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Systematic benchmarking of imaging spatial
transcriptomics platforms in FFPE tissues

Huan Wang 1,8, Ruixu Huang2,8, Jack Nelson1,8, Ce Gao3,8, Miles Tran3,
Anna Yeaton1,7, Sachi Krishna 1, Kristen Felt4, Kathleen L. Pfaff5, Teri Bowman6,
Scott J. Rodig5,6, Kevin Wei 3,6,9 , Brittany A. Goods 2,9 &
Samouil L. Farhi 1,9

Emerging imaging spatial transcriptomics (iST) platforms and coupled analy-
tical methods can recover cell-to-cell interactions, groups of spatially covarying
genes, and gene signatures associated with pathological features, and are thus
particularly well-suited for applications in formalin fixed paraffin embedded
(FFPE) tissues. Here, we benchmark the performance of three commercial iST
platforms—10X Xenium, Vizgen MERSCOPE, and Nanostring CosMx—on serial
sections from tissue microarrays (TMAs) containing 17 tumor and 16 normal
tissue types for both relative technical and biological performance. Onmatched
genes, we find that Xenium consistently generates higher transcript counts per
gene without sacrificing specificity. Xenium and CosMx measure RNA tran-
scripts in concordance with orthogonal single-cell transcriptomics. All three
platforms can perform spatially resolved cell typing with varying degrees of
sub-clustering capabilities, with Xenium and CosMx finding slightly more
clusters than MERSCOPE, albeit with different false discovery rates and cell
segmentation error frequencies. Taken together, our analyses provide a com-
prehensive benchmark to guide the choice of iSTmethod as researchers design
studies with precious samples in this rapidly evolving field.

Spatial transcriptomics (ST) tools measure the gene expression pro-
files of tissues or cells in situ. These approaches overcome the limita-
tions of single-cell RNA-sequencing (scRNA-seq) methods by negating
the need for cell dissociation, thus maintaining both local and global
spatial relationships between cells within a tissue. ST can recover cell-
cell interactions, groups of spatially covarying genes, groups of cells
predictive of cancer survival, and gene signatures associated
with pathological features1,2. These advantages, coupled with rapidly
emerging computational and analytical methods, have led to

substantial excitement about deploying these platforms in funda-
mental biology studies and in the clinic for research and diagnostic
purposes3–5.

ST tools can be split into two broad categories: sequencing (sST)
and imaging (iST) based modalities. sST methods tag transcripts with
an oligonucleotide address indicating spatial location, most com-
monly by placing tissue slices on a barcoded substrate; isolating tag-
ged mRNA for next-generation sequencing; and computationally
mapping transcript identities to locations6. In contrast, iST methods
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most commonly use variations of fluorescence in situ hybridization
(FISH) where mRNA molecules are tagged with hybridization probes,
which are detected in a combinatorial manner over multiple rounds of
staining with fluorescent reporters, imaging, and de-staining (Fig. 1a)7.
Computational reconstruction then yields maps of transcript identity
with single-molecule resolution. Compared to sST methods, iST
methods are targeted to subsets of the transcriptome due to their
reliance on pre-defined gene panels and they adopt the higher spatial
resolution and sensitivity of FISH, yielding single-cell resolution data8.

While the iST methods share some similarities, significant differ-
ences arise in primary signal detection and amplification, sample
processing, and the subsequent fluorescent cycling chemistry
(Fig. 1b)9–11. The need for amplification of signal is coupled to the
sample processing, namely whether the sample is cleared, gel-
embedded, or photobleached to quench autofluorescence. There are
tradeoffs due to differences in sample processing for each iSTmethod.
For example, clearing of the sample increases signal quality but can
prevent follow-up H&E staining and complicate immunostaining,
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Fig. 1 | Experimental design and iST platforms. aOverall approach for generating
iSTdata.bDifferent amplification approaches forXenium,MERSCOPE, andCosMx.
cOverview of the tissue types and numbers of cores used in this study. BlC bladder
cancer, BrC breast cancer, CRC colorectal cancer, HNSCChead and neck squamous

cell carcinoma, Mel Melanoma, NSCLC non-small cell lung cancer, OvC ovarian
cancer, SCC squamous cell carcinoma.dDAPI images from the Xenium run of each
TMA, including Tumor TMA 1(tTMA1), Tumor TMA 2(tTMA2), and Normal
TMA(nTMA).
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which, in turn, can make cell segmentation more challenging. Finally,
there are tradeoffs between imaging time,molecularplex, and imaging
area covered, which result from the particular combination of the
molecular protocol and the imaging hardware implementation12.

A key historic limitation in the widespread use of iST methods
with human clinical samples was the incompatibility of most methods
with formalin-fixed, paraffin-embedded (FFPE) tissue samples13,14. FFPE
is the standard format for clinical sample preservation for pathology
due to its ability tomaintain tissuemorphology and sample stability at
room temperature for decades, accounting for over 90% of clinical
pathology specimens15. The ability to process FFPE samples with iST
will enable the use of archival tissue banks for studies and obviate the
need for specialized sample harvesting workflows. However, FFPE
samples tend to suffer fromdecreased RNA integrity, particularly after
having been stored in archives for extended periods of time16.

Three companies recently released the first FFPE compatible
commercial iST platforms: 10x’s Xenium, NanoString’s CosMx, and
Vizgen’s MERSCOPE9–11,17. These three platforms each use different
protocols, probe designs, signal amplification strategies, and compu-
tational processing methods, and therefore may potentially yield dif-
ferent sensitivities and downstream results. The main chemistry
difference lies in transcript amplification: 10x Xenium uses a small
number of padlock probes with rolling circle amplification; CosMx
uses a low number of probes amplified with branch chain hybridiza-
tion; and MERSCOPE uses direct probe hybridization but amplifies by
tiling the transcript with many probes (Fig. 1b). However, no head-to-
head performance comparisons on matched samples have been pub-
lished. Understanding the key differences across platforms will allow
users to make better-informed decisions regarding panel design,
method choice, and sample selection as they design costly experi-
ments, often on precious samples that have been bio-banked for
years18.

In this study, we compared currently available FFPE-compatible
iST platforms on matched tissue samples. We prepared a set of sam-
ples representative of typical archival FFPE tissues, comprised of 33
different tumor and normal tissue types, and acquired matched data
from sequential sections according to the manufacturer’s best prac-
tices at the time of writing, generating a dataset of >5.0M cells. We
analyzed the relative sensitivity and specificity of each method on
shared transcripts and further quantified the concordance of the iST
data across each platformwith paired scRNA-seq data collected by 10x
Chromium Single Cell Gene Expression FLEX. Then we focused on cell-
level comparisons, evaluating the out-of-the-box segmentation for
each platform based on detected genes and transcripts and coex-
pression patterns of known disjoint markers. Finally, we cross-
compared the ability of each platform to identify cell type clusters
with breast and breast cancer tissues as an example use case. Taken
together, our work provides the first head-to-head comparison of
these platforms across multiple archival healthy and cancerous FFPE
tissue types.

Results
Collection of matched iST data across 33 FFPE tissue types
reveals high transcript counts obtained by Xenium and CosMx
To test the performance of the latest generation of FFPE-compatible
iST tools, we sought to match gene expression and sample as much as
possible given available panel configurations and manufacturer
guidelines. To accomplish this, we used three previously generated
multi-tissue tissue microarrays (TMAs) from multiple types of clinical
discarded tissue (see Methods). We focused on FFPE tissues as the
standard method for sample processing and archival in pathology.
Tumor TMA 1 (tTMA1) consisted of one hundred and seventy 0.6mm
diameter cores (i.e., sampled regions) from seven different cancer
types, with 3-6 patients per cancer type, and 3–6 cores per patient
(Fig. 1c, d, Supplementary Table 1). Tumor TMA2 (tTMA2) consisted of

forty-eight 1.2mm diameter cores from nineteen different cancer
types, with each tissue type coming from one or two patients and
represented in 2–3 cores (Fig. 1c, d, Supplementary Table 2). A normal
tissue TMA (nTMA) contained forty-five 1.2mm diameter cores span-
ning sixteen normal tissue types isolated with each tissue type coming
from one patient and represented in 2–3 cores (Fig. 1c, d, Supple-
mentary Table 3). CosMx and Xenium suggest pre-screening samples
based on H&E, while MERSCOPE recommends a DV200 > 60%. Since
our goal was to determine the compatibility of iST platforms under
typical workflows for standard biobanked FFPE tissues from clinical
pathology labs, and since TMAs are challenging to assay by DV200,
samples were not prescreened based on RNA integrity. Samples were
screened by H&E in the process of TMA assembly. TMAs were sliced
into serial sections for processing by 10x Xenium, Vizgen MERSCOPE,
and NanoString CosMx, following manufacturer instructions (see
Methods).

