards for RNA structure
prediction tasks.

RNA 3D closeness dataset. We utilized the benchmark datasets from
RNAcontact”, which is available at (https://yanglab.qd.sdu.edu.cn/
RNAcontact/benchmark/). The original 1786 sequences were down-
loaded from PDB and those lengths outside the range of 32 to 1000 were
first excluded, leaving 511 sequences remained. CD-HIT-EST and
BLASTclust® were used to remove redundant sequences above 30%
similarity, resulting in 336 non-redundant sequences. The distance
between any two bases is defined as the minimum atom-pair distance.
Bases’ distance within 8 A were labeled positive contacts. Finally,
sequences with <5 contacts were removed, leaving 301 sequences divided
into 221 training (TR221) and 80 testing (TS80) sets. In order to select the
model checkpoint more fairly, we further randomly divided TR221 into
two parts according to the ratio of 8:2, recorded as TR168 and VL43.

RNA 5'UTR mean ribosome loading dataset. Our experiments relied
on a benchmark dataset obtained from Optimus 5-prime, including
83,919 artificially synthesized random 5’'UTRs with their corresponding
mean ribosomal loading (MRL) values. These sequences ranged from
25 to 100 nucleotides in length. To ensure the accuracy of our model’s
testing across various SUTR lengths, we meticulously selected the top
100 5’UTRs of each length, prioritizing those with the deepest
sequencing and highest read counts to enhance confidence in
sequencing outcomes. This yielded a total of 7600 sequences for the
test set, while the remaining 76,319 sequences constituted the training
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set. Additionally, we enriched our analysis by incorporating an extra
dataset comprising 7600 real human 5’'UTRs with the similar length
distribution.

RNA protein binding dataset. We conduct experiments on a bench-
mark dataset from PrismNet, which includes icSHAPE data. We divided
them into several sub-datasets according to different corresponding
RBPs and different cell environment. We finally chose 17 RBPs in Hela
cell environment as RNA-FM did to make a fair comparison. The
number of RNA sequences of each RBP ranges from 1827 to 15002. We
partitioned 20% of the data into a test set following an 8:2 ratio. Sub-
sequently, the remaining 80% of the data was divided into a training set
and a validation set at a ratio of 9:1. The length of all sequences from
different RBPs is 101 nucleotides.

ncRNA family classification dataset

We utilized a comprehensive benchmark dataset curated by Noviello
et al**, derived from the Rfam database (version 14). This dataset
encompasses a diverse collection of short ncRNA sequences (<200
nucleotides) distributed across 88 distinct families, providing a rigorous
test set for assessing the model’s ability to discern subtle differences
between ncRNA families. This dataset is specifically designed to evaluate
the model’s robustness to noise in the input sequences, mimicking real-
world scenarios where the precise boundaries of ncRNA transcripts may
not be known. The dataset contains sequences with varying levels of
boundary noise: including a “clean” dataset with 0% boundary noise and
a “noisy” dataset with 200% boundary noise. The boundary noise was
introduced by adding random nucleotides to both ends of each
sequence while preserving the original nucleotide frequencies, simu-
lating the uncertainty in transcript boundaries that can arise from
experimental limitations or natural variations. For each noise level, the
dataset was divided into training, validation, and testing sets.

Splice site prediction dataset

We utilized two established benchmark datasets: (1) the widely used multi-
species dataset from Spliceator®, and (2) the human splice site dataset
from the BEACON benchmark, derived from the SpliceAl study. The multi-
species dataset comprises a curated collection of experimentally vali-
dated splice sites from over 100 eukaryotic species, providing a diverse
and challenging test set for assessing cross-species generalizability. The
BEACON SpliceAl dataset, on the other hand, focuses specifically on
human splice sites and provides a large-scale, high-quality resource for
evaluating model performance in a human-specific context. For both
datasets, input sequences were prepared by extracting 400-nucleotide
windows centered on the potential splice sites (200 nucleotides upstream
and downstream). This window size was chosen to capture sufficient
flanking sequence context while maintaining computational efficiency.

Alternative polyadenylation dataset

We employed a processed version of the APARENT dataset™, as
described in the BEACON benchmark. The original APARENT dataset
contains a diverse collection of polyA site sequences derived from
massively parallel reporter assays, encompassing over 3 million unique
sequences with corresponding isoform expression data*®. For the
BEACON benchmark, this dataset was further processed and for-
matted to provide a standardized resource for evaluating APA pre-
diction models. The dataset provides a valuable resource for
evaluating the model’s ability to capture the complex interplay of
sequence features that govern polyA site selection.

Downstream tasks

RNA secondary structure prediction. We evaluated the performance
of ERNIE-RNA and other baseline models on the RNA secondary
structure prediction task using two distinct evaluation paradigms:
zero-shot prediction and fine-tuning.

