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Determining the appropriate sample size (N) for bulk RNA sequencing
experiments is critical for obtaining reliable results. We show in two N=30
profiling studies, comparing wild-type mice and mice in which one copy of a
gene has been deleted, the N required to minimize false positives and max-
imize true discoveries found in the N=30 experiment. Results from experi-
ments with N =4 or less are shown to be highly misleading, given the high false
positive rate and the lack of discovery of genes later found with higher N. For a
cut-off of 2-fold expression differences, we find an N of 6-7 mice is required to
consistently decrease the false positive rate to below 50%, and the detection
sensitivity to above 50%. More is always better for both metrics - and an N of
8-12 is significantly better in recapitulating the full experiment.A common way
to reduce the false discovery rate in underpowered experiments is to raise the
fold cutoff. We show that this strategy is no substitute for increasing the N of

the experiment: it results in consistently inflated effect sizes and causes a
substantial drop in sensitivity of detection. These data should be helpful to
scientists in choosing their Ns.

A typical RNA-expression study aims to find genes whose RNA levels
differ significantly between two conditions. RNA sequencing (RNA-seq)
measurements are subject to technical noise and biological variability,
the impact of which is expected to diminish with increasing sample size,
N, in each group. Too few samples result in differentially expressed
genes being missed (type 2 errors, or false negatives), spurious findings
(type 1 errors, or false positives), and inflated effect sizes (type M errors,
or the “winner’s curse”?). Underpowered mouse studies are a major
factor driving the lack of reproducibility in the scientific literature**.

The intuitive preference for more replicates in study design is
balanced in practice by resource constraints, and by ethical concerns
about using more animals than needed. Therefore, it is imperative to
objectively assess effects of differing sample sizes and determine
guidelines for future experiments, reflecting an optimal tradeoff
between the errors incurred at low N and the resource constraints
associated with always preferring a high N.

Analytical power calculations for RNA-seq studies are challenged
by the observed long-tailed dispersed distribution of sequence count
data, often modeled as a negative binomial distribution. Previous
studies have employed parametric statistical tools that model power
as a function of expected effect sizes, dispersion of the data, sequen-
cing depth, and other factors”’. Though potentially useful when
accompanied by user-friendly tools, researchers seldom know the
values of the parameters on which these models depend upon. More
recent tools'" estimate these parameters from existing studies that
the researcher believes will be comparable to their planned one. Even
so, different tools give discrepant results and perform poorly for low
fold changes™.

These theoretical approaches are complemented by studies that
infer appropriate sample sizes directly from empirical data. Baccarella,
et al.”® compare a human monocyte data set to a gold standard
obtained from additional studies, finding that sample size has a much
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larger impact than read depth on precision and recall, with perfor-
mance dropping notably below seven replicates. A similar analysis of
six public data sets' highlights the importance of sample size as well as
gene expression variability (dispersion), and notes the challenge of
accurately estimating the latter. Finally, Schurch et al.” sub-sample
from a large cohort of yeast to assess the impact of sample size on
accurately calling differentially expressed genes, using their full cohort
as the gold standard.

While these empirical studies highlight key principles of study
design, none of them include the most-studied model organism used
in biology - the mouse. Mice are often studied due to their status as
mammals combined with the availability of inbred strains, which is
hoped to decrease variability between study subjects; also, techniques
for genetic manipulation - creation of knockouts, conditional knock-
outs, and transgenics - are well-established in mice. Since they are
mammals, mice are more closely related to humans evolutionarily than
other well-established genetic models such as yeast, C. elegans worms,
Drosophila, and zebrafish.

In this study, we transcriptionally profile large (N =30) cohorts of
genetically modified and wild-type pure strain C57BL/6 mice and
report comparisons between subsets of this cohort. We find that N=5
and lower N fail to recapitulate the full signature, and systematically
overstate effect sizes. The adequately sized subsets are found to be a
larger N than is often encountered in the literature, in the range of 8 or
greater mic per group. In contrast, it seems that group sizes of 3 to 6
are frequently found in published papers - casting doubt on the
reported claims of differentially expressed genes, especially ones with
low expression. We find that “more is always better” when it came to
discovery rates, at least within our maximum sets of N=30. Our results
suggest an N of 6-7 as a minimum, and 8-12 if possible, setting a new
suggested guideline for future bulk RNA-seq experiments.