The three different iST platforms offer different degrees of cus-
tomizability and panel compositions. In terms of panel design, MER-
SCOPE and Xenium offer either fully customizable panels or standard
panels with optional add-on genes, while CosMx offers a standard 1 K
(substantially larger plex) panel with optional add-on genes (while this
paper was in review Xenium and CosMx began providing options for
5000 and 6000 gene, respectively). We opted to run the CosMx 1 K
panel as available commercially, as well as the Xenium human breast,
lung, and multi-tissue off-the-shelf panels. We then designed two
MERSCOPE panels to match the pre-made Xenium breast and lung
panels, by filtering out any genes which could potentially lead to high
expression flags in any tissue in the Vizgen online portal. This resulted
in a total of six panels, with each panel overlapping the others on > 65
genes (Supplementary Table 4).

We carried out multiple runs with each panel following manu-
facturer instructions as provided in 2023 and 2024 (Supplementary
Table 5), with efforts made to ensure that head-to-head comparisons
were available at similar time points for each pair of platforms. 2023
data on tTMA1 and the nTMA were acquired with lung, breast, and
multi-tissuepanels forXenium,MERSCOPE lung andbreastpanels, and
the CosMx 1k panel. 2024 data was acquired on tTMA1 and tTMA2with
only the breast and 1k panels, along with reference single-cell tran-
scriptomic data from sequential slices. In an intentional deviation from
manufacturer instructions, the 2024 round of tTMA1 was intentionally
carried out with matched baking times after slicing for a head-to-head
comparison on equally prepared tissue slices. We note that between
2023 and 2024, CosMx updated its detection algorithms and Xenium
improved its segmentation capabilities by adding additional mem-
brane staining. The main part of this manuscript is thus based mostly
on the 2024 data as more representative of the current capabilities of
the technologies, while the results from 2023 are included in the
Supplementary Figs. and tables as useful comparisons for previous
datasets acquired on these platforms.

Each data set was processed according to the standard base-
calling and segmentationpipelineprovidedby eachmanufacturer. The
resulting count matrices and detected transcripts were then sub-
sampled and aggregated to individual cores of the TMA (Methods).
Across all datasetswe generated 394,635,679 transcripts and 5,017,397
cells. Overall, we found that the cores from each TMA were generally
well adhered to the tissue and detected transcripts. The total number
of transcripts recovered for each run in 2024 was highest for CosMx,
followed by Xenium, and then MERSCOPE (Supplementary Table 6).
Based on the initially reported number of transcripts, tTMA1 appeared
to provide more counts than tTMA2 and nTMA, which we ascribed to
differences in tissue quality (Supplementary Table 6). We note that the
total number of transcripts from the MERSCOPE nTMA run was below
what would be typically thought of as a successful run. Such a sample
would normally be excluded from analysis, but we continued with the
data through all analyses to illustrate how low transcript capture
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affects downstream results (Supplementary Table 6, Supplementary
Figs. 1–4).

Xenium shows higher transcript counts per gene without sacri-
ficing specificity
We next sought to directly compare the performance of each iST
platform on matched genes. We began with a pseudo-bulk-based
approach at the core level since this would not depend on differences
in cell segmentation performance (see Methods)19.

First, we examined the reproducibility of the data across experi-
ments using tTMA1 (23) and nTMA (23). When the same genes were
evaluated by Xenium and MERSCOPE in sequential sections across
different panels, we found that the total transcript count of all shared
genes was highly correlated across data sets acquired with different
panels, regardless of the tissue of origin (Supplementary Fig. 1a)
Deviation in total transcript count was primarily driven by changes in
morphology of a core from section to section (Supplementary
Fig. 1b,c). However, explorations on a gene-by-gene basis, even in
morphologically well-matched cores showed that some genes con-
sistently had higher or lower expression in the breast or lung panel, up
to 3-fold (Supplementary Fig. 1d,e). We ascribe these differences pri-
marily to slight competition between probes but note that the mag-
nitude of this effect is comparable to findings in bulk and single cell
RNA-seq methods in FFPE tissue20. To explore technical replicability
further we examined pseudo-bulk gene expression correlation for
cores from the same patient and same tissue type in the same dataset
and found that correlation was high (Spearman’s r > 0.74) in almost all
cases (Supplementary Fig. 2a,b), indicating good sample-to-sample
reproducibility within a given platform. These correlation was similar
to that observed when comparing the same core profiled across slides
with different panels, suggesting that each platform was highly self-
consistent and matching previous reports for MERSCOPE finding high
section to section correlation21,22.

We also examined the correlation of the data from each platform
between 2023 and 2024 using tTMA1 (23) and tTMA1 (24). Despite
several differences in acquisition (age of sample, changes to the
Xenium and CosMx analysis algorithms, and using matched baking
conditions in 2024 vsmanufacturer recommendedconditions in 2023)
we nonetheless found that the total transcript count of every shared
gene from all matched cores was highly correlated (Spearman r =0.99,
0.94, 0.95 for Xenium, MERSCOPE, and CosMx, respectively, Supple-
mentary Fig. 2c–e). The correlation plots showed an average of only
18% median fold decrease in expression across all cores for Xenium in
2024 vs 2023; a four-fold increase for CosMx, and an eight-fold
decrease for MERSCOPE—differences we ascribe primarily to the
improved CosMx algorithm and changes in the baking time affecting
MERSCOPE. Breaking down the correlations by core showed similar
results regardless of the tissue of origin, though with more variance
between the datasets for MERSCOPE and CosMx than for Xenium
(Supplementary Fig. 2f–j). Thus, the correlation of gene expression
across matched samples is high in all three technologies across a
variety of conditions, but sensitivities could show significant
differences.

To evaluate the relative sensitivity of each platform, we plotted
the total transcript counts of every shared gene between all combi-
nations of platform and panel, summed across all matched cores. We
found generally linear relationships between all pairs of platforms
(Fig. 2a–c, Supplementary Fig. 3). When we initially examined CosMx
compared to Xenium data using tTMA1 (23) we noted an upward
curve in the lower expression regime indicative of higher-than-
expected calls associated with the low expression regime by CosMx,
though this is no longer present in tTMA1(24) likely because of the
updated base calling algorithm (Supplementary Fig. 3a,d,e). Since
the three methods use variable number of probes per transcript, we

broke these analyses down by gene length, but found no noticeable
differences between the performance on short, medium, or long
transcripts (Supplementary Fig. 4a–i). Xenium consistently showed
higher expression levels on the same genes than CosMx in tTMA1
(24) when all slides were treated the same way, with the Xenium
breast dataset having 2-fold more counts than the CosMx multi-
tissue data sets (Fig. 2a). CosMx showed higher expression levels
than MERSCOPE (median of 11-fold). (Fig. 2b). Finally, Xenium
showed 20-fold higher median expression with the breast panels
thanMERSCOPE. In tTMA2 (24), where slide histologywas carried out
according to manufacturer protocols, we nonetheless found gen-
erally consistent results, though the MERSCOPE data set showed
lower expression levels (Supplementary Fig. 3a–c). Intriguingly, in
the earlier round of experimentation, tTMA1 (23), while Xenium still
showed higher counts than the other two platforms (Supplementary
Fig. 3d–j), the MERSCOPE breast panel showed higher expression
levels than CosMx levels, which were only 2.6-fold lower than
Xenium’s (Supplementary Fig. 3i). Considering the overall higher
transcripts per cell across platforms for tTMA1 over tTMA2 and
nTMA, and the differences in sample handling across rounds of
experimentation (Supplementary Table 5), this suggests that MER-
SCOPE’s ability to detect transcripts is highly sensitive to both sam-
ple quality and processing.

We next wanted to assess the specificity of each platform. Each of
the three platforms includes negative controls which are used to
evaluate sample quality23,24. Xenium and CosMx include both negative
probes (e.g., real probes targeting nucleic acids that are not present in
human tissue) and negative barcodes (e.g., algorithmically allowable
barcodes that are not associated with any probe in the experimental
panel). MERSCOPE includes only negative barcodes by default. To
determine specificity, first we calculated the fraction of all transcripts
corresponding to targeted genes relative to the total number of calls
(Fig. 2d). We found that Xenium consistently showed the highest on-
target fraction, while CosMx was lowest across most tissue types
except for bladder cancer and tonsil, where CosMx showed a higher
on-target fraction than MERSCOPE (Supplementary Fig. 5a). However,
thismeasurement is biasedbecauseof the relative numbers of controls
and target barcodes. We therefore also adopted a false discovery rate
(FDR) calculation which normalizes for these differences and is cal-
culated against both the negative probes and negative barcodes (see
Methods, Fig. 2e, f). We found that Xenium consistently showed the
lowest FDRwhile CosMx showed the highest FDR inmost cancer types
(15 out of 22 TMA-cancer type combinations, see Supplementary
Fig. 5b,c) regardless of whether we standardized to negative control
barcodes or probes.

Finally, we used the negative control barcodes to evaluate the
number of genes reliably detected by each platform in each tissue
type. For each core, we calculated the number of genes that were
detected two standard deviations above the average expression of the
negative control probes. These numbers were then averaged for cores
of the same tissue type. Because the CosMx panel was almost three
times larger, it yielded a larger absolute number of detected genes in
all 22 TMA-cancer type combinations (Fig. 2g, Supplementary Fig. 5d).
CosMx also detected the highest fraction of genes in 15 out of 22 TMA-
cancer type combinations, followed by Xenium (5 cancer types across
twoTMAs: breast cancer,melanoma,pancreatic cancer, kidney cancer,
and SCC, see Supplementary Fig. 5e). The conclusions above are
broadly the same when using 2023 protocols (Supplementary
Figs. 6–7), except that the 2024 version of CosMx chemistry shows an
almost 10-fold lower FDR in some tissues, with a corresponding
increase in number of genes above noise, regardless of whether sam-
ple histology was carried out the same way or following manufacturer
instructions—again in line with increased sensitivity from CosMx’s
updated data processing.
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Concordance with reference RNA-seq data
We next sought to determine whether a higher number of expressed
genes is representative of increased sensitivity to real biology or
increased false positive rates. First, we evaluated the correlation of
iST data to reference RNA-seq data. We aggregated pseudo-bulk
both tTMA1 (23 and 24) data from all panels of the three platforms

and compared them to data from the TCGA25 program (see
Methods)11. In Breast Cancer from tTMA1 (24), the Spearman cor-
relation coefficients were 0.64 for Xenium, 0.55 for MERSCOPE, and
0.80 for CosMx (Fig. 3a). The performances across all other cancer
types followed a similar trend, with CosMx showing the highest
correlation coefficient for a particular tissue type followed by

Fig. 2 | Technical performance comparison of iST platforms using 2024 data-
sets. a Scatter plots of summed gene expression levels (on a logarithmic scale) of
every shared gene between Xenium (breast) and CosMx (1k) data, captured from
matched cores from tTMA1(24). Eachdatapoint corresponds to a gene. The red line
represents the fitted regression (center), obtained from a first-order polynomial fit
in log–log space and back-transformed to the original scale. The shaded band
shows ±1.96× the standard deviation of residuals (linear scale) around this line.
b Same as (a) but between MERSCOPE (breast) and CosMx(1k). c Same as (a) but
between Xenium(breast) and MERSCOPE(breast). d Violin plot of percentage of all
transcripts corresponding to genes relative to the total number of calls (including
negative control probes and unused barcodes) averaged across cores of the same
tissue type. Results are from Xenium’s breast panel; MERSCOPE’s breast panel; and
CosMx’s multi-tissue 1k panel. Each data point represents a TMA-tissue type

combination, such as tTMA1(24)-BrC or tTMA2(24)-BlC. Violins show kernel den-
sity; interior lines denote quartiles (median = 2nd quartile). The full data is shown in
Supplementary Fig. 5a. e Violin plot of false discovery rate (FDR) where FDR(%) =
(blank barcode calls / total transcript calls) x (Number of panel genes /Number of
blank barcode) x 100. f Same as (e) but using negative control probes to replace
blank barcodes. MERSCOPE is missing in this bar plot as it does not have negative
control probes by design. g Violin plot of number of genes detected above noise,
estimated as two standard deviations above average expression of the negative
control probes. h Same as (g) but normalized to the number of genes in a panel or
in percentage. Pairwise differences between platforms were assessed with two-
sidedMann–WhitneyU tests for (d–h); brackets show unadjusted p-values for each
comparison.
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Xenium and then MERSCOPE (Supplementary Table 8). These
results stand in contrast to results on tTMA1 (23) where each
method was generally comparable in correlation coefficient (Sup-
plementary Fig. 8a Supplementary Table 8). We also observed
similar correlation coefficients across lung and multi-tissue gene
panels relative to bulk RNA-seq expression data (Supplemen-
tary Fig 8b).

We also compared the pseudo-bulk results from nTMA(23) with
bulk RNA-seq data obtained from GTEx12,26 The Xenium breast and
CosMx data sets showed similar correlations to breast data obtained
from GTEx, while the MERSCOPE had significantly lower correlation,
consistent with a run which doesn’t pass QC (Spearman’s correlation
coefficients of 0.33 vs 0.46, 0.57, respectively, Fig. 3b. Supplementary
Table 9, Supplementary Fig 8c). These relative trends remained true
across most normal tissue types, though we found that thyroid, pan-
creas, and lymph nodes showed the lowest correlations across all
panels while prostate, tonsil, and liver showed the highest correlations
(Supplementary Table 9). We also evaluated the expression of tissue-
specific transcript markers across each platform by selecting marker
genes from the GTEx database (see Methods). In nTMA (23), we found
tissue-specific expression patterns of several of these markers across
all selected panelswhen visualized across each healthy tissue typewith
Xenium showing the most distinct pattern followed by CosMx and
finallyMERSCOPE (Supplementary Fig. 8d). Overall, our comparison to
TCGA and GTEx 2023 data suggests that while platformsmay be more
highly correlated to reference datasets in some cases, all are within a
similar correlation regime regardless of tissue type. We next sought to
validate the consistently higher correlation of CosMx vs Xenium vs
MERSCOPE. Since TCGA and GTEx data are not generated from mat-
ched samples, we also performed a more stringent comparison by
generating single-cell transcriptomic data for both tTMA1(24) and
tTMA2(24), acquired on sequential sections (Fig. 3c–e, Supplementary
Table. 5). This resulted in a matched single-cell reference dataset
comprised of 14,945 and 17,749 high-quality single cells respectively
for tTMA1 and tTMA2. Since TMAs include many cell types which are
difficult to separate in single cell workflows, we decided to subset out
vascular smooth muscle cells based on canonical marker genes iden-
tified (Methods). This cell type is readily recognizable in each platform
and thus serves as a good basis of comparison of relative gene
expression across modalities. The observed population’s showed high
expression of genes known to be associated with smooth muscle cells
(but not used for selection) such as MYH11, DST, and LUM; while
showing low expression of genes not associated with smooth muscle
cells such as CSTG, CD86, and PDCD1LG2.

We then aggregated pseudo-bulk expression fromall three spatial
platforms and single-cell data and performed correlation analyses
across all spatially measured genes in this cell type27. When we com-
pared Spearman correlation coefficients, we recapitulated the trends
observed in 2024 data compared to reference bulk RNA-seq: namely,
CosMx had the highest correlation coefficients, followed by Xenium,
and finally MERSCOPE (Fig. 3c–e). Importantly, this is true for both
tTMA1 (23) and tTMA1 (24). We found that on tTMA1 (24), CosMx has
significantly higher correlation coefficients relative to Xenium (0.77 vs
0.53, p = 1.2 × 10−10, Fisher’s z transformation throughout) and MER-
SCOPE (0.6, p = 1.7 × 10−6) on tTMA1. This was consistent with results
on tTMA2 (24): (CosMx: 0.78, Xenium:0.72, p = 0.02,MERSCOPE: 0.23,
p =0) (Fig. 3d, e). However, when we restricted the same correlation
analysis to only the expression of the common genes measured by
each spatial platform relative to single-cell, the differences in correla-
tion to single-cell data among the platformswere reduced andwere no
longer statistically significant on tTMA1 (24) (CosMx: 0.60, Xenium:
0.53, p =0.23,MERSCOPE: 0.54, p = 0.20) while on tTMA2 (24) only the
MERSCOPE difference remained significant (CosMx: 0.61, Xenium:
0.69, p =0.84, MERSCOPE: 0.3, p = 1.9 × 10−3) (Supplementary
Fig. 8e–g).We therefore conclude that the primary factor contributing

to the higher correlation of CosMx was the larger panel size, which
encompassed genes with a broader range of expression values.

The availability of a matched reference data set across several
replicates allowed us to probe whether there were platform specific
systematic biases in measuring certain genes. By comparing the resi-
duals of the fits to single cell data we found that all three platforms
consistently over- or undercounted- certain genes—largely non-
overlapping sets—relative to single-cell measurements, presumably
due to differences in sensitivities among probe designs and decoding
chemistries (Fig. 3f). While the randomnoise between replicates could
be of equal magnitude to this effect as evidence by genes with large
residuals in one data set or another, this systematic effect could
explain the spread in gene expression observed between platforms in
Fig. 2a–c.

Out of the box segmentation and filtration from each platform
yields cells with comparable numbers of detected transcripts
and genes
Next, we compared the performance of each iST method on a single-
cell level. As of 2024, all three platforms generate cell boundaries
based on a DAPI image combined with a membrane marker (Fig. 4a).
Raw images are provided for these stains to facilitate custom cell
segmentation approaches, but we opted to use out-of-the-box cell
segmentation method for each individual platform to replicate a real-
world use-case of these platforms. We evaluated the cell segmentation
accuracy by comparing the segmentation outputs against manual
annotations of a subset of tTMA1 (24). This subset included three TMA
cores selected for their morphological similarity across platforms and
their representation of different cellular structures (see Methods) and
yielded > 31,400 annotated cells (see Methods) in total. We then
computed precision, recall, and F1 score, across three distinct cellular
scenarios: dense cells, sparse cells, and elongated cells (Fig. 4b). In
dense cell distributions, CosMx and Xenium achieved significantly
higher precision (0.90) than MERSCOPE (0.83, p <0.01). Recall and
F1 score results are consistentwith precision across eachplatform.The
segmentation accuracy of all three platforms decreased in elongated
cells and followed by sparse cells but the relative performance of the
platforms remained the same. The reduced performance is likely due
to the complex and irregular shapes of elongated cells and the reduced
contextual information surrounding sparse cells, increasing the like-
lihood of false positive and negatives. No significant performance
difference was detected between CosMx and Xenium across the three
scenarios.

We next filtered out empty regions of space and cells without any
transcripts for downstream examination and quantified the fraction of
cells containing differing numbers of transcripts per cell (Supple-
mentary Fig. 10a). We chose a permissive threshold of removing cells
with fewer than 10 transcripts for Xenium and MERSCOPE, and 20
transcripts for CosMx from downstream analysis as recommended by
each technology11,28,29. tTMA1 (24) consistently hada greater fraction of
cells passing filtration, with CosMx retaining the most cells (95.97%)
followed by Xenium (94.28%) and MERSCOPE (27.97%) (Supplemen-
tary Table 6) while tTMA2 (24) had lower cell retention in Xenium
(92.66%) and MERSCOPE (2.98%) but slightly higher cell retention in
CosMx (96.30%). The relative order of the platforms based on the
fractions of cells remained the same. Unsurprisingly, filtration
decreased the number of retained cells per unit area for all platforms,
with the smallest decrease coming for CosMx and Xenium (Supple-
mentary Fig. 10b). The cells retained from CosMx and Xenium had
similar areas, while filtration of the MERSCOPE data sets resulted in a
higher average cell area (Supplementary Fig. 10c). This effect is largely
driven by the removal of low-quality cells, specifically those with fewer
than 10 detected transcripts.

After filtration, we compared the number of transcripts and the
number of unique genes per retained cell across all tissues and all
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Fig. 4 | Comparison of cell segmentation results from each iST platform. a Top
row: Subset of data showing DAPI (blue fill) and membrane staining (green fill)
overlaidwith cell segmentationboundaries (white outline) andmanually annotated
cell centroid (red point).Middle row: all the transcripts in green dots and EPCAM in
blue dots. Bottom row: segmented cell boundaries (white outline) before and after
filtration (Cyan outline: Cells kept after quality control; Orange outline: Cells
excluded after quality control).We acquired imaging data from263TMAcores (170
from tTMA1, 48 from tTMA2, and 45 from nTMA) using Xenium, MERSCOPE, and
CosMx, respectively. Segmentation was performed on three representative TMA
cores for each IST platform, yielding a total of 9 cores and 31,384 annotated cells.
b Segmentation accuracy evaluated by three metrics: Precision, Recall, and F1
Score, in various scenarios including dense cells, sparse cells, and elongated cells.
Pairwise platform differences were tested using two-sided Tukey’s HSD following
one-way grouping by platform (per core and scenario). Reported p-values are

Tukey-adjusted for multiple comparisons. Asterisks indicate significance thresh-
olds (*p <0.05; **p <0.01; ***p <0.001; ****p <0.0001). Exact adjusted p-values are
shownabove brackets. cHeatmapof transcripts per cell after filtration. All available
genes are considered here for each panel. We filtered out cells with fewer than 10
transcripts for Xenium andMERSCOPE, and fewer than 20 transcripts for CosMx, in
accordance with each platform’s recommended threshold. d Same as (c) but
showing unique genes per cell. e Same as (c) but reanalyzed using only shared
genes. f Same as (d) but reanalyzed using only shared genes. g Co-expression
density map for three pairs of disjoint genes (rows) from all three platforms (col-
umns) from tTMA1 (24). MERSCOPE breast dataset does not have enough cells to
generate the 2D histogram for PPARG vs. CD68. All cells across all tissues which
include at least one detected transcript of either of the indicated genes are plotted
together, with color indicating the number of cells at the indicated expression
levels of each gene. Data throughout is from tTMA1 (24) and tTMA2 (24).
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panels, focusing on tumor cores that were sampled by all three plat-
forms (Fig. 4c–f). As expected, given its larger panel size, CosMx
detected the highest number of transcripts per cell and the highest
number of unique genes per cell in all tissue types, followedbyXenium
breast panel and then MERSCOPE breast panel (Fig. 4c, d). If these
analyses were restricted to only the shared genes across all panels,
numbers were much lower (Fig. 4e, f), with the Xenium breast panel
giving the highest numbers of transcripts per cell in 21 out of 22 TMA-
cancer type combinations. The CosMx data showed the highest num-
ber of transcripts per cell in liver cancer and comparable transcript
counts in testicular cancer to the Xeniumbreast panel. TheMERSCOPE
data generally had the lowest number of transcripts per cell, though
pancreatic cancer approached the results from Xenium, and had
higher transcripts per cell than CosMx (Fig. 4e). Xenium had the
highest number of unique genes per cell across all tissue types and
followed by CosMx and MERSCOPE (Fig. 4f). When we performed
similar analyses for the 2023 datasets, even though these did not
include membrane segmentation for Xenium (Supplementary
Fig. 10d–g) and note that MERSCOPE showed significantly higher
numbers of transcripts. This is consistent with our previous results
(Supplementary Fig. 2i) showing that in certain conditions MERSCOPE
could approach Xenium transcript counts.

We then determined how different iST platforms’ segmentation
algorithms perform by assessing the expression of canonical markers.
Weexamined the co-expressionofCD3E, a canonical T-cellmarker, and
EPCAM, a marker for epithelial cells30,31 across all filtered cells; the co-
expression of CD4 and CD8A, markers of T-cell subsets32–34; and the co-
expression of PPARG, a marker for adipocytes and CD68, a marker for
macrophages35–37. We reasoned that all these marker gene pairs are
disjointly expressed, and a well-performing segmentation algorithm
should yield few cells expressing both markers. We pooled all the fil-
tered cells from matched tTMA1 (24) cores of each platform and
plotted the expressionof onegeneagainst theother and converted the
scatter plot to a 2D histogram showing cell numbers in each
co-expression bin. We found that Xenium showed clear patterns of
disjoint expression, separating cells from different lineages, while
MERSCOPE showed such a pattern for CD3E vs. EPCAM but not for the
other two pairs (Fig. 4g). Higher quality MERSCOPE data from tTMA1
(23) showed such a pattern for CD3E vs. CD19, CD4 vs. CD8A, and CD3E
vs. EPCAM (Supplementary Fig. 10h–i). Similarly, CosMx only showed
such a pattern for PPARG vs. CD68 but not for the other two pairs.
Nevertheless, since the CosMxpanel ismuch higher plex, and retained
similar numbers of transcripts and genes to Xenium, we next won-
dered how these two methods performed in terms of cell type
recovery.

Clustering analyses reveal differences in cell type recovery
across platforms
In a typical iST workflow, a key step is reducing the dimensionality of
the data by identifying cell types, their unique states, and their
expression patterns for further analysis leveraging spatial
information38. To compare across platforms, we clustered the data
from the filtered cells from all the cores for each TMA with a focus on
breast tissues. The initial clustering of whole TMA datasets (except
MERSCOPE normal tissue) showed expected batch effects caused by
patients and tissue types with broadly similar cluster arrangements
around morphological tissue features (Supplementary Fig. 11). We
removed batch effects (see Methods) and then performed targeted
clustering and cell type annotation for breast samples from tTMA1
(23), tTMA1 (24) and tTMA2 (24) for Xenium breast panel, MERSCOPE
breast panel and CosMx multi-tissue panel (Supplementary Fig. 12).

When looking at tTMA1 (23), in breast cancer, after batch effect
removal (Supplementary Fig. 12d–f), Xenium resulted in nine cell types
(alveolar cells, B cells, basal cells, fibroblast, hormone-sensing cells,
immune cells,myeloid, T cells, and vascular & lymphatic cells) (Fig. 5a).

On the other hand, CosMx resulted in eight cell types (alveolar cells,
basal cells, epithelial cells, fibroblast cells, hormone-sensing cells,
immune cells, myeloid, and vascular & lymphatic cells). MERSCOPE
resulted in six cell types, including alveolar cells, fibroblast cells,
hormone-sensing cells, myeloid cells, T cells, and vascular & lymphatic
cells. The cell type annotation of Xenium and CosMx was comparable
in terms of both transcriptomic profile and subtypedepth,with CosMx
only unable to annotate immune cell subtypes (B cell and T cell). Gene
expression of the same cell type from both platforms correlated well
(Fig. 5a). MERSCOPE, on the other hand, identified most, but not all,
the cell types recognized by Xenium and CosMx, including alveolar
cells, fibroblast cells, hormone-sensing cells, myeloid, T cells, and
vascular & lymphatic cells. MERSCOPE and Xenium showed a high
correlation for almost all matching clusters. The correlation map
shows a clearer one-to-onemapping between MERSCOPE and Xenium
clusters than Xenium and CosMx clusters (Fig. 5a).

Results remained similar when the same sample was rerunwith all
spatial methods receiving the same slicing protocol a year later
(Fig. 5b). Xenium identified all nine cell types as well as one additional
cell type, epithelial cells, while CosMx and MERFISH identified the
exact same set of cell types. Further, the cell types identified from
tTMA1 (23) and tTMA1 (24), the two experiments, correlated well
(Fig. 5c), where all cell types from tTMA1 (23) show high correlation
with the same identifications in tTMA1 (24). However, CosMx, Xenium,
and MERSCOPE exhibit differences in cell type annotations, particu-
larly in the identification of cell subtypes. For example, in Core 99,
Xenium appears blue in the center becausemany cells are identified as
alveolar, while CosMx appears yellow due to the identification of epi-
thelial cells. Alveolar cells are a subtype of epithelial cells, and closer
examination of the heatmaps reveals that the transcriptomic profiles
of alveolar cells identified in Xenium often exhibit high correlation
with epithelial clusters in CosMx and MERSCOPE (Fig. 5b). While per-
forming the cell type annotations independently for eachplatform, the
markers provided by CosMx andMERFISH cannot support a confident
classification of the cells as alveolar, unlike Xenium, which shows clear
alveolarmarkers (Supplementary Fig. 13). This lack of specificity is also
observed with immune cells: Xenium identifies more subtypes with
distinct markers, whereas CosMx and MERSCOPE often only produce
clusters broad enough to indicate immune cells without further sub-
typing. These limitations result in correlationheatmapswherecell type
clusters do not always align one-to-one between platforms, such as
seen in tTMA1 (24), where the Xenium alveolar cluster correlated with
both alveolar and epithelial clusters in CosMx and MERSCOPE.

The results in tTMA1(24) stand in contrast to those in tTMA2 (24).
In the Invasive Breast Cancer samples in tTMA2 (24) CosMx found
seven cell types, including alveolar cells, basal cells, fibroblasts,
hormone-sensing cells, immune cells, myeloid, and vascular & lym-
phatic cells; whereas Xenium only annotated five cell types, including
basal cells, fibroblast cells, hormone-sensing cells, immune cells and
vascular & lymphatic cells. MERSCOPE is not included due to its low
number of transcripts. High correlation is again foundbetween the cell
types of CosMx and Xenium. In conclusion, for all TMAs in 23 and 24,
all platforms are capableof generating results that support reasonable,
consistent cell type annotations that would allow further biological
analyses.Wefind thatCosMxorXeniumcan resolve higher numbersof
cell types, with the relative performance likely dictated by the pre-
sence of keymarker genes in the panel (more likely in the larger CosMx
panel) vs the higher sensitivity and lower false positives (more likely in
Xenium measurements).

Discussion
In this study, we compared data obtained with three commercially
available iST platforms with archival FFPE tissues to assess overall
technical performance and help guide experimental design with
human patient-derived samples that represent an important use case
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of these platforms.We focused our analyses on technical performance
as a function of tissue source, including 17 different tumor types and 16
normal tissue types. Overall, we found that each iST platform pre-
sented various tradeoffs in terms of implementation, panel design and
panel options, and resulting total transcript quantification and

downstream analyses, including cell segmentation, cell quality, and
biological interpretation. All these factors must be considered when
designing iST experiments.

There are significant workflow differences between the different
platforms which factor into the choice of method. Cutting samples
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onto MERSCOPE coverslips is more technically challenging than on
standard microscope slides. The total hands-on time for running a
slide on Xenium is 2–3 days compared to 5–7 days for MERSCOPE and
2 days onCosMx.We found thatMERSCOPE and CosMx arewell set up
for batch processing in the wet lab, either due to built-in pause points
or the instrument’s ability to run multiple samples. Xenium is limited
for batch processing by a need for a separate thermocycler for each
slide pair processed in parallel. After staining, selecting regions of
interest (ROIs) presented a surprising challenge for some systems: the
Xenium platform could readily image the entire slide as a single ROI
which easily covered entire TMAs, but the MERSCOPE ran into a 1 cm2

imaging area limit which meant cores in the addressable region were
left unimaged, while the CosMx workflow required a demanding
manual selection of ROIs for each core. These factors are likely to
change as each company updates its protocol, but currently, Xenium
offers the shortest, least hands-on workflow.

We analyzed each resulting dataset with a combination of manu-
facturer recommended processes for each platform and computa-
tional tools that can be implemented by the user downstream. These
pipelines each result in count matrices and detected transcripts that
can be analyzed using a suite of emerging tools. To facilitate the
comparisons of iST platforms at a high level and enhance readability,
we synthesized our findings into a qualitative summary table (Table 1).

When analyzed at a core level to abrogate the effects of individual
cell-segmentation performance, we found that the total number of
transcripts varied substantially across iST platform. With 2023 chem-
istry, Xenium yielded the highest number of transcripts, followed by
CosMx and MERSCOPE, but with updated chemistry in 2024, CosMx
showed higher total numbers of transcripts, consistent with a larger
overall panel size. However,when this analysiswas restricted to shared
genes, Xeniumgenerally hadhigher sensitivity for the same genes over
CosMx and MERSCOPE across each tissue type, panel, sample, histo-
logical preparation, and acquisition round. The Xenium platform also
showed the highest specificity by several false discovery rate metrics
relative to CosMx and MERSCOPE.

The most prominent observation across these comparisons for
CosMxwas the improvement from 2024 to 2023 chemistry. With 2024
protocols, CosMx showed the smallest difference relative to Xenium, a
roughly two-folddecrease in transcript counts in samples prepared the
sameway (tTMA1) and in samples prepared according tomanufacturer
instructions (tTMA2). This is a dramatic improvement over the ~12-15
fold difference in sensitivity observed with 2023 protocols. The
improvement in sensitivity also comes with an improvement in spe-
cificity, which, for some tissues, reached almost a 10-fold difference.
This suggests that the new version of the CosMx algorithm presents a
substantial improvement and presents a choice in slightly lower spe-
cificity and sensitivity relative to Xenium vs higher molecular plex.

The most prominent observation for MERSCOPE was the large
degree of variability between samples, TMAs, and protocols. Relative
to Xenium, MERSCOPE sensitivities for shared genes varied between
2.6- and 100-fold lower. However, the highest MERSCOPE sensitivity
obtained from the highest quality samples (tTMA1) measured at the
earlier time point (2023) and following manufacturer recommended
protocols. While the test case here was for typical archival tissues,
these results underscore the importance of pre-screening samples for
RNA-integrity for MERSCOPE to ensure high quality input tissue. This
would require more tissue and limit the number of compatible sam-
ples, which can be weighed against the benefit of highly customizable
panel design.

Across all methods, we note that because of the small number of
replicates fromeach tissuewe stop shortofmakingblanket statements
about relative performance across a particular tissue type. Instead, we
conclude that Xenium shows the highest per-gene sensitivity on mat-
ched samples, though with updated protocols CosMx’s sensitivity
approaches Xenium and provides more overall transcripts when Ta
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considering the larger panel size. MERSCOPE can achieve similar sen-
sitivities relative to Xenium, but is highly sensitive to sample input
quality and protocol deviations. While this paper was in review, two
other comparison studies came to similar conclusions. A similar head-
to-head comparison in FFPE tissue between CosMx and Xenium by
Cook et al. found a similar difference in sensitivity to our results39.
Interestingly, a comparison of public (unmatched) data from high
quality mouse brain by Hartman and Satija found that MERSCOPE
provided the highest sensitivities40, in line with the idea that this
technique is highly sensitive to input tissue quality.

Regardless of these differences in specificity and sensitivity we
found that onmatched samples, all platformswerehighly correlated to
each other. Genes profiled across different panels within the same
technology, at different time points, with different histology proto-
cols, or even with different slicing rounds were all generally highly
correlated. Similarly cores from the same patient were also highly
correlated. This suggests that all three platforms can be trusted for
normalized measurements of gene expression within a sample. Fur-
thermore, all three platforms also show similar performance relative to
orthogonal (non-spatial) technologies, finding comparable correlation
of pseudo-bulk data toRNA-seqdata fromGTEx or the TCGA, aswell as
scRNA-seq data generated for tTMA1 and tTMA2, across each panel
and platform. The correlation to orthogonal data was high but not
perfect, andwe found that eachplatformappeared to repeatedly over-
or under-estimate the expressionof a small number of genes (Fig. 3F)—
suggesting, in some cases, middlingly-expressed genes could be seen
as highly or lowly expressing.

A significant advantage of spatial transcriptomics data is the
ability to map expression in single cells. We compared each platform
on a cell-level basis by assessing cell identification and cell clustering.
Overall, it appears that the out-of-the-box segmentation from CosMx
and Xenium achieved better accuracy than MERSCOPE in terms of
precision, recall, and F1 score across dense, sparse, and elongated
cells. All platforms now use amembranemarker for segmentation, but
the specificmarkers and segmentation algorithms are different, which
could affect cell typing41–44, bymisattributingmarker genes to adjacent
cells or bymissing cells whose nuclei are out of the imaging plane. It is
likely that segmentation performance could be improved on a sample-
by-sample or tissue-type-by tissue-type basis, and future work should
seek to assess cell segmentation tools and their performance across
data from each platform to help inform the choice of analytical
methodwhere needed. After applying anexpression levelfilter, CosMx
overall retained the highest number of cells across various filtering
stringencies. Xenium was able to effectively separate cells from dif-
ferent lineage markers, as judged by finding minimal coexpression of
disjoint markers, while CosMx and MERSCOPE either showed more
double positive cells or had fewer cells expressing the target genes
overall).

To determine whether clearer identification of lineage markers
resulted in improved ability to identify cell types, we performed clus-
tering analyses specifically in breast cancer samples. We found that all
three platforms had similar cell type annotation results and similar
transcriptomic profile for tTMA1 (23) and tTMA1 (24). This consistency
across platforms and over 2 years of sequencing highlights the
reproducibility and robustness of our cell type annotations and tran-
scriptomic profiling for TMAs. On the highest quality cores in tTMA1,
MERSCOPE still successfully identified cell groups, capturing the pat-
terns seen in other platforms, consistent with the trends in the overall
transcript counts which show that high quality samples could achieve
similar performance to the other platforms.We note that while similar
numbers of cell types are recovered, the spatial component of the data
shows that occasionally low expression of keymarker genes can result
in misannotation of a cell subtype which is identified in another
technique.

Examining the latestprotocols (2024data), in somecases, Xenium
showed larger number of annotated cell types while in others CosMx
did. Since we used the full panel, not only the shared genes, when
performing these clustering analyses, these differences are likely due
to a balance between the benefit of more sensitive detection of tissue
relevant genes and the possibility of missing informative genes in the
larger panel. The number of genes included in a panel or plex is an
important factor in ST experiments, and we recommend subsampling
existing atlas data to determine whether the gene set which can be
studied will be sufficient to cluster the cell types of interest and
identify the necessary biological programs. We note that each of the
manufacturers has released new products and now offer increased
panel sizes since the completion of these experiments with panels now
reaching 5000 genes for Xenium, 6000 genes for CosMx, and 1000
genes for MERSCOPE.

There are several limitations of our study. Our panel design for
MERSCOPE required the removal of genes so the panel was compatible
with all tissues, lowering the plexity slightly. This could have com-
promisedMERSCOPE’s ability to identify cell types relative to Xenium.
Due to insufficient tissue, we were unable to run the same TMA across
multiple years andmultiple slicing and fixation protocols, requiring us
to split our efforts between tTMA1 and tTMA2. Nonetheless, we were
able to show both the effects on matched sample preparation and
sample preparation following manufacturer recommendations. A
similar limitation affected our ability to compare to single cell data.
Becauseof insufficient tissue and theTMAdesignwecouldnot achieve
an equal level of sampling with single cell approaches as with spatial
methods. Thus, while we were able to identify similar cell subpopula-
tions for the purposes of exploring relative gene expression, we leave
the question of the ability of spatial methods to perform generalized
cell type clustering relative to single cell to other investigations. This
limit did not apply to comparing clustering between spatial platforms,
where we had similar numbers of cells and could identify tissues of
origin based on TMA location.

Most importantly, we only attempted to compare the perfor-
mance of iST platforms under typical use cases for clinical samples
obtained from archival biobanks. Our results don’t necessarily extend
to non-human samples, frozen samples, and even FFPE samples which
have been extensively validated for high RNA integrity. Indeed, there
have been reports that MERSCOPE, in previous studies of the mouse
brain, shows comparable or even superior results to those reported by
10x Xenium45. Given the large change in data quality between TMAs,
and even the same sample run multiple times, we cannot exclude the
possibility that in the highest quality samples MERSCOPE would pro-
vide higher transcript numbers, with the associated downstream
benefits relative toXeniumandCosMx.However, the current guidance
of DV200 > 0.6 restricts studies to the upper regime sample quality and
limits archival investigations. Finally, we note that this study only
compares the ability of spatial transcriptomic platforms to reveal
transcriptional information. Specifically, we do not answer whether ST
can predict protein expression of clinical biomarkers. Our preliminary
exploration based on PD-L1 status annotation in tTMA1 did not show
significant expression differences for any platform, but rigorous test-
ing of this would require larger powered cohorts in each individual
tissue type and clinical annotation.

Despite these limitations, our overall interpretation of these
results is that amplification of RNA signal is especially important for
recovery of transcript counts by iST in low-quality samples where RNA
may be highly degraded and fewer landing sites are available for
probes. Platforms (such as Xenium and CosMx) which rely on small
numbers of landing sites and are subsequently heavily amplified are
robust to RNAdegradation and are thusmorebroadly compatiblewith
a broad range of samples. On the other hand, when sample quality is
high (as in some of our tumor samples) the gap between amplified and
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unamplified platforms’ performance closes and most platforms can
yield useful data for subsequent downstream spatial analysis.

Methods
Sample choice and TMA construction
Three TMAs were constructed using FFPE clinical discards at Brigham
andWomen’sHospital PathologyCore andwere acquiredwith awaiver
of consent for non-sequencing based readouts under IRB
2014P001026. Theproject adheres to all applicable ethical regulations,
and the study protocol has been approved by the Human Research
Committee of the Institutional Review Board (IRB) at Mass General
Brigham. The samples included:
1. Tumor TMA 1(tTMA1): A tumor TMA of 170 cores, 0.6mm in

diameter, including a variety of cancer samples and healthy lym-
phoid tissue as a positive staining control. The TMA samples were
selected from samples previously characterized by ImmunoPro-
file and were selected to encompass both high and low levels of
the biomarkers in the ImmunoProfile panel [CD8, PD-1, PD-L1,
Foxp3, tumormarker (Cytokeratin, Sox10, or PAX8)]. Annotations
were performed by KF and SR based on H&E and immuno-
fluorescence staining. Cores included both tumor and healthy
control annotation, though for the purpose of this study, all were
combinedunder their tumor label. Tumorswere also chosen to be
a mixture of PD-L1 high and PD-L1 low. This TMA had previously
been studied by both H&E, and several highly multiplexed
immunostaining approaches, and was known to be of high
morphological integrity.

2. Tumor TMA 2 (tTMA2): A tumor TMA of 48 cores, 1.2mm in dia-
meter, including a variety of cancer. This TMAwas chosen for the
breadth of tissue lineages included and the relatively large
core size.

3. Normal TMA(nTMA): A normal TMA of 45 cores 1.2mm in dia-
meter representing a broad rangeof normal tissues. Sampleswere
sourced from the same patient in either duplicate or triplicate.
This TMA was chosen for the breadth of tissue lineages included
and the relatively large core size.

All samples were fully de-identified before assembly into TMAs.
Thebreakdownof thenumberof samples per tissue and thenumberof
cores per tissue is included in Supplementary Tables 1–3.

Preparation of sequential sections
Sequential sections were prepared according to manufacturer
instructions (“Tissue Preparation Guide Demonstrated Protocol
CG000578” for Xenium, “91600112 MERSCOPE User Guide Formalin-
Fixed Paraffin-Embedded Tissue Sample Preparation RevB” for Vizgen,
and “MAN-10159-01CosMx SMI Manual Slide Preparation Manual” for
CosMx) at the Brigham andWomen’s Hospital Pathology Core. Prior to
collecting samples, ~50 µmof eachTMAwere faced off to reachdeeper
into the sample where RNA integrity was likely higher. 5 µm sequential
sections were then collected, floated in a 37 °C water bath, and
adhered to Xenium slides (10x, PN 1000460), Vizgen FFPE coverslips
(Vizgen, PN 10500102), or standard Superfrost+ slides for CosMx
(Leica BOND PLUS slides, Leica Biosystems S21.2113.A). TMAs were
sliced as close to the center of the active area as possible for each
platform. Samples were baked at 42 °C for 3 h for Xenium, 55 °C for
15minutes forMERSCOPE, and60 °C for 16 h for CosMx. Sectionswere
stored according to manufacturer instructions prior to processing,
with 10x Xenium stored in a desiccator at room temperature, Vizgen
MERSCOPE coverslips stored at −20 °C, and NanoString CosMx slides
stored at 4 °C. To benchmark technologies under same preparation
protocol, samples of tTMA1 (24) datawerebaked overnight and stored
at room temperature. Samples for 10x Xenium and Vizgen MERSCOPE
were brought to the Spatial Technology Platformat the Broad Institute

for processing,while samples forNanoStringCosMxwereprocessed at
the Wei lab at Brigham and Women’s Hospital.

Vizgen MERSCOPE probe selection
Pre-designed probe panels from Vizgen were not available at the time
of the experiment. Therefore, we ordered custom gene panels to
match the pre-released gene panels from 10x for the humanbreast and
human lung panels. Gene lists were uploaded to the Vizgen panel
design portal and were checked against all profiled tissues, removing
genes that were overexpressed in any individual tissue based on Viz-
gen’s design guidelines (FPKM>900), and ensuring that the total
panel FPKM did not exceed the allowed limit in any individual sample
type. Panels were manufactured at the 300 gene scale as custom
panels BP0892 and BP0893. The final gene lists, for all three iST
modalities are available in Supplementary Table 4.

Vizgen MERSCOPE data acquisition
MERSCOPE samples were imaged according tomanufacturer protocol
“9160001 MERSCOPE Instrument User Guide RevF”. Samples were
processed in two batches, the first of four samples, two of each TMA
and with each library prepped in parallel; and a follow up sample of
each TMA re-run with the breast panel. Samples were first hybridized
with anchoring probes overnight before being embedded in a poly-
acrylamide gel. Samples were incubated for two hourswith a digestion
solution at 37 °C and then overnight at 47 °C overnight in a detergent
clearing solution and proteinase K to remove native proteins while the
anchoring probes kept nucleic acids bound to the gel. After clearing,
samples were additionally photobleached using Vizgen’s MERSCOPE
Photobleacher for three hours at room temperature in the clearing
solution. Samples were hybridized with encoding probes and a cell
boundary stain (PN 10400118) and then imaged with imaging kits (PN
10400005). Samples were stored at 37 °C in clearing solution after
hybridization and before final imaging. After an initial examination of
the data, a second batch of both TMAs was run a second time with the
humanbreast panel, increasing the set imaging capture thickness from
5 µm to 10 µm to capture more tissue from cores that had lifted during
the gel embedding process. MERSCOPE data acquired with a 10 µm
imaging depth (Supplementary Table 5), resulted in a median 3.0-fold
increase in expression across all transcripts. We excluded the 5 µm
MERSCOPE breast panel data from most comparisons have left refer-
ences to the lung panel data in as an illustrative example of an
unsuccessful run (indicated as such throughout the figures). Data was
processed on premises through the standard Vizgen workflow to
generate cell by gene and transcript by location matrices. We seg-
mented the data with a built-in Cellpose method on themost accurate
looking cell boundary stain.

10x Xenium data acquisition
10x Xenium samples were processed in three batches according to
manufacturer protocols “Probe Hybridization, Ligation & Amplifica-
tion, User Guide CG0000582” and “Decoding & Imaging, User Guide
CG000584”. Samples were stained utilizing 10x’s predesigned
Human Breast (10x, PN 1000463), Human Multi-Tissue and Cancer
(10x, PN 1000626), and Human Lung panels (10x, PN 1000601), as
they became available from the manufacturer. Slides for both TMAs
were processed in pairs according to which probe library they were
receiving. Slides were stainedwith a Xenium imaging kit according to
manufacturer instructions (10x, PN 1000460). Briefly, padlock
probes were incubated overnight before rolling circle amplification
and native protein autofluorescence was reduced with a chemical
autofluorescence quencher. Slides were processed on a 10 Xenium
Analyzer, with ROIs selected to cover the entire TMA region. Data
was processed on premises through the standard 10x workflow to
generate cell by gene and transcript by location matrices. The 10x

Article https://doi.org/10.1038/s41467-025-64990-y

Nature Communications |        (2025) 16:10215 13

www.nature.com/naturecommunications


multimodal segmentation kit and protocol was used for 2024 but not
for 2023 data acquisition.

NanoString CosMx
NanoString CosMx samples were prepared with one 1000 plex panel.
Samples were hybridized with probes and stained with cell markers.
Samples were loaded onto the CosMx SMI at the same time for ima-
ging, during which branched fluorescent probes were hybridized onto
the samples to amplify the signal above the background.

NanoString CosMx samples were prepared with Human Universal
Cell Characterization 1000 Plex Panel (part number 122000157)
according to manufacturer protocol “MAN-10159-01 CosMx SMI
Manual Slide Preparation Manual”. Firstly, slides were baked at 60°C
overnight for better tissue adherence. After baking, slideswere treated
sequentially with deparaffinization, target retrieval (15min at 100°C),
permeabilization (3 µg/mL proteinase K, 15min at 40 °C), fiducials
application, post-fixation, NHS-acetate application and then hybri-
dized with denatured probes from universal panel and default add-on
panel. After in situ hybridization (18 h at 37 °C), slideswerewashed and
incubated with DAPI (15min at RT) and marker stain mix (with PanCK,
CD45, CD68 and cell segmentation marker CD298/B2M). Slides were
washed and loaded onto the CosMx SMI for UV bleaching, imaging,
cycling and scanning. Raw imageswere decoded by default pipeline on
Atomx SIP (cloud-based service). Machine: CosMx_0020. Serial Num-
ber: INS2301H0020.

iST Data preprocessing
After data acquisition, the resulting outputs were uploaded to a Goo-
gle bucket associated with a terra.bio Workspace for distribution and
follow on analysis.

To facilitate standardized data formatting and subsequent ana-
lytical processes, we built a data ingestion pipeline with the following
objectives: (a) to grab cell-level and transcript-level data from diverse
platforms and normalize the data structure; (b) to tag each cell and
transcript with essential metadata including tissue type, tumor status,
PD-L1 status, among others (Supplementary Fig. 14); and (c) to trans-
form the data into various formats tailored to the requirements of
particularized analyses. Specifically, to tag the data, core centers in the
TMA were manually identified using DAPI images (Xenium) or cell
metadata that contains global coordinates (MERSCOPE and CosMx)
using QGIS(version:3.16.10-Hannover). Cells or transcripts within a
specified radius were then labeled with core metadata via spatial
joining (implemented by GeoPandas, version:0.13.0). In instances
where cores are in close proximity or when a uniform radius cannot be
applied effectively, we manually generated the core boundary masks.

Single-cell RNA sequencing
For each sample, two formalin-fixed paraffin-embedded (FFPE) curls
(25 μm each) were dissociated using the Miltenyi Biotech FFPE Tissue
Dissociation Kit (CG000632 RevA, 10X Genomics). The resulting cell
suspension was divided equally into four centrifuge tubes, each con-
taining approximately 300,000 cells. Cells in each tube were hybri-
dized with a unique Probe Barcode, as per the instructions in the
“ChromiumFixedRNAProfiling Reagent Kits forMultiplexed Samples”
user guide (CG000527, 10X Genomics). Post-hybridization, cells from
the four tubes were washed, counted, and pooled in equal propor-
tions. Approximately 40,000 cells from the pooled suspension were
loaded onto a Chromium Q chip (PN-1000422, 10X Genomics).
Sequencing libraries were prepared and sequenced on an Illumina
NovaSeq platform using paired-end dual-indexing (49 cycles for Read
1, 10 cycles for i7, 10 cycles for i5, and 90 cycles for Read 2). The
sequencing data was demultiplexed using bcl2fastq (Illumina). The
resulting FASTQ files were processed with Cell Ranger v7.0.1 (10X
Genomics) using the multi pipeline and the GRCh38-2020-A reference
genome.

Statistics and reproducibility
Reproducibility comparison. To evaluate panel to panel reproduci-
bility using tTMA1 (23) and nTMA (23) we summed the expression
level of shared genes between indicated panels (breast vs. multi-
tissue and breast vs. lung panels from Xenium and breast vs. lung
panels from MERCOPE) over an individual core and plotted all cores
present in each panel, before calculating a Spearman’s correlation.
The format of the data used is shown in Supplementary Table 10. To
evaluate core to core reproducibility, the individual gene counts of
replica 1 were plotted against those of replica 2 and a Spearman’s
correlation was calculated.

To further leveraged data from tTMA1 (24) to evaluate run-to-run
reproducibility or check how consistent each platform’s results were
across different experiments, we compared the total gene expression
levels of the same genes measured in 2023 and 2024 from the same
panel using scatter plots. We did this for all matching tissue samples
and calculated Spearman’s correlation to quantify the reproducibility.
The format of the data used is shown in Supplementary Table 10. To
assess consistency between different but similar samples or sample-to-
sample reproducibility, we performed the same comparison on a core
basis for all the cores that havematching shapes and cellular structures
when imaged in 2023 and 2024. We then summarize the Spearman’s
correlation values in boxplot to show the relative performance
between different iST platforms. While a high correlation value shows
that the gene expression patterns are similar, it doesn’t account for the
overall levels of expression. To get a more complete picture, we also
calculated the average log2 fold change values of gene expression
between 2024 and 2023 of a core and presented the results in a box-
plot (Supplementary Fig. 2i,j).

On target rates and false-discovery measurements. To compare
across panels and platforms, we subset all datasets to include only
cores assayed in all runs. The fraction of on-target barcodes was cal-
culated as a percentage of all transcripts corresponding to genes
relative to the total number of calls (including negative control probes
and unused barcodes or blank barcodes). These measurements were
performed on individual cores and averaged across all cores of the
same tissue type.

Because the difference in relative numbers of controls and target
barcodes across different platforms, we adopted the false discovery
rate (FDR) calculation to evaluate the specificity in a more normalized
way (Fig. 2e, f, Supplementary Fig. 6b,c). We calculated the FDR of
platform p panel m data in tissue t using the following Eq. (1) and cell
level data (see example in Supplementary Table 11):

FDRðnegative control probesÞtp,m

=mean

P
j negjn

P
i gin +

P
j negjn

×
I
J
×%

 !

,n= f1, . . . , Ng
ð1Þ

WhereN is the total number of cores that belong to tissue type t, I is the
total number of unique genes, J is the total number of negative control
probes, gin is the gene expression of gene i in core n, negjn is the total
calls negative control probe j in core.

Since MERSCOPE does not include negative control probes, FDR
was recalculated by substituting negative control with blank barcodes
(Fig. 2f, Supplementary Fig. 6c) using the following Eq. (2):

FDRðblank barcodesÞtp,m =mean
P

l blanklnP
i gin +

P
l blankln

×
I
L
×%

� �

,

n= f1, . . . , Ng
ð2Þ

WhereN is the total number of cores thatbelong to tissue type t, I is the
total number of unique genes, L is the total number of unused
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barcodes or blank barcodes, gin is the gene expression of gene i in core
n,blankln is the total calls of unusedbarcodeor blank barcode l in core
n, specifically, we used “BLANK” for Xenium, “Blank” for MERSCOPE,
and “SystemControl” for CosMx. We only used the data frommatched
cores, so N is same for different platform p.

Sensitivity comparison. Sensitivity was measured by the percentage
of the total number of unique genes detected above noise level, where
the noise was estimated as two standard deviations above average
expression of the negative control probes.

Single-cell RNA sequencing analysis. Cell Ranger from 10x Geno-
mics was used to demultiplex the raw sequencing data into FASTQ and
to align the FASTQ files. R version 4.2.2 and Seurat version 4were used
for all downstream analyses. RNA sequencing results for tTMA1 and
tTMA2 went through quality filtering where cells with greater than 5%
mitochondrial gene expression or less than 200 expression counts
were removed, resulting in 14,945 and 17,749 cells respectively. The
number of features and percent mitochondrial can be seen in Sup-
plementary Fig. 9. The data was scaled and normalized, and PCA with
dim 1:20 aswell as FindClusterwith resolution0.5wereused tofind the
cell clusters. No batch effect is observed.Markers for each cluster were
found and used for cell type annotation. Cells that are used for RNA
correspondence analysis are ACTA2-active cells (ACTA >0), that are
526 and 1117 cells for tTMA1 and tTMA2 respectively (Supplemen-
tary Fig. 5c).

Orthogonal RNA-Seq concordance analysis. RNA TCGA cancer
sample gene data summarizes 7932 samples from 17 different cancer
types, and it provides FPKM for each gene documented. We used all
samples which were annotated as BRCA (Breast cancer), BLCA
(Bladder cancer), COAD and READ (colorectal cancer), HNSC (head
and neck squamous cell carcinoma), LUAD and LUSC (non-small cell
lung cancer), SKCM (melanoma), and OV (ovarian cancer). For GTEx,
we selected the tissue types matching the annotation in our normal
tissue TMA. For each panel, the genes probed by iST were averaged
across all patients with the matching tissue label from the RNA-seq
database.

To get pseudo-bulked iST values, the expression level of each
gene in each core was normalized to the sum of all genes in that core
and scaled by 100,000. We then averaged these scaled pseudo-bulk
expression values across cores and plotted them against the averaged
FPKMs from reference RNA-seq data sets.

ACTA2-active cells (ACTA >0, 526 and 1117 cells for tTMA1 and
tTMA2 respectively) from single-cell RNA sequencing experiment are
also used to compare to the iST data. The single-cell gene expression is
aggregated by summing the counts. We used the Cell x Gene portal46.
to identify the top gene identifying smooth muscle cells which was
contained in each panel:ACTA2-active cells (ACTA>0) for Xenium and
CosMx or MYLK-active cells (MYLK >0) for MERSCOPE are extracted
from the iST datasets. (ACTA2 was too highly expressed to include in
the MERSCOPE panel.) Then, gene expression is also aggregated by
summing the transcript counts. We use Spearman’s correlation to
compute the correlation coefficient, and lm (linearmodel) is used to fit
the line.

Tissue marker enrichment analysis. To determine the assay’s ability
to specifically identify known lineage markers, we focused on the
normal tissue TMA profiled with multi-tissue panel of Xenium, breast
panel of MERSCOPE, and 1 K panel of CosMx. We selected genes with
known canonical expression patterns using based on transcriptomics
data from GTEx. If a gene had 20-fold higher expression in a specific
tissue than every other tissue combined, this gene was considered to
be a tissue marker and was used for assessing specificity for each
platform. Counts for each gene were normalized to the total counts

within the core, and then the Z-score of this gene across tissue types
was plotted in a heatmap (Supplementary Fig. 8d). We calculated
average expression of a gene across cores of the same tissue type and
normalized to the total averaged expression of all genes. Z-scoreswere
calculated with the mean and standard deviation across all
averaged genes.

Evaluation of cell segmentation accuracy. In this study, the cell
segmentation accuracy of three iST platforms was systematically
evaluated using manually annotated ground truth data (31384 cells in
total) from 3 TMA cores. These cores were selected to represent 3
distinct cellular scenarios—dense, sparse, and elongated cell distribu-
tions—and were morphologically matched across the platforms. We
employed both DAPI and membrane staining to identify cells, then
marked their centroids using the open-source software QGIS (version
3.16.10-Hannover). The resulting shapefiles were subsequently pro-
cessed in Python (version 3.10) with GeoPandas (version 0.13.1) for
data analysis.

For each platform across three distinct cellular scenarios: dense
cells, sparse cells, and elongated cells. Multiple segmentation
instances were generated to account for variability and ensure sta-
tistical robustness. We used precision, recall, and F1 score as per-
formance metrics. Precision was calculated as the ratio of correctly
identified positive segments to the total predicted positive seg-
ments, reflecting the accuracy of positive predictions. Recall mea-
sured the ratio of correctly identified positive segments to the actual
positive segments, indicating the platform’s ability to capture all
relevant segments. The F1 score, representing the harmonic mean of
precision and recall, provided a balanced assessment of the seg-
mentation performance by combining both metrics. To compare the
performance across different platforms and core types, statistical
analyses were performed using one-way Analysis of Variance
(ANOVA), followed by Tukey’s Honestly Significant Difference (HSD)
post-hoc tests for pairwise comparisons.

Evaluation of cell segmentation biological performance. To evalu-
ate the biological performance of the segmentation, we plotted
coexpression plots of gene pairs that are mutually exclusive including
CD3E vs. EPCAM, CD4 vs. CD8, and PPARG vs. CD68. We pooled all the
filtered cells from matched cores of each platform from tTMA1,
dropped cellswhichdonot express either gene, plotted the expression
of one gene against the other, and converted the scatter plot to a 2D
histogram showing cell numbers in each co-expression bin (Fig. 4g,
Supplementary Fig. 10h,i).

Cells per area quantification. Segmented cells were aggregated by
TMA cores. For Xenium and MERSCOPE data, the estimation of tis-
sue area was performed by calculating the area of a discernible
circle, utilizing respective radius of 0.3 µm, 0.6 µm, and 0.6 µm for
tTMA1, tTMA2, and nTMA, respectively. Conversely, for the
CosMx dataset, the tissue area estimation was approached differ-
ently due to its square-like data presentation, a result of the FOV
selection process. Here, the tissue area was deduced by multiplying
the number of FOVs covered by each core with the area of a
single FOV.

Clustering. For cell filtering, cells with less than 10 transcript counts
in MERFISH and Xenium datasets were removed, and cells with less
than 20 transcript counts in CosMx datasets were removed. We fol-
lowed standard processes to then cluster and annotate cell types
across each dataset using Scanpy47. Briefly, data was normalized and
scaled, dimensionality reduction was performed and cell clusters
were identified48,49. To identify the cell type for each cluster, we used
a t-test to find the markers for each Leiden cluster and annotated
them according to previous literature50–57. These are some of the
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example markers used for cell type annotation: in breast samples,
PIGR and KIT for alveolar cells, for B cells, KRT5, DST, and MYLK for
basal cells, LUM, MMP2 and CXCL12 for fibroblast, etc. Heatmaps of
the top 3 markers for each cluster are drawn for each dataset from all
three panels (refer to Supplementary Fig. 13a–c). For datasets that
showed batch effect with patients, Harmony was used to remove this
variance58. Correlation heatmaps were generated over overlapping
genes that exist in both datasets, and the Spearman correlation
coefficient was calculated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data used in this study have been deposited in NCBI’s Gene
Expression Omnibus59, and are accessible through GEO Series accession
numbersGSE308145, GSE308146, GSE308147, GSE308148 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSExxx). The processed data
generated in this study have been deposited in the Zenodo database
(DOI: 10.5281/zenodo.16848917), including cell-level data, gene-level
data, reconstructed.h5ad files, and the Source_Data.zip archive con-
taining the datasets used for figure generation. In addition, we devel-
oped a web portal (https://broadinstitute.github.io/ist_benchmarking_
showcase_portal/) to visualize the IST data used in this project with
Celldega (https://broadinstitute.github.io/celldega/). Source data are
provided with this paper.

Code availability
All code used in this manuscript for data processing and
analysis are available on GitHub (https://github.com/broadinstitute/
ist_benchmarking/).
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