Zero-shot Prediction:. To assess the structural information learned
implicitly during pre-training, we evaluated ERNIE-RNA in a zero-shot
setting without any fine-tuning. In this approach, the attention maps
from all 13 layers and 12 heads of the pre-trained ERNIE-RNA model
were extracted for each input sequence. Each attention map was
treated as a pairwise probability matrix representing potential base-
pairing interactions. Due to the stochastic nature of pre-training, the
specific layer and head that best capture structural information can
vary. In our provided pre-trained model checkpoint, the 6th head of
the final layer (Head 5 in Fig. 2) demonstrates optimal performance for
zero-shot structure prediction, so we selected this specific head for
zero-shot prediction tasks. The resulting probability matrix from this
head was then converted into a final binary contact map using a post-
processing algorithm adapted from E2Efold, which enforces structural
constraints such as base-pairing rules.

Fine-tuning:. To evaluate the models’ ultimate performance, we
fine-tuned them on the training set of each RNA secondary
structure dataset. For a fair and direct comparison, all language
models, including ERNIE-RNA, RiNALMo, RNA-FM, RNAErnie,
RNA-MSM and RNA-BERT, were evaluated by feeding their token
embeddings into a unified ResNet-based downstream network. In
parallel, to leverage the unique, structure-aware features of our
model, we also evaluated ERNIE-RNA by using its attention maps
as direct 2D input to a lighter, custom CNN architecture (so called
ERNIE-RNA attn-map and ERNIE-RNA attn-map frozen). For all
evaluations, the parameters of the downstream networks were
randomly initialized, while the upstream language models either
had their pre-trained parameters updated during fine-tuning or
kept frozen, depending on the specific experiment. Additionally,
non-LLM baselines like Ufold were retrained from scratch on the
same training sets to ensure a fair comparison.

In the fine-tuning stage, all models were trained using the
Adam optimizer with a batch size of 1. The learning rate was set to
1le-5 for fully fine-tuned models and le-4 for variants with a frozen
backbone. We used a binary cross-entropy loss function with a
positive weight of 300 to address the imbalance between paired
and unpaired bases. An early stopping mechanism was employed,
terminating the training if the Fl-score on the validation set did
not improve for 20 consecutive epochs. For the final RNA sec-
ondary structure prediction, the output matrices from all models
were processed using the same E2Efold-style post-processing
algorithm to generate the final contact maps.

RNA 3D closeness prediction

The task of RNA 3D closeness prediction aims to identify nucleotide
pairs that are spatially close (typically within an 8 A distance) in the
folded 3D structure. As this task can also be framed as a two-
dimensional matrix prediction problem, we utilized the same down-
stream architectures and training methodologies described for the
RNA secondary structure prediction task. All models, including the
various ERNIE-RNA configurations and other LLMs, were trained and
evaluated using the same features (token embeddings or attention
maps) and training protocols.

Performance for this task was measured using the Long-Range
Top-L precision metric. This metric specifically evaluates the accuracy
of contacts between nucleotides that are separated by more than 24
residues in the primary sequence (|i-j | >24). Precision is calculated for
the top L/10, L/5, L/2, and L/1 predicted long-range contacts, where L is
the sequence length.

RNA 5’'UTR mean ribosome loading prediction

Prior to model construction and training, we firstly standardized the
Mean Ribosomal Loading (MRL) values to be predicted, which may
improve the convergence and overall performance of the model
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during fine-tuning. Two distinct models were constructed: ERNIE-RNA-
token-conv and ERNIE-RNA-token-mlp. The former used Token
Embedding except for CLS and EOS tokens from ERNIE-RNA, and
employed a convolutional residual neural network as its downstream
architecture. Conversely, ERNIE-RNA-token-mlp utilized the CLS token
embedding provided by ERNIE-RNA to mitigate the impact of
sequences of varying lengths. It employed a simple two-layer fully
connected network to further extract features. During the fine-tuning
phase, we initialized the base learning rate to le-5 and employed the
Mean Squared Error (MSE) loss function to iteratively update model
parameters. The number of tolerable epochs was set to 10. Consider-
ing that the design of ERNIE-RNA-token-conv is related to the input
length, and the longest sequence length in the training set is 100, we
applied padding to standardize the sequence length across the entire
dataset to 100 for model input.

For a comprehensive and fair comparison, we also evaluated
several other prominent RNA language models, including RiNALMo,
RNA-MSM, RNA-FM, RNAErnie, and RNA-BERT. These models were
accessed via the multimolecule package (https://doi.org/10.5281/
zenodo.12638419). To ensure a direct comparison of the models’
representation power, we used their token embeddings as input and
coupled them with the exact same downstream network architecture,
optimizer, and training hyperparameters as our ERNIE-RNA (conv)
model. This standardized setup guarantees that any observed perfor-
mance differences are attributable to the quality of the pre-trained
embeddings themselves.

RNA protein binding prediction

We designed two models: ERNIE-RNA-PRSIMNET and ERNIE-RNA-MLP.
ERNIE-RNA-PRSIMNET adopted the main architecture of PrismNet, but
replaced the icSHAPE input with token embedding except for the CLS
and EOS tokens from ERNIE-RNA. ERNIE-RNA-MLP took only the CLS
token embedding provided by ERNIE-RNA as input and further
extracted features through a straightforward two-layer fully connected
network. During the fine-tuning phase, we initialized the base learning
rate to le-5 and employed the cross-entropy loss function to update
model parameters. Additionally, we set 10 as the maximum number of
tolerable epochs. For comparison, other language models (RINALMo,
RNA-MSM, etc.) were evaluated using the same downstream archi-
tecture and training protocol as described above.

ncRNA family classification

The task follows the standard closed-set multi-class classification
paradigm, where each input ncRNA sequence is mapped to one of
the 88 predefined family labels. We employed a fine-tuning strategy,
leveraging the pre-trained ERNIE-RNA model as a feature extractor
and adding a classification head tailored for this task. The classification
head consists of four ResNet layers, outputting a probability
distribution over the 88 ncRNA families. The model was trained using
the Adam optimizer with a learning rate of le-4 and a batch size of
32. The cross-entropy loss function was used to measure the
discrepancy between the predicted and true family labels. Model
performance was evaluated using classification accuracy, providing
a comprehensive measure of the model's ability to correctly
assign ncRNA sequences to their respective families. For comparison,
other language models (RiINALMo, RNA-MSM, etc.) were evaluated
using the same downstream architecture and training protocol as
described above.

Splice site prediction

The task is to predict the location of splice sites (both donor and
acceptor sites) within a given pre-mRNA sequence. We fine-tuned the
ERNIE-RNA model using a binary cross-entropy loss function, opti-
mizing the model’s parameters to accurately distinguish between true

splice sites and non-splice sites. To ensure robust performance and
avoid overfitting, we employed an early stopping strategy based on the
model’s performance on a held-out validation set. Model-specific
hyperparameters, including the learning rate and the number of
training epochs, were optimized using a grid search approach on the
validation set. Performance was evaluated using standard metrics for
binary classification, including precision, recall, and Fl-score. For
comparison, other language models (RNA-FM, RNA-MSM, etc.) were
evaluated using the same downstream architecture and training pro-
tocol as described above.

Alternative polyadenylation

The task is to predict the relative usage of proximal versus distal polyA
sites, quantified as isoform percentages. We employed a mean squared
error (MSE) loss function to measure the discrepancy between the
predicted and experimentally determined isoform percentages. To
ensure that the model could effectively learn the subtle sequence
determinants of polyA site choice, we implemented a regression head
on top of the pre-trained ERNIE-RNA backbone. The regression head
consists of two layers of one-dimensional convolution and five layers
of ResNet. After passing through the Sigmoid layer, a continuous value
is output, representing the predicted percentage of homomorphism.
We employed an early stopping strategy based on the model’s per-
formance on a held-out validation set, terminating training when the
validation loss ceased to improve. Additionally, we incorporated L2
regularization into the loss function to penalize large weights and
encourage the model to learn a more parsimonious representation of
the underlying sequence features.

Data availability

The processed RNAcentral datasets® used for pretraining are available
in the Figshare repository under the (https://doi.org/10.6084/m9.
figshare.28034282.v1). The RNA3DB-2D dataset®® generated in this
study has been deposited in the Figshare repository under the (https://
doi.org/10.6084/m9.figshare.30144502.v1). All other datasets used in
this study are publicly available from their original sources. Specifi-
cally, the bpRNA-Im* (all, 90, 80) datasets are available at (https://
bprna.cgrb.oregonstate.edu/download.php#bpRNA-1m) and (https://
www.dropbox.com/scl/fi/3yj80cré6febz9a8xv8oio/bpRNA _dataset.zip)
The bpRNA-new dataset” used is available at (https://github.com/
mxfold/mxfold2/releases/download/v0.1.1/bpRNAnew.tar.gz); The
RNAstrAlign dataset is available at (https://github.com/mxfold/
mxfold2/releases/download/v0.1.1/RNAStrAlign.tar.gz); The Archivell
dataset is available at (https://github.com/mxfold/mxfold2/releases/
download/vO0.1.1/archivell.tar.gz) The RIVAS dataset” is available at
(https://github.com/mxfold/mxfold2/releases/download/v0.1.1/Rivas.
tar.gz); The RNA 3 d closenesss dataset™ is available at (https://yanglab.
qd.sdu.edu.cn/RNAcontact/benchmark/); The Optimus 5-prime RNA
SUTR mean ribosome loading dataset’®> is available from GEO
(GSE114002); The PrismNet dataset® is available at (https:/
zhanglabnet.oss-cn-beijing.aliyuncs.com/prismnet/data/clip_data.
tgz); The ncRNA classification dataset™ is available at (https://github.
com/bioinformatics-sannio/ncrna-deep/tree/master/datasets);  The
Spliceator splice site prediction dataset™ is avaliable at (https://git.
unistra.fr/nscalzitti/spliceator/-/tree/master/Data); The SpliceAl splice
site prediction dataset> and APARENT alternative polyadenylation
dataset™® by BEACON® are available at (https://drive.google.com/
drive/folders/InBytCBey8CRYnAagwvwjDUlyFrYkBRo2). Source data
are provided with this paper.

Code availability

The ERNIE-RNA scripts®* are available at (https://github.com/Bruce-
yWj/ERNIE-RNA. The RNA3DB-2D data processing pipeline®® are avail-
able at https://github.com/ZYZhang17/RNA3DB-2D-Structures.
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