Results

In order to determine an ideal range of N for an RNA-seq study, we first
performed a large scale set of comparative expression studies, with a
maximum N =30, across four organs (heart, kidney, liver, and lung)
from wild-type and heterozygous mice - in which one copy of a gene
was deleted. This choice of maximum N, close to an order of magni-
tude larger than typically reported in published studies, was defined to
be the gold-standard, capturing the true underlying biological effects
as accurately as possible, and serving as a benchmark for comparison
against subsets with smaller N. To mitigate the possible concern that a
particular gene deletion may be atypically variable in gene expression
changes across all tissues, we separately studied two distinct gene
heterozygotes, resulting in a total of 360 RNA-seq samples. We
sequenced 30 mice heterozygous for Dachsous Cadherin-Related 1
(DchslI), 30 mice heterozygous for Fat Atypical Cadherin 4 (Fat4),
together with 30 wild type (WT) mice, each group derived from the
same litters; these heterozygous lines were picked as representative
comparators versus wild-type animals. DCHS1 and FAT4 are large cell
adhesion molecules that act as a tethered ligand-receptor pair on
adjacent cells to mediate planar cell polarity. Homozygous null
mutations of either gene in mice are lethal at neonatal stages and have
similar phenotypes affecting many organs. These include postnatal
lethality, decrease in body weight, small cystic kidneys, abnormal
skeletal morphology, curly tails, small lungs and cardiovascular
abnormalities. Heterozygous Dchsl and Fat4 mice exhibit less severe
phenotypes'. Every effort was made to control for confounding fac-
tors and reduce variation between individuals, including use of a highly
inbred pure strain C57BL/6NTac line, identical diet and housing, IVF
derivation from the same male, same day tissue harvesting and same
day sequencing. In this text, we focus our observations around mice
heterozygous for the DchslI allele. Results for the kidney and liver of
Fat4, included in the supplement, showed analogous patterns, while
heart and lung yielded too few gene changes (4 and 7 genes,

respectively, were perturbed by at least 50%, see Supplementary
Table 1) to examine meaningfully.

Dchsl heterozygous (Het) mice showed strong gene expression
changes relative to WT mice in all four tissues assayed. The liver and
kidney showed the most perturbations, with key tissue markers and
functions strongly affected. Gene signatures derived using the full 60
(30 versus 30 comparison) mouse cohort are designated the gold
standard for differentially expressed genes (DEGs). Note that a sepa-
rate gold standard set is calculated for each combination of P-value,
fold change, and absolute expression thresholds considered.

We assessed the impact of replicate number on the sensitivity and
false discovery rate (FDR) using a down-sampling strategy (Fig. 1). For a
given sample size N, we randomly sampled N Het and N WT samples
without replacement (N ranges from 3 to 29), performed DEG analysis,
and compared the resulting signature to the gold standard (N=30).
We define sensitivity as the percent of gold standard genes detected in
the sub-sampled signature. Conversely, the percent of sub-sampled
signature genes missing from the gold standard is the false discovery
rate (FDR- not to be conflated with the multiple hypothesis testing
term). These definitions rely on both statistical significance (P-value)
and absolute fold change (ratio of perturbation in either direction)
thresholds being met in both signatures, and differ from analogous
studies® that define agreement based solely on shared statistical sig-
nificance. We justify the former approach in the discussion, but also
provide results using the latter definition in Supplementary
Figs. 9 and 10. Figure 2A shows the results of these virtual experiments
(40 Monte Carlo trials for each N), using an absolute fold change cutoff
of 1.5 (50% up- or down-regulation) and adjusted P-value of less than
0.05. As expected, FDR drops towards zero while sensitivity rises
towards 100% as N increases and the experiments more closely
resemble the gold standard one. For a sample size of 3, over a third
(38%) of genes found to be perturbed in the heart represent false
discoveries, either because they didn’t meet statistical significance in
the gold standard, or were perturbed by less than 50%. The kidney and
lung have similar FDR values at this low N, while liver is slightly lower
(28%). Though there is no clear inflection point, the FDR appears to
taper around N =8 to 10, depending on tissue, indicating diminishing
returns at higher N values. Sensitivity increases more smoothly, after a
marked jump from N=5 to 6. For heart, kidney, and liver, a median
sensitivity of 50% is attained by N = 8, while the lung required a sample
size of 11. The liver signature of Fat4 hetrozygous mice showed ana-
logous results, with FDR showing smaller decreases beyond N=8
(Fig. S11). Sensitivity increased smoothly, though without the jump.
FDR for the Fat4 kidney signature did not have an obvious change in
slope, while sensitivity jumped at a higher N ~ 9. Overall, false discovery
rates were higher, and sensitivity lower, in the Fat4 Hets than in Dchsl,
reflecting the general tendency that a stronger overall effect (as
reflected by the number of genes perturbed) leads to better
agreement.

The variability in false discovery rates across trials is particularly
high at low sample sizes. In the lung, the FDR ranges between 10 and
100% depending on which N =3 mice are selected for each genotype.
In all tissues, this variability drops markedly by N = 6. Because the size
of the overlap between sampled subsets increase with sample size, we
expect more consistency between trials at high N, though considerable
variability persists even with double-digit sample sizes, particularly in
the Fat4 experiment. Notably, this variability is lower in kidney and
liver, the tissues most affected by the genetic modification. The var-
iation in sensitivity across trials falls more graduallywith higher Nand
this relationship is less apparent in lung, or in the Fat4 Hets.

We next examined the impact of varying fold change thresholds.
Can researchers salvage an underpowered study by limiting their
purview to highly perturbed genes? As shown in Fig. 2B, narrowing the
focus to large effect sizes actually increases the false discovery rate, as
compared to a gold standard derived using the same absolute fold
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Fig. 1| Workflow for assessing the impact of sample size on discovery metrics.
We define the ‘gold standard’ signature as the set of DEGs in the full cohort of mice
(30 DchsI Het vs 30 WT). From this full cohort, we generated a smaller “mini-
experiment” (trial) by randomly selecting N Het and N WT mice (Down-sampling
strategy, top middle). The DEG from this trial were compared to the gold standard
signature to assess sensitivity, specificity, and effect size bias. The number of mice
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selected (V) range from 3 to 29, and 40 trials were performed for each N. A separate
approach (disjoint sets) was used to assess consistency between pairs of mini-
experiments. Here, two mini-experiments of size N are created in each trial, and the
resulting two DEG sets are compared. Higher consistency between DEGs is inter-
preted as each DEG capturing more biological signal.

change cutoff (in either up or down direction) for a cut-off of 2-fold
expression differences, we find an N of 6-7 mice is required to con-
sistently decrease the false positive rate to below 50%, and the
detection sensitivity to above 50%. Intuitively, this happens because
achieving a statistically significant P-value in an underpowered
experiment requires an extreme, and so likely inflated, effect size that
was not observed in the gold standard signature. Note that for a given
N, high-fold-change genes are more likely than low-fold-change ones to
be perturbed at all, or above a fixed threshold. For example, a gene
perturbed by 20-50% (1.2 to 1.5-fold) in an N = 4 sub-sampling of heart
samples has less than a 5% chance of also being found in a gold stan-
dard heart signature that was derived with absolute fold change of 1.5
(Fig. S2A). Genes perturbed by 50-100% (1.5 to 2-fold) in the same sub-
sampling have about an even chance of being found in that same gold
standard signature, while genes perturbed by 3 to 5-fold are almost
certain to be found. Thus, true positives (using this alternative defini-
tion of a gold standard gene set, whose fold change threshold need not
match that in the sub-sampled trial), are enriched more in the higher
fold change bins (Fig. S2A). However, the observed fold change at
lower N, often inflated due to type M error (an error of Magnitude),
should not be taken at face value. In addition, limiting our analysis to a
subset of genes above a high fold change threshold greatly impacts
sensitivity to detect true changes, as one might expect (Fig. S2B).
Increasing the stringency of the P-value (alpha), rather than fold
change filter, reduces FDR, while also reducing sensitivity to detect
(Fig. 2C). This strategy is therefore more conservative than a fold
change filter, though its utility is limited: the FDR decrease between an
alpha of 0.05 vs 0.01 is modest (Fig. SIB). By contrast, applying a
minimum abundance threshold leaves the FDR largely unaffected,
while greatly increasing sensitivity to detect gold standard genes also
passing this expression filter (Fig. 2D). The impacts of these various
filters are consistent across all tissues assayed (Figs. S1A, S1B, S1C), and
in the Fat4 experiment (Figs. S12A,S12B, S12C), though here imposing
an abundance threshold yielded minimal improvement in sensitivity

To evaluate the robustness of our sampling approach, we also
performed comparisons between groups of wild type samples ran-
domly selected from the Dchs1 cohort. Since the mice being compared
have the same genotype, we interpret all discovered genes as false
positives. Few such false positives are seen for N =5 or greater, though
a few rare trials have many false positives (Fig. S3). These outlier trials
tend to have lower N, but we do see a few even at N greater than 10.

A limitation of the down-sampling approach for assessing an
“optimal” sample size is that the same mice are used to derive the gold
standard and the random trial gene signatures. Our second approach
avoids this circularity by randomly sampling mice to create two dis-
joint experiments of size N in each trial, and comparing their DEGs
(Fig. 1, bottom). As N increases, signatures from the two sub-sampled,
independent experiments should both better capture the underlying
common biology and hence resemble each other more. Fig. 3 shows
that this holds for all tissues and fold change thresholds tested.
Agreement between DEGs asymptotes to an N value between 8 and 10
for heart, kidney, and liver, consistent with the tapering of FDR values
observed with the down-sampling approach (Fig. 2A). Lung DEGs
showed lower agreement than other tissues, and the asymptote was
less clear, particularly for smaller absolute fold change cutoffs. The
Fat4(+/-) vs Fat4(+/+) liver comparison showed a similar pattern,
though with lower overall concordance (Fig. S12). Interestingly, sig-
natures from Fat4 kidney samples showed little concordance even with
large N, suggesting that the initial gold standard signature may itself
not be robust. Limiting to genes with a minimum expression level does
not appreciably change these results (Fig. S4).

In addition to the loss of sensitivity and specificity, underpowered
studies lead to inflated effect size estimates. To study this further, we
compared the fold changes of DEGs from down-sampled trials with
those in the gold standard. Focusing on a representative gebe exam-
ple, Trexl in liver, we observe fold changes exceeding that seen in the
gold standard (horizontal black line in Fig. 4B)—but only among trials
yielding a statistically significant P-value for this gene. In trials where
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Fig. 2 | Sample size has major impact on sensitivity & false discovery rate for all
tissues assayed. A For each sample size N (x-axis), N DchsI Hets and N WTs were
randomly chosen, Het-vs-WT DEGs calculated, and compared to the gold standard
(full cohort) signature. Left panel shows FDR, calculated as the fraction of DEGs
from the sub-sampled trial that was absent from the gold standard signature. Right
panel shows sensitivity, defined as the fraction of gold standard DEGs also detected
in the sub-sampled trial. Signature genes were those perturbed by 50% or more,
with a multiple hypothesis adjusted P< 0.05, as calculated using the DeSeq2
package’s negative binomial model. The three horizontal lines of each boxplot
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correspond to the 25", 50™, and 75" percentile of the distribution, while whiskers
extend to the most extreme observation that is still within 1.5 times the interquartile
range (IQR) of the box. Points beyond 1.5*IQR are plotted individually. B Plots are as
in (A), except showing a single tissue, liver, with varying absolute fold change
(2~abs(log2FC), perturbation in either direction) thresholds along each row. C Plots
are as in (A), except showing a single tissue, liver, with varying P-value thresholds
along each row. D Plots are as in (A), except showing a single tissue, liver, with
varying minimum absolute expression (in TPM) along each row.

the Trexl expression change did not reach significance, the log, fold
change (log2FC) is accurately estimated, though with considerable
variation around this estimate. The P-value filter thus acts as an “effect
overestimate generator”, since only large effect sizes attain sig-
nificance in underpowered trials. With increasing N and adequate
power, the observations reverse: estimated log2FCs for significant
trials approach the gold standard estimate, while non-significant trials,
which at higher N must be underestimating the true effect size (else
they would reach significance) deviate from the gold standard esti-
mate, and trend towards zero log2FC. With high enough N, non-

significant trials disappear altogether. Fig. S5 shows several randomly
chosen gold standard genes for each tissue, each reflecting the same
trend of significant (P<0.05) trials converging on the fold change
observed in the 30-vs-30 signature. Though genes vary in how quickly
they converge, and at what N significant trials start to appear, the trend
clearly demonstrates the reproducibility of these observations, at least
in two different experimental models.

Assessing further the generality of fold change inflation, we find
that for small sample size trials, the overwhelming majority of DEGs in
all tissues overestimate the true fold change, regardless of fold change

Nature Communications | (2025)16:10173


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-65022-5

FC>1 FC>1.2

0.6 1
0.4
0.2 ]
0.0

0.6 1
0.4
0.2
0.0

0.6 1
0.4
0.2
0.0

(Cohen's )

0.6 1
0.4
0.2
0.0

Agreement between signatures

¢é¢¢$¢¢¢*¢ éﬁﬁ#ﬁé
¢¢¢¢$¢¢¢* ¢¢$¢¢$¢¢?¢ gt é ¢?¢¢$§¢¢¢f¢ x

s Lpenpset . et ?¢¢¢¢$?* ?¢$¢¢¢$¢?¢*?

Yl a ak

FC>1.5 FC>2

e e

Kaup

JOAI|

Bunj

345678 10 12 14 345678

10 12 14 345678

10 12 14 345678 10 12 14

Sample Size

Fig. 3 | Agreement between DEGs obtained using disjoint method. The sample
size N is shown along the x-axis, while the y-axis shows Cohen’s unweighted kappa
(k) measure, calculated between expression signatures from two independently

constructed experiments of size N. Kappa values range from zero (no agreement)
to one (perfect agreement, identical DEGs).

cutoff (Fig. 4A). Even at very high N, most DEGs show perturbations
more extreme than those observed in the gold standard signature. This
pattern holds even after excluding low-expression genes (Fig. S6A).
Fat4 kidney and liver also recapitulate this pattern (Fig. S14). Inter-
estingly, shrinking the observed fold changes using the ashr algorithm
almost eliminates this bias, though some over-estimation persists at
low N, particularly in the lung (Fig. S6B).

For comparison with prior work, we applied an alternative defi-
nition for matching DEGs, based solely on shared statistical sig-
nificance, regardless of effect size. Here, genes are considered true
positives if they have an adjusted P-value below 0.05 in both the full
data set, and the sub-sampled trial. False negatives achieve significance
only in the former, false positives only in the latter. Relative to results
derived using our definition (Fig. 2A), this approach reduces the false
discovery rate (Fig. S9), since significantly perturbed genes with
incorrect effect sizes now count as true positives. Sensitivity to detect
true changes is also reduced, owing to a large number of low-fold
change gold standard genes going undetected in underpowered small-
N trials.

Though the alternative definition of true and false positives is fold
change agnostic, we can still ask how focusing on genes with larger
effect sizes impacts sensitivity and FDR. Following Schurch, et al.”>, we
calculate these metrics only for the subset of genes whose fold change
exceeds a certain threshold in the 30-vs-30 signature, regardless of
whether those genes’ perturbations are statistically significant in either
the full or sub-sampled experiment. Consistent with their work, and
with Fig. S2C, the sensitivity (true positive rate) is higher (Fig. S1I0A),
and the FDR lower (Fig. S10B), among more-perturbed genes. Applying
a basic abundance filter further increases the true positive rate. Also
consistent with their results, and with our WT-vs-WT comparisons, the
false positive rate is well controlled across all sample sizes.

Since perturbations of individual genes are not faithfully captured
at low N, we briefly explored whether the overall pattern of gene
changes is consistent with that in the gold standard comparison.
Fig. S7A shows correlations between log, fold changes (Iog2FC) in the
sub-sampled experiment, and the log2FC in the gold standard (V=30)
experiment. Even at N=3, these correlations (Pearson’s p) range
around 0.5-0.6 depending on tissue, increasing to 0.7-0.75 at N=10.
Analogous correlations using the Wald statistic calculated by DESeq2,
rather than the log2FC, show even higher agreement, with p between
0.5 and 0.75 at N =3 (Fig. S7B). Correlations between sub-sampled trial
pairs (disjoint strategy), yielded overall lower values (Fig. S8), but these
associations are still strongly significant, and outside the range of
correlations observed between WT subsets and the gold standard
signature (Fig. S7, blue boxes).

Discussion

Over the last several years, there has been an increased focus on
“rigor and reproducibility” when it comes to biological data. This is
a result of several studies indicating that quite a few high
profile papers were found to be non-reproducible upon attempts to
repeat those studies”’®. What followed were many discussions as
to what might be improved - and suggestions ranged from focus
on journal policies”, education’?, and policies of funding
organizations®.

Of course, a fundamental component of addressing reproduci-
bility is to perform studies that directly query the ability to reproduce
the data from a particular type of experiment. Bulk tissue RNA-seq
studies have become an indispensable and widespread technology for
transcriptome wide analysis of DEGs over the past 15 years, and remain
a staple of current comparative functional genomics. Given this ubi-
quity, it is important to understand what range of N is required to
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Fig. 4 | Impact of sample size on estimated effect size. A Percentage of DEGs in
each trial whose effect size (2*abs(log2FC), perturbation in either direction) in the
sub-sampled trial exceeds the effect size in the 30-vs-30 comparison Sample size N
is shown along the x-axis. The dotted line at 50% indicates no bias, where a gene is
equally likely to over- or under-estimate the effect. B Effect size estimates for a
representative gene (Trex1) in liver. For each N (x-axis), the Het-vs-WT log, fold

change estimate of Trexl is shown separately for statistically significant (cyan), or
not significant (red) trials. Statistical significance was defined as having amultiple
hypothesis adjusted P-value of 0.05 or lower, as calculated using the DeSeq2
package’s negative binomial model. With small N, fold change estimates from sig-
nificant trials overestimate that of the gold standard (solid horizontal line), but
approach it as N increases. Non-significant trials by contrast show no bias at small N.

better assure that the conclusions made will be found to be predictive
of subsequent analyses of the same sort of comparison.

One particularly common bulk RNA-seq experiment involves
comparing knockout or transgenic animals with wild-type controls.
When a gene is deleted, it is of interest to learn how this change per-
turbs mRNA expression, because this gives indications as to the
molecular mechanisms which are normally affected by the gene of
interest. We chose heterozygotes in this study to model a system
where a particular gene was still in place but potentially reduced in
effect, since a phenotype was observable, as in the case of the animals
used here - because many biological settings where RNAseq is per-
formed profile this sort of setting. As a comparator, wild-type animals
were used - animals in which the gene is left unperturbed.

A particularly common mouse strain used for such experiments
are C57BL/6 mice. Since this is an inbred mouse strain, one might
expect that genetic variation would be minimized in comparison to
outbred animals; indeed, the ability to use fewer animals is a common
rationale to study inbred strains of mice. Even though this inbred
mouse line is relatively genetically homogenous in comparison to
outbred, or truly “wild” mice, this study makes it clear that

considerable variety in gene expression across mice still persists, with
implications for study design and interpretation.

Our results demonstrate how underpowered RNA-Seq experi-
ments result in type I, type II, and type M (magnitude) errors, and offer
guidance about adequate sample sizes to mitigate them. Commonly
reported sample sizes of 5 or less are to be avoided, since for our
studies seeking to identify genes perturbed by at least 1.5-fold, one
finds over 25% false discoveries, less than 50% power to detect true
changes of equal or greater magnitude, and inflated fold changes a
large majority of the time. Moreover, our WT-vs-WT comparisons
detect at least some false positives for samples sizes less than 6.

Considerable discrepancies persist between the gold standard
N=30 signature and those from sub-sampled experiments, which
diminish with increasing N. Therefore, one simple conclusion is that
“more is always better” in the case of sample size - there is no point at
which adding samples doesn’t help reduce error - at least within our
sample sets, where the maximum N was 30. Given realistic constraints
such as budget and colony sizes, we looked for a point of diminishing
returns. Both the down-sampling and disjoint approach suggest that
this is reached around an N of 8-11. Formally of course, we can only say
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these were our findings in these two mouse models. But the broader
guidance is that scientists should be more aware of the need to
understand fidelity of gene expression differences in their models, as
part of a “system validation” study, before going forward with an
RNAseq experiment at lower Ns. We offer this experiment for some
guidance in case it simply isn’t economically feasible for researchers to
do their own high N experiment.

In keeping with the guidelines outlined by the Microarray Quality
Control (MAQC) project*, this paper defines DEGs based on both
statistical significance and effect size. A gene that is statistically sig-
nificant in both sub-sampled and gold standard signatures, but only
exceeds the fold change threshold in the latter, we classify as a false
negative. This is a stringent criterion: others may classify it as a true
positive, reasoning that the effect is “real” if the gene perturbation is
significant in both conditions. Our view is that, if the absolute fold
change threshold is meaningful, failing to exceed it means the obser-
vation did not reproduce. The same logic designates as false positives
genes exceeding the fold change threshold in only the sub-sampled
experiment. Our conclusions (e.g., that FDR increases with fold change
stringency) therefore differ from studies using the alternative, P-value
alone definition. Such studies mirror our results in Fig. S2, which show
the opposite FDR trend as ours (Fig. 2B), provided that false positives
are defined as genes absent from a fixed gold standard. However, this
increase in specificity is offset by a substantial drop in sensitivity, our
ability to detect true gene changes (Fig. S2B), and in the high likelihood
that observed effect sizes are over-estimated. The widespread practice
of focusing on highly perturbed genes therefore fails to fully capture
the biology of the studied model; higher sample sizes are needed.

Nearly all observed fold changes overestimate the true effect for N
less than 6-7, though considerable over-estimation persists even at
higher N. The reason for this is that smaller, underpowered studies
require a larger effect size to achieve significance. This observation
also explains why false discovery rates increase as we raise the fold
change cutoff for both the sub-sampled and gold standard (V=30)
experiments: the latter tend to show more modest changes, so genes
will often fall below the fold change threshold in N =30, but exceed it
in sub-sampled trials. Such genes will be counted as false positives. The
intuitive solution is to apply a stringent fold change cutoff to only the
low-N trial, as in Fig. S2A, while keeping in mind that the true changes
are almost certainly more muted than those observed.

Although adjusting the fold change threshold proved to have
drawbacks, our data suggest that filtering out low-abundance genes
substantially increases our likelihood of accurately detecting changes,
without major changes to the false discovery rate. We also show that
fold change shrinkage may be desirable to mitigate the effect size over-
estimation seