
Article https://doi.org/10.1038/s41467-025-65016-3

Multicellular immune ecotypes within solid
tumors predict real-world therapeutic
benefits with immune checkpoint inhibitors
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Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, yet
predicting patient response remains a major challenge. Carcinoma ecotypes,
which capture the cancer-immune interactions, show promise as prognostic
biomarkers but remain untested in real-world settings. We compile and ana-
lyze the ORIEN Avatar ICI cohort of 1610 patients with matched gene expres-
sion data from a broader dataset of 14,997 individuals. Using EcoTyper-based
immunophenotyping, we define ecotypes and assess their prognostic value
across cancers, with a focused analysis in melanoma. Distinct cell states and
ecotypes are consistently associated with survival outcomes across cancer
types. We further develop a melanoma-specific ICI predictive model and
validate it using data from the phase III ECOG-ACRIN E1609 trial as well as in
external harmonizedmelanomadatasets. Together, thesefindings establish an
ecotype-based framework and provide real-world evidence for their transla-
tional utility as clinically actionable biomarkers with prognostic and predictive
value to guide ICI therapy.

Cancer continues to be amajor global health challenge, responsible for
nearly 10million deaths in 2020 alone1. Immunotherapies, particularly
immune checkpoint inhibitors (ICIs), are showing great potential as
new treatments. They work by reinvigorating exhausted T cells and
bolstering anti-tumor immunity2,3. However, responses to ICIs remain
highly variable across different cancers and patients, largely due to the
complex interactions within the tumor microenvironment (TME)4–6.
While previous research has largely concentrated on individual com-
ponents of the TME, such as overall immune infiltration score, PD-L1
expression, and cytotoxic activity (CYT)7–9, recent advances in com-
putational deconvolution techniques have emphasized the critical role
of co-occurring cellular states in shaping therapeutic outcomes10.

It is increasingly recognized that both cancer and immune com-
partments exhibit significant heterogeneity, and their dynamic inter-
actions play a pivotal role in shaping therapeutic outcomes. Localized
immune responses can prevail within specific regions of the tumor
microenvironment. However, these local victories may not translate
into broader clinical benefits if the immune response fails to expand or
persist systemically. Rather than viewing the TME as a static collection
of individual cell types, deep immunophenotyping methods such as
EcoTyper reveal that immune and stromal cells organize into distinct,
co-occurring cellular states that interact dynamically to shape tumor
behavior and immune responsiveness7,10,11. For instance, fibroblastic
and epithelial-like cells co-occurring with immune-suppressive
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macrophages create an environment that hinders T cell infiltration,
leading to immunosuppression and resistance to therapy. In contrast,
ecosystems enriched with activated CD8 +T cells, mature dendritic
cells, and proinflammatory monocytes foster immune activation,
resulting in better responses to ICIs. Similarly, ecosystems character-
ized by central memory T cells and naïve immune populations are
linked to prolonged survival and durable responses to immunother-
apy. On the other hand, ecosystems dominated by myeloid-derived
suppressor cells (MDSCs), M2-like macrophages, and immune-
suppressive fibroblasts actively inhibit T cell function and contribute
to immunotherapy resistance10. While these mechanisms are well
established individually, their collective prognostic significance,
especially in the context of interactions between co-existing cellular
states, has not been extensively examined on a broader
population scale.

In the original EcoTyper framework, Luca et al.10 identified ten
carcinoma ecotypes (CE1–CE10) by analyzing patterns of cell-state co-
occurrence across over solid tumors from 16 cancer types. These
ecotypes captured distinct TME architectures with specific biological
and clinical associations. CE1 and CE2 were broadly lymphocyte-
deficient or immunologically cold, enriched for stromal or epithelial
programs and linked to poor prognosis. CE3 was enriched for immu-
nosuppressive myeloid cell states and associated with microsatellite
instability and unfavorable survival. CE4 was characterized by myo-
genesis and a depletion of B cell receptor signaling12, and was more
prevalent in head and neck cancer and prostate cancer. CE5 and CE6
appeared as more intermediate TME ecosystems, with CE5 associated
with smoking-related mutations and CE6 enriched for normal-like tis-
sue elements. CE7 and CE8 showed modest immune infiltration; CE7
was linked to age-related signatures and CE8 to breast cancer subtype
signatures13, and both were more frequent in patients with
metastases14. CE9 and CE10 represented the most immunogenic eco-
types and enriched for activated CD8 +T cells and B cells; they were
consistently associated with better patient survival outcomes across
multiple cohorts. CE9, in particular, exhibited strong IFN-γ signaling
and outperformed other transcriptomic features in predicting immu-
notherapy benefit in the original study. Follow-up analyses showed
that CE10 is more enriched for naïve B and T cells, whereas CE9 con-
tains a higher proportion of activated or exhausted B/T cell subsets13.
Importantly, CE1, CE9, and CE10 demonstrated high spatial aggrega-
tion and strong potential for forming cellular niche interactions within
the TME.

Many existing studies, such as The Cancer Genome Atlas (TCGA),
emphasize sampleswith high tumor content andoften underrepresent
immune and stromal components that are critical to cancer progres-
sion and patient outcomes. ICI clinical trials and preclinical studies
typically include highly selective patient populations, which limits the
broader applicability of their findings. These constraints highlight the
need for analyses that integrate real-world data to capture the full
diversity of tumormicroenvironments and patient characteristics seen
in clinical practice. To address this gap, we leverage the ORIEN Avatar
dataset, a part of the Total Cancer Care (TCC) initiative that has
enrolledover 400,000patients across 18 cancer centers. This resource
provides high-quality molecular profiles and clinical outcomes from
patients treated with modern therapies. From the July 2023 dataset
freeze, we identify a subcohort of 1610 ICI-treated patients with mat-
ched tumor molecular data (including RNA-seq and whole exome
sequencing) and detailed clinical annotation. This dataset offers
greater scale and clinical representativeness, capturing ecotype dis-
tributions across contemporary patient populations and treatment
landscapes.

In this work, we apply EcoTyper to the ORIEN Avatar ICI cohort
to characterize tumor–immune ecotypes and evaluate their prog-
nostic value in real-world settings. We further develop a melanoma-
specific prognostic signature and validate it across multiple

independent cohorts. Our results support the use of composite risk
scores based on ecotypes as predictive biomarkers for ICI response,
complementing and in some cases outperforming classical immune
signatures.

Results
Study population
Founded in 2014, ORIEN real-world data (RWD) includes a cohort of
over 400,000 patients who have consented for lifetime participation
in the Total Cancer Care (TCC) protocol. The Avatar program has
enrolled over 24,000 patients across 30 cancer types. All samples in
the Avatar program were analyzed with high-quality molecular profil-
ing of tumors, including whole exome sequencing (WES) and tran-
scriptome sequencing (RNAseq). Each patient contributes around 325
clinical data points, which are updated every six months, covering 18
clinical domains such as outcomes, treatments, demographics, and
medical history. The clinical and molecular data are processed by a
centralized team responsible for performing rigorous QA/QC, har-
monizing datasets across the network, and linking clinical-genomic
patient profiles. The latest version includes patients up to July 31, 2023.
In a comprehensive examination of the clinical characteristics of
participants, we identified 1610 patients treated with immune
checkpoint inhibitors (ICIs) from a cohort of 14,997 individuals with
pre-treatment sample collection in the ORIEN Avatar database. This
real-world ICI cohort is categorized as follows: melanoma (n = 161),
head and neck squamous cell carcinoma (H&N) (n = 240), non-small
cell lung cancer (NSCLC) (n = 270), bladder cancer (n = 151), and
kidney cancer (n = 311) as presented in Table 1 and Supplementary
Fig. 1. The mean ± standard deviation (SD) age across the cohort was
61.53 (12.37) years. Specifically, melanoma patients presented a
slightly younger demographic with a mean ± SD age of 59.44 ± 14.30
years at the time of data collection, while NSCLC patients were the
oldest with a mean ± SD age of 63.51 ± 9.58 years. Men and non-
Hispanic participants were predominant (61.30% and 93.42%,
respectively) across the cohort in all cancer types. The analysis of
tumor origin highlighted a noteworthy prevalence of primary tumors
in all cancer types, except for a prominent 63.35% of melanoma cases
that were identified as metastatic.

The data shows potential gaps in cancer staging information, or
that some participants were selected regardless of their stages at the
time of initial diagnosis, since over half (51.99%) had stages listed as
unknown. However, all subjects included who had advanced meta-
static stages necessitating treatment with ICIs. Therefore, various
treatments were reported across the cohort, with pembrolizumab
being the most administered drug (49.01%). As expected, melanoma
patients received ipilimumab at a significantly higher rate (21.74%)
compared to other cancer groups.

Global distribution of identified cell-states and multicellular
ecotypes
Focusing on cell states and multicellular ecotypes in the discovery
cohort, the heatmap in Fig. 1A shows the distribution of multicellular
communities or carcinoma ecotypes (CEs) across all samples within
this real-world ORIEN ICI cohort, which comprises 1610 patients with
1732 RNAseq samples. Of these, 1254 patients (78%) were successfully
assigned to specific ecotypes.

These assignments covered all ten previously defined ecotypes
across carcinomas (CE1-10)10. A notable trendwas observed, where CE1
tumors represent more lymphocyte-deficient, and CE10 tumors
represent more proinflammatory CEs. The ecotypes with the highest
number of tumors assignedwere CE1 andCE6 (a non-neoplastic tissue-
enriched cell subtype), followed by CE8 through CE10. This
distribution showed slight differences from the findings in the TCGA
pan-cancer discovery cohort (n = 4729), where CE1 and CE8 were the
most prevalent10.
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A comparison of the distribution of ecotypes results across the
five major cancer types in the cohort as illustrated in Fig. 1B: mela-
noma, H&N, NSCLC, kidney cancer, and bladder carcinoma revealed
that 80% of H&N patients, 80% of NSCLC patients, 75% of kidney
cancer patients, 72% of patients with bladder cancer, and 70% of
melanoma patients were successfully assigned to a pre-defined
ecotype. In each cancer type, the previously known pan-cancer
prognostic ecotypes CE1- CE2 and CE9- CE10 were found in around or

more than half of the patients, indicating the translational potential
of these four ecotypes for predicting ICI outcomes. Among these five
cancer types, H&N exhibited the most distinct cancer-specific dis-
tribution, with a higher number of samples assigned to CE4 and
notably fewer in CE6. This pattern aligns with the discovery cohort,
where a higher prevalence of CE4, potentially linked to myogenesis,
was noted in both H&N and prostate cancer (and in older male
patients).

Table 1 | Baseline clinical characteristics of patients included in the ORIEN ICI cohort

Overall
(N = 1610)

Melanoma
(N = 161)

H&N
(N = 240)

NSCLC
(N = 270)

Others*
(N = 942)

Age at study

Mean
(SD)

61.53 ( ± 12.37) 59.44 ( ± 14.30) 61.19
( ± 10.82)

63.51
( ± 9.58)

61.39
( ± 13.00)

Gender, n (%)

Women 38.70 38.75 17.92 46.67 41.72

Men 61.30 61.25 82.08 53.33 58.28

Ethnicity, n (%)

Hispanic 4.72 8.08 2.92 2.92 5.73

Non-Hispanic 93.42 90.06 96.25 96.25 91.93

Unknown 1.86 1.86 0.83 0.83 2.34

Tumor origin, n (%)

Primary 65.53 35.40 60.80 60.00 73.35

Metastasis 30.12 63.35 31.67 35.56 22.40

Both 4.35 1.24 7.50 4.44 4.25

LDH (serum), U/L

Mean
(SD)

182.5
( ± 127.65)

195.44
( ± 92.87)

194.19
( ± 86.51)

248.20
( ± 181.14)

219.23
( ± 126.52)

Missing % 55.90 45.96 54.58 64.07 55.73

Karnofsky/ECOG PS n(%)

EPS 0/ KPS 100% 12.05 12.42 6.67 13.33 17.95

EPS 1/ KPS 80-90% 10.31 1.86 10.83 18.89 9.13

EPS 2/ KPS 60-70% 2.23 0.62 1.67 3.33 2.33

EPS 3/ KPS 40-50% 0.19 9.32 0.42 0.74 0.00

Unknown 49.01 32.92 56.25 47.41 47.94

Cancer Stage, n (%)

Stage 0 0.19 0.00 0.00 0.00 0.32

Stage I 6.40 3.11 5.00 12.22 5.63

Stage II 8.20 9.32 2.92 14.81 7.54

Stage III 15.84 14.90 7.50 14.33 18.47

Stage IV 17.33 10.56 24.17 18.52 16.45

Unknown 51.99 62.11 60.42 40.00 51.59

Immuno-oncology therapy, n (%)

Ipilimumab 3.11 21.74 0.42 0.00 1.49

Nivolumab 26.02 22.36 27.08 21.11 27.71

Pembrolizumab 49.01 39.75 67.08 58.52 43.31

Avelumab 1.30 0.00 0.00 0.37 2.12

Atezolizumab 6.34 0.621 1.67 7.41 8.17

Cemiplimab 0.56 0.00 0.83 0.00 0.74

Durvalumab 2.55 0.00 0.83 10.37 1.17

Ipilimumab+
Nivolumab

10.99 14.29 2.08 2.22 15.29

Ipilimumab+
Nivolumab/
Pembrolizumab

0.06 0.62 0.00 0.00 0.00

Nivolumab-Relatlimab-rmbw 0.06 0.62 0.00 0.00 0.00

*Others: includes all other cancer types exceptmelanoma, H&N andNSCLC.Note the sumof patients across individual cancer types exceedsN = 1610 because somepatientswere assigned tomore
than one cancer type due to multiple tumor or disease classifications in the real-world dataset.
ICI immune checkpoint inhibitor, H&N head and neck, NSCLC non-small cell lung cancer, SD standard deviation.

Article https://doi.org/10.1038/s41467-025-65016-3

Nature Communications |         (2025) 16:9968 3

www.nature.com/naturecommunications


To help elucidate the cellular basis of ecotype status, Fig. 1C
presents the average cellular composition of the ten CEs inmelanoma,
estimated using CIBERSORT7. The corresponding cellular composition
profiles for the othermajor cancer types in this ICI cohort are shown in
Supplementary Fig. 2. The left panel of Fig. 1C shows the cellular
abundances derived from the original CIBERSORT method with the

LM22 immune cell reference.Most trends observed are consistentwith
the original EcoTyper study. As expected, CE9 and CE10 displayed a
more immune-infiltrated or proinflammatory phenotype, with CE9
showing the highest CD8⁺ T cell content and CE10 enriched for naïve B
cells. Notably, CE4 exhibited depletion of B cells and the highest
abundance of M0 macrophages, while CE5 had increased levels of
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memory B cells. We further applied CIBERSORTx using a reference
built from melanoma single-cell RNA-seq data15, as shown in the right
panel of Fig. 1C. Although this reference captures fewer immune cell
types and subtypes, it allows for more accurate estimation of malig-
nant and stromal components in solid tissues. Using this approach,
we found that CE1 was characterized by a higher abundance of cancer-
associated fibroblasts, potentially contributing to its immunosup-
pressive features. In addition, CE5 and CE10 had the highest
proportions of CD4⁺ T cells, and CE9 and CE10 remained enriched for
B cell and T cell populations, confirming their TME-hot characteristics.

Distribution of specific immune cell states across cancer types
As shown in Fig. 2, we further investigated the distribution of spe-
cific immune cell states identified from the gene expression data
from the discovery dataset and in melanoma, H&N, NSCLC, and
bladder cancer. These analyses focused on different cell types and
their potential role in the immune system. Looking at Fig. 2A, it is
apparent that the distribution of the three identified CD8 T cell
states, CD8-S01 (naive/central memory T cells), CD8-S02 (late-stage
effectors), and CD8-S03 (exhausted/effector memory), is consistent
across the four cancer types examined. Note that CD4-S01 and

Fig. 1 | Distribution of CEs in the pan-Cancer ORIEN IO cohort. A This heatmap
displays the abundance profiles of cell states and CEs identified across all cancer
types in the ORIEN IO cohort. Only samples assigned to pre-definedCEs (CE1-CE10)
are included. Each column in the heatmapcorresponds to RNA sequencing samples
(n = 1340), and each row shows the expression of cell state marker genes within a
recovered ecotype. B Pie charts illustrate the distribution of the ten CEs within five
specific cancer groups:melanoma,headandneck cancer (H&N), non-small cell lung

cancer (NSCLC), kidney cancer, and bladder cancer. Each segment indicates the
number of assigned patients per ecotype group—abbreviations: CE, carcinoma
ecotype; S, cell state.CAverage cellular compositionof the tenmelanomaecotypes
(n = 118 melanoma samples). The left panel shows immune cell proportions esti-
mated using the original CIBERSORT method (using LM22 as reference). The right
panel shows cellular composition estimated using CIBERSORTx with a melanoma-
specific single-cell RNA-seq reference (Tirosh dataset15).
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Fig. 2 | Cell state expression across major cancer types. The figure presents
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the expression of marker genes for each cell state, using data from TCGA datasets
as a reference. Subsequent heatmaps illustrate the expression profiles in each
major cancer type. Each row corresponds to a cell-state marker gene, and each

column represents RNA sequencing samples. The number of RNAseq samples with
assigned cell states are as follows: For CD8 states (A),Melanoma n = 53, HNC n = 89,
NSCLC n = 99, and Bladder n = 57. For CD4 cell states (B), Melanoma n = 53, HNC
n = 74, NSCLC n = 83, and Bladder n = 52. For B cell states (C), Melanoma n = 70,
HNC n = 115, NSCLC n = 143, and Bladder n = 80.
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CD4-S03 are key components of the two proinflammatory commu-
nities CE10 and CE9, respectively.

In the CD4 cell type (Fig. 2B), however, only the distributions of
the two cell states CD4-S01 (exhausted/effectormemory) andCD4-S02
(naive/central memory) remain consistent across the four cancers,
accounting for half of the patients with an assigned CD4 CS assigned.
These two states define the two proinflammatory ecotypes. It is
observed that CD4-S05 was more enriched in H&N cancer, while CD4-
S06 is more enriched in melanoma, with prominence in the specific
immune environments of these cancers. Overall, NSCLC displayed a
broader mixture of CD4 states, specifically S03-S06. This diversity is
presumably attributed to the histological heterogeneity within NSCLC,
including adenocarcinoma and squamous cell subtypes.

Regarding the distribution of B cell states, as portrayed in Fig. 2C,
relatively similar patterns are observed across the cancers, with certain
exceptions; there was a higher prevalence of B-S05 (activated B cells)
in melanoma and NSCLC and a relatively higher occurrence of B-S03
(normal-enriched) in bladder cancer. In addition, in the analysis of
dendritic cells shown in Supplementary Fig. 3, DC-S01 (myeloid cDC1)
wasprevalent across all four cancers, especially inmelanoma andH&N.
Meanwhile, DC-S05, identified as mature/normal-enriched, was more
abundant in bladder cancer and NSCLC. These findings, especially the
observed variations in non-CD8 immune cells, emphasize the sig-
nificance of accounting for the complete range of immune cell states
and interactions beyond the conventional categories of immune hot
and immune cold.

Prognostic ecotypes for ICI cohort
The clinical significance of carcinoma CS co-occurrence networks, or
CEs, has beenpreviously establishedby thehigh concordance between
the identified ecotypes and prognosis across various solid tumor
types11. Notably, CE9, characterizedby IFN-γ signaling andhighly active
anti-tumor immune activity, demonstrated potential in predicting ICI
response inmetastatic melanoma trial data10. As a primary objective of
this study, we conducted a thorough correlative analysis of treatment
outcomes concerning all CEs within the ORIEN ICI cohort, aiming to
evaluate their predictive value in a real-world setting objectively. In the
ORIEN real-world dataset, we lacked specific tumor response infor-
mation, i.e., complete response (CR)/partial response (PR)/stable dis-
ease (SD)/ progressive disease (PD); therefore, we utilized OS from the
ICI medication start date as the main outcome for the prognostic
evaluation. The Kaplan-Meier curves in Fig. 3A compare the estimated
OS probability associated with each of the 10 CEs identified in the
ORIEN ICI cohort–across all patients who received ICIs.We understand
that these patterns can be confounded by the cancer types and their
distribution of CEs, but we still want to explore if well-established
ecotypes, suchasCE9 andCE10, can consistently exhibit similar effects
at a pan-cancer level.

Overall, CE9 exhibited the most favorable survival outcomes
compared to all other ecotypes, closely followed by CE6 and CE10.
Compared to the survival pattern observed in the TCGA discovery
cohort, the favorable performance of CE6 is less expected than that of
the two other proinflammatory CEs. CE2, a lymphocyte deficiency CE,
contributed to the least favorable patient survival outcome, followed
by CE4 (myogenesis-associated CE). The remaining ecotype groups
(CE1, CE3, CE5, CE7, and CE8) exhibited intermediate risk and did not
show clear separations in their survival curves. The survival rates were
further analyzed by grouping the ten identified ecotypes into three
eco-groups: CE9 & CE10 (the proinflammatory group), CE1 & CE2 (the
lymphocyte-deficient group), andCE3-8 (Others) (Fig. 3B). The Kaplan-
Meier curves for the three groups show clear statistical separation
(p < 0.001, log-rank test). Among the groups, CE9&10 exhibited the
most favorable survival outcomes, whereasCE1&2 had the poorest.We
also performed Kaplan–Meier analyses of ecotypes based on real-
world progression-free survival (rwPFS), as shown in Supplementary

Fig. 4, which revealed a similar pattern to the OS outcome as shown in
Fig. 3A, B.

We further performed a stratified survival analysis based on the
ICI treatment regimen. As shown in Supplementary Fig. 5A, patients
were categorized into two subgroups: those receiving anti-PD-(L)1-
based regimens and those treated with anti-CTLA-4-based therapies,
including both monotherapy and combination therapy. Despite the
sample size limitation, particularly for anti-CTLA4 patients, we
observed ecotype-outcome associations consistent with those shown
in Fig. 3B across both subgroups. We further evaluated ecotype-
outcome associations within two additional clinically relevant sub-
groups: HPV status in HNSCC and smoking status in NSCLC. In both
analyses, the ecotype-based survival trends remained consistent with
the overall findings (as shown in Supplementary Fig. 5B, C).

Interestingly, we found that CE6, classified as a normal-like eco-
type in the original EcoTyper framework, was associated with favor-
able survival in our ICI-treated pan-cancer cohort (Fig. 3A). This finding
contrasts with the original study, where CE6 showed variable asso-
ciations with OS across TCGA cancer types and tended toward unfa-
vorable outcomes in limited ICI-treated datasets. Several factors may
explain this discrepancy. First, theCE6 survival trend inour cohortmay
reflect cancer-type composition, because nearly half of the CE6-
assigned samples in our data come from kidney cancer, which gen-
erally exhibited better survival (Supplementary Fig. 6). Second, CE6 in
our dataset was notably enriched among primary cases. These differ-
ences in sample source and clinical context may contribute to the
different prognostic behavior of CE6.

To better illustrate the ecotype-specific survival patterns, in
Fig. 3C, we additionally analyzed the population-level survival trajec-
tories from two to five years for the four ecotypes (CE1, CE7, CE9, and
CE10) that had the highest number of assigned patients among mela-
noma cases. As expected, there was a notable decrease in the number
of patients experiencing no events (alive) over three years for CE1,
while CE9, indicative of a favorable prognosis, shows a much smaller
decrease. After that, we explored the prognostic implications of CD4 T
cell states, which are crucial for immune regulation and the activation
of cytotoxic T cells. It can be seen from the data in Fig. 3D thatCD4-S01
and CD4-S02 exhibited significant positive survival outcomes in mel-
anoma and H&N, consistently showing beneficial effects in the other
two cancer types as well. Finally, CD4-S03 (marked by gene GLYCTK)
was associated with poorer survival outcomes in melanoma, NSCLC,
and bladder cancer, although the mechanisms underlying CD4-S03
remain to be elucidated.

Multi-ecotype prognostic signature
To develop and optimize a melanoma-specific prognostic EcoTyper
model using the ORIEN ICI melanoma data, we performed regularized
Cox regressionwith repeated subsampling (random elastic net), which
ultimately selected five ecotypes: CE1, CE5, CE7, CE9, and CE10. The
final melanoma-ICI patient risk score (EcoRIS) model was then con-
structedusing apost-selectionmultivariable Cox regression as follows:
1.13 × CE1 + 1.49 ×CE5 + 1.39 × CE7 − 2.11 × CE9 − 4.86 ×CE10 (more
details available in “Methods”). As an initial step in evaluating the
performance of the EcoRIS prognostic signature, we conducted mul-
tivariable Cox regression analyses in the ORIEN melanoma ICI cohort,
adjusting for key clinical covariates including age, sex, and sample type
(primary vs. metastatic). As shown in Supplementary Fig. 7A, the
EcoRIS signature remained significantly associated with both overall
survival and rwPFS. No other clinical covariates were significant, as
expected, but this multivariable analysis helped validate the observed
associations against potential confounding effects.

The predictive accuracy of the EcoRIS model was assessed using
two external melanoma datasets: E1609 (a phase III trial involving
patients with resected cutaneous melanoma treated with ipilimumab
or high-dose interferon alfa) study16 and a harmonized ICI datasets17–20
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comprising 334 patients with melanoma treated with ICIs. The prog-
nostic value of the 5-CEs risk model across the entire E1609melanoma
cohort was presented in Fig. 4A. Stratification by the median of risk
scores revealed that patients on either Ipi or HDI-α with lower pre-
dicted scores exhibited significantly better survival outcomes than
those in the high-risk score group (log-rank test, P < 0.001). The same
trendwas observed in the subgroupof patients treated onlywith Ipi. In
the multivariable Cox regression setting, as illustrated in the forest
plots, only CE9 remained significant in the all-patients cohort and

Ipi-treated cohort [Hazard ratio (HR) (95% CI); 0.04 (0.00 to 0.45),
0.02 (0.00 to 0.44), respectively], suggesting its potential value as a
protective single-CE predictor.

We examined two representative melanoma tissue samples from
the E1609 cohort by retrieving the matched Hematoxylin and eosin
stain (H&E) and immunohistochemistry (IHC)-stained slides, as pre-
sented in Fig. 4C. One sample had a low melanoma-ICI patient risk
score, and another one was classified under CE9. Notably, both sam-
ples displayed structures of lymphoid aggregation, which are
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frequently associatedwith better ICI outcomes, representing potential
tertiary lymphoid structures, as indicated by the IHC results for CD8
(CD8 +T cells) and CD20 (B cells). In the harmonized melanoma
datasets17–20 (Fig. 4B), the patient with progressive disease (PD) dis-
played a bimodal risk score distribution, with the highest peak pre-
dominantly on the high-risk end. In the anti-PD-1-treated cohort from
Gide et al.17, a significance separation in overall survival was observed
between the low and high-risk groups. This trend was similarly
observed in both in the VA et al.19 dataset, which included patients who
received anti-CTLA4 therapy, and with Liu et al.18 cohort of patients
receiving anti-PD1 therapy.

Because direct ICI response outcomes are unavailable in the
ORIEN dataset, we leveraged COMPASS21, a foundation model for
predicting ICI response from transcriptomic profiles. In our analysis,
we deployed a multi-stage fine-tuned model developed on melanoma
patients for pembrolizumab-prediction, to infer binary ICI response.
As shown in Fig. 4D, the left panel demonstrates that the tertiary
lymphoid structures (TLS) score inferredbyCOMPASS embeddingwas
significantly elevated in tumors assigned to CE9 and CE10. We also
observed an association between the TLS score and the corresponding
CE9 ecotype score, suggesting enriched TLS-like activity in these
proinflammatory ecotypes. In the right panel, EcoRIS scores were
significantly higher in the COMPASS-predicted non-responder group,
and the area under the curve (AUC) for using EcoRIS to predict
response status was 0.762. These findings provide an additional layer
of validation supporting the predictive value of the EcoRIS model.

Intriguingly, in the final EcoRIS model, CE10 carried a stronger
regression coefficient thanCE9 (− 4.86 vs − 2.11), despite CE9 being the
most ICI-associated ecotype from the original EcoTyper study. To
better understand this, we evaluated the univariable associations
between individual ecotype fractions and overall survival in the ICI-
treated melanoma cohort. As shown in Supplementary Fig. 7B, the
results were consistent with the multivariable model and aligned with
survival trends observed in Fig. 3C, where CE10 demonstrated a more
pronounced predictive effect. These findings highlight a potentially
underrecognized prognostic value for CE10 in real-world ICI-treated
patients. One possible explanation is that CE10 represents a more
naïve or recovering cytotoxic immune state, as supported by recent

evidence13, whereas CE9 is enriched for exhausted or dysfunctional
CD8⁺ and CD4⁺ T cell populations. This distinction is especially rele-
vant in real-world ICI cohorts, wheremost patients have received prior
therapy. In addition, CE10 has been foundmore frequently localized in
lymph nodes rather thanwithin the tumor core, which could influence
its prognostic behavior in metastatic diseases such as melanoma.

De novo ecotypes were discovered based on the ORIEN ICI
dataset
As part of our exploratory analysis, we further performed the de novo
discovery of cell states and ecotypes using the transcriptome data in
the ORIEN ICI dataset. Based on CIBERSORTx, we first estimated the
abundance of cell types and generated cell-type-specific gene
expression profiles (GEPs) across nine cell types. Subsequently,
employing the EcoTyper framework, we identified distinct transcrip-
tional cell states within these profiles. Based on the ecotype discovery
analysis pipeline, three distinct ecotypes were detected based on 27
different cell states. These newly identified ecotypes are labeled E1, E2,
and E3, with 47, 32, and 39 RNAseq samples assigned to them,
respectively (Fig. 5A). Ecotype E1 was characterized by CD4-S04,which
was related to gene CTLA4 and B-S01, CD8-S01, and others. On the
contrary, Ecotype E2 consisted of various cell states, with S02 being
the dominant one. Finally, Ecotype E3 was identified by the co-
occurrence of CD8-S03 and EPI-S02 (Fig. 5B).

The survival analysis in Fig. 5C indicates that patients categorized
under Ecotype E3 experienced significantly poorer survival outcomes
than those in E1 and E2 (log-rank test, P <0.0001). In addition, patients
with higher continuous E3 score (above the median) had significantly
worse survival (log-rank test, P <0.0001), while higher continuous
scores for E1 and E2 were associated with better survival (Supple-
mentary Fig. 8A). To further explore the transcriptional landscape of
the de novo melanoma-specific ecotypes (E1–E3), we examined their
relationship with previously defined pan-cancer ecotypes and asso-
ciated cell states. As shown in Supplementary Fig. 8B, C, E3, associated
with poor ICI outcomes, showed markedly reduced representation of
CE9 and CE10, and was instead enriched for CE7. We also assessed the
dominant CD4⁺ T cell states within each de novo ecotype and found
clear distinctions: E1 was characterized by CD4-S04, a state expressing
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genes that are reminiscent of immune-activated states; E2 was enri-
ched for CD4-S02 (naïve/central memory), and E3 for CD4-S01
(exhausted/effector memory). These CD4⁺ T cell compositions may
partly explain the prognostic differences among the de novo ecotypes
and further support their biological relevance in ICI-treated mela-
noma. Overall, the distinct profile of Ecotype E3 could complement
established prognostic ecotypes such as CE9, enhancing the profiling
of immune interactions from derived real-world ICI data.

Discussion
In this study,weutilized the EcoTyper framework andORIENAvatar ICI
cohort data to investigate how immune cell states and tumor ecotypes
influence response to immunotherapies in a real-world setting. Public
datasets such as TCGA were valuable for training EcoTyper but were
based on samples selected for high tumor purity and diverse cancer
types22, limiting their generalizability due to selective inclusion criteria
and outdated treatmentmodalities. In the original EcoTyper study, the
prognostic relevance of ecotypes for ICI outcomes was tested only in
limited validation cohorts, such as IMvigor, a bladder cancer study of
patients receiving anti-PD-L1 therapy10. In contrast, the ORIEN Avatar
cohort offers a much larger sample size with high-quality molecular
and clinical data collected across multiple cancer centers. Leveraging
this resource allowed us to evaluate the prognostic value of ecotypes
in an independent, real-world setting and generate clinically relevant
insights into immunotherapy response.

In the current study, the prognostic value of 10 ecotypes at the
pan-cancer level was evaluated and subsequently categorized into
three subgroups: an immune-deficient group (CE1 and CE2), a proin-
flammatory group (CE9 and CE10), and an intermediate-risk group
(CE3-8). As expected, the immune-deficient group was linked to
shorter survival, whereas the proinflammatory group showed sig-
nificantly better outcomes. These results indicate that ecotype-based
prognostic signatures exist at a pan-cancer level. In cancer-type-
specific analyses, the prognostic strength of the ecotype-based sig-
nature was most evident in melanoma and non-small cell lung cancer
(NSCLC), followed by head and neck cancer and bladder cancer
(Supplementary Fig. 4). In contrast, the prognostic association was
weaker in kidney cancer, possibly reflecting its distinct tumor micro-
environment or the distribution of ecotypes in this disease.

We constructed a composite prognostic risk model, termed
EcoRIS, in the melanoma cohort using ecotype abundance scores.
Because over 20% of patients were not assigned to specific ecotypes,
the model incorporates all samples through continuous scores. This
approach is advantageous as it preserves more information even for
ambiguous ecotypes like CE5 and CE8, which share similar cell states.
The final model selected CE1, CE5, CE7, CE9, and CE10. Among these,
CE1 and CE7 were notably associated with TGF beta signaling. CE1
exhibited the strongest positive association with UV response down-
regulation and hypoxia, while CE9 demonstrated significant negative
associations with both pathways. CE1 and CE9 were also the ones to
which most melanoma patients were assigned. To account for clinical
heterogeneity, we performed multivariable Cox regression analyses
adjusting for key covariates, including age, sex, and tumor sample
type. The EcoRIS signature remained significantly associatedwith both
OS and real-world PFS, and adjustment for clinical covariates, although
not individually significant, confirmed the robustness of these
associations.

Two notable differences emerged when comparing our findings
with the original EcoTyper signatures. First, CE6 was unexpectedly
associatedwith favorable survival in our ICI-treatedpan-cancer cohort,
where the original study reported variable and often unfavorable
associations with prognosis in non-ICI contexts. In our analysis, nearly
half of the CE6-assigned tumors originated from kidney cancer, con-
tributing to better prognosis. CE6 was also more common in meta-
static or recurrent tumors, suggesting cancer type prevalence and

tissue origin may shape its prognostic behavior. These observations
highlight the context-dependent performance of ecotypes in real-
world ICI-treated populations. Second, in our EcoRIS model,
CE10 showed a stronger protective effect than CE9, despite CE9 being
the ICI-responsive in the original EcoTyper. One explanation is that
CE10 may reflect a naive cytotoxic immune state, whereas CE9 is
enriched for exhausted or dysfunctional immune populations. This
distinction may be especially relevant in real-world data where prior
therapies alter the immune landscape. In summary, CE9 and CE10
remained highly immunogenic, yet their contributions to favorable
outcomes vary by context, warranting further mechanistic
investigation.

We successfully validated the riskmodel for using an independent
cohort from the E1609 phase III trial16 in melanoma and a harmonized
cohort from three independent ICI studies17,19,23, confirming that lower
predicted risk scores are associated with improved survival and better
response to immunotherapy. In the E1609 cohort, H&E slides available
from a subset of patients with low EcoRIS scores and CE9 assignment
showed possible lymphoid aggregation, which may indicate enrich-
ment of immune-related functions at the spatial level. In the data with
therapy response, patients with higher risk scores were more likely to
progress.

The predictive potential of major cell states and communities
across all major cancer types was also investigated. Unlike the exten-
sively studied CD8 T cells and B cell states, which largely define
immune hot or cold states, CD4+ T cells exhibit a broader spectrum,
with more than half of their states lacking clear mechanisms. Survival
analysis showed that the CD4-S01 and CD4-S03 were the most con-
sistent states across cancers, with S01 associated with improved sur-
vival and S03 with poorer survival. These findings suggest that CD4⁺
T-cell states may serve as a complementary marker to established
ecotypes and highlight the need for deeper functional analyses.

In addition to recovered cell states and ecotypes, we performed
de novo discovery using the melanoma ORIEN ICI data and identified
threemelanoma-specific ecotypes: E1, E2, and E3. E1 was characterized
by CD4-S04, associated with the immune checkpoint gene CTLA4,
together with B-S01 and CD8-S01, and was linked to favorable survival
outcomes. E3, identifiedby the co-occurrenceof CD8-S03 and EPI-S02,
was strongly associatedwith shorter survival. E2 contained of a diverse
mixture of cell states but showed limited prognostic relevance com-
pared with E1 and E3. Themajor immune cell states and their signature
genes for these three de novo ecotypes are shown in Supplementary
Fig. 9. Overall, the distinct profile of E3 may complement established
prognostic ecotypes such as CE9, offering additional resolution for
evaluating tumor immune functional status.

This study has several limitations. First, the real-world nature of
the ORIEN ICI cohort makes it challenging to obtain categorized
RECIST responses and comprehensive details on all prior and ongoing
treatments, which may impact our findings. Second, different therapy
combinations, such as neoadjuvant chemotherapy regimens, may
introduce bias and should be further explored in larger cohorts. Third,
in calculating survival outcomes, we used the start date of the first ICI
medication, whichdoes not account for the durationor effects of prior
therapies, although it aligns with conventions used in ICI clinical trials.
Fourth, in real-world datasets, the timing of the treatment relative to
the biospecimen is often ambiguous, particularly in patients with
complex treatment histories or multiple lines of therapy. This limita-
tion complicates the interpretation of transcriptional profiles and
ecotype assignments. Finally, differences between primary and meta-
static tumor samples may also influence immune profiles and ecotype
classifications. The limited number of matched primary-metastatic
pairs restricted our ability to systematically assess this effect. The
melanoma cohort used to develop EcoRIS included a majority of
metastatic samples, which may affect the model’s generalizability to
cohorts with different sample distributions.
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In conclusion, our findings support the use of cell state co-
existence patterns, identified through ecotype-based profiling, as
biomarkers for predicting immunotherapy outcomes. Leveraging the
scale and diversity of the ORIEN ICI cohort, we systematically eval-
uated the prognostic significance of established ecotypes in a setting
that reflects routine clinical practice, an element largely absent from
prior studies. Future work integrating ecotypes with emerging spatial
omics data may improve tissue specificity and spatial resolution,
allowing more precise characterization of immune niches and resis-
tance mechanisms to guide targeted drug development.

Methods
Ethics statement and patient Cohort
This research incorporated a retrospective examinationof clinical data
and gene expression profiles from consenting patients collected
through the Total Cancer Care® (TCC) Protocol (NCT03977402) and
Avatar® project conducted within the Oncology Research Information
Exchange Network (ORIEN), which includes 18 collaborating cancer
centers participating in TCC24,25. Subjects participating in TCC pro-
vided written informed consent to allow the use of their tumor and
blood biospecimens for genomic and transcriptomic analyses and
corresponding clinical data as part of the standard clinical practice to
manage their disease. The studywas conducted in accordancewith the
ethical standards of the Declaration of Helsinki, alongwith approval by
the Institutional Review Board (IRB) at each participating institution
(Advara IRB # Pro00014441). The ORIEN Avatar cohort in our study
consisted of 14,997 individuals, of whom 1610 patients were treated
with ICIs and constituted our target population. The ICI medication
group included Ipilimumab,Nivolumab,Dostarlimab, Pembrolizumab,
Avelumab, Atezolizumab, Cemiplimab, and Durvalumab. The supple-
mentary materials provide additional information on the ICI cohorts
used for validation. In addition, part of the validation analyses was
performed using the ECOG-ACRIN E1609 cohort (NCT01274338), a
randomized phase III study for patients with resected high-risk
melanoma.

Overall survival and real-word progression free survival
The primary outcome in the analysis of the ORIEN Avatar cohort was
overall survival (OS), defined from the initiation of ICI medication to
death. We also evaluated real-world progression-free survival (rwPFS)
as a secondary outcome. Progression events in rwPFS were defined as:
annotated progression/recurrence in clinical records, annotation of
therapy stopped due to progression, identification of newmetastases,
or death, with right censorship at the date of last contact for patients
without a progression event.

RNA Sequencing
The procedure for RNA sequencing for the ORIEN Avatar project was
conducted according to methodologies outlined in a white paper
previously released (https://www.asterinsights.com/white-paper/
renal-cell-carcinoma-rwd-data/). The necessary data on RNA expres-
sion were sourced from the ORIEN database, necessitating the down-
load of multiple FASTQ files for further examination. Quantifying gene
expression involved multiple technical steps. The initial phase
employed Bbduk software (version 38.96) to remove adapter
sequences from RNA-seq reads, available at https://sourceforge.net/
projects/bbmap/26. Thiswas followed by aligning the trimmed reads to
the human reference genome (GRCh38/hg38) using STAR software
(version 2.7.3a), accessible at https://github.com/alxdobin/STAR27. The
integrity of the RNA samples was evaluated using the RNA-Seq Quality
Control (RNA-SeQC) software (version 2.3.2), found at https://github.
com/getzlab/rnaseqc28. The computation of gene expression levels
was performed using the Transcripts Per Million (TPM) metric, fol-
lowing alignment with the GeneCode build version 32 reference
annotation through the RNA-Seq by ExpectationMaximization (RSEM)

software (version 1.3.1), available at https://github.com/deweylab/
RSEM23. For the purposes of analysis, TPM values were transformed
to a logarithmic scale (log 2 [TPM+ 1]). Any batcheffectswere adjusted
using the ComBat method in the sva package (version 3.34.0),https://
doi.org/10.18129/B9.bioc.sva29. The original RNA sequencing data are
available upon request as outlined in Data Availability.

Ecotyper framework
EcoTyper was conducted to deconvolute the RNA-seq data from the
ORIEN ICI cohort and investigate cell states and ecotypes. Using our
bulk RNA-seq data, cell states were first identified and categorized
within each cell type, which was identified in the original discovery
pan-cancer TCGA dataset by Luca et al.10 Subsequently, the algorithm
establishes CS co-occurrence models to define cellular communities
referred to as ecosystems. In this study, we focused on assessing the
prognostic significance of 10 CEs that have been previously defined.
The identified prognostic CEs in the ORIEN melanoma cohort were
then independently validated in external cohorts of patients with
melanoma treated with ICI16–19.

Statistical analyses
Our statistical analysis plan involved the following steps. Firstly, it
began with a univariable Cox regression analysis to assess the indivi-
dual prognostic significance of ecotype-groups. The associations
between each eco-group and OS as survival outcomes were quantified
using Cox regression coefficients and corresponding p-values. Sec-
ondly, multivariate Cox regression analysis was conducted to assess
the independent prognostic value of the selected eco-groups while
adjusting for potential confounders. Thirdly, to build the ecotype-
based risk model (EcoRIS), we used regularized Cox regression for
survival data as implemented in the glmnet package. In the first step,
we performed 100 rounds of random resampling with an 80:20
training-to-test split to identify the optimal elastic net mixing para-
meter (alpha), which controls the balance between the LASSO and
ridge penalties. In the second step, using the selected alpha, we
applied cross-validation via cv.glmnet to determine the optimal reg-
ularization parameter (lambda). The final set of ecotypes was selected
based on their selection frequency across the 100 runs of regularized
Cox regression on random sampled 80% subsets, using the optimized
alpha and lambda values. Following feature selection, a standard Cox
proportional hazards regression model was then refit using top-
selected ecotypes on the full dataset to estimate their coefficients and
construct the EcoRISmodel for the ICI risk prediction. Fourthly,model
performance was quantitatively assessed using standard survival ana-
lysis metrics, including Harrell’s concordance index (C-index). Con-
fidence intervals (CIs) and hypothesis testing were used to assess the
statistical significance of model improvements compared to baseline
or competing models. Finally, cross-validation techniques, such as
k-fold cross-validation, were employed to estimate the generalization
error of the prognostic model and fine-tune model hyperparameters
for optimal performance. All statistical analyses were performed using
R version 4.2.3 and relevant packages.

COMPASS immunotherapy foundation model
To infer ICI response in the absence of direct clinical outcomes in the
ORIEN dataset, we utilized COMPASS21, a recently developed founda-
tion model for transcriptome-based prediction of immunotherapy
response. For our analysis, we applied the MSFT-Pembro model, a
version of the COMPASS pre-trained model that was multi-stage fine-
tuned specifically for pembrolizumab response prediction in mela-
noma. This model was trained in three stages: (1) self-supervised pre-
training on tumors from TCGA to learn pan-cancer transcriptome
representations; (2)fine-tuning on all ICI-treated cohorts excluding the
target datasets (pembrolizumab-treated melanoma); and (3) final
model tuning using 120 pembrolizumab-treated melanoma samples.
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Normalized gene expression values (TPM) of 15,672 protein-coding
geneswere used as input, and themodel output a response probability
for each ORIEN-ICI melanoma patient. We then derived a binary
response prediction by selecting the class (responder vs. non-
responder) with the higher predicted probability for each patient. In
addition to the predicted ICI response, COMPASS produces a 44-
dimensional latent embedding (concept space) that captures key
immune-related signals, including T cell exhaustion, cytotoxic T cells,
TGF-β signaling, and tertiary lymphoid structures (TLS). In our study,
we leveraged these outputs to access the association between TLS and
ecotypes, and to examine the concordance between the COMPASS-
predicted ICI response and the EcoRIS signature we developed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ORIEN ICI RNA-seq and clinical dataset, which was previously
generated, is available under restricted access through a closed
instance of cBioPortal; access requests can be submitted via the
affiliated institutional ORIEN Program Managers (OPMs) via https://
researchdatarequest.orienavatar.com or by contacting ResearchDa-
taRequest@AsterInsights.com. The E1609 data sets analyzed in the
present study will be made available in the National Clinical Trials
Network/ NCI Community Oncology Research Program (NCTN/
NCORP) Data Archive (https://nctn-data-archive.nci.nih.gov; RRID:
SCR_014708). The harmonized melanoma ICI data are available at
https://github.com/ParkerICI/MORRISON-1-public. The multi-stage
fine-tuned COMPASS model used in this study is available at https://
www.immuno-compass.com/download/ under the name “Pembro
Model”. The remaining data are available within the Article, Supple-
mentary Information or Source Data file. Source data are provided in
this paper.

Code availability
No custom code or software were used in this study.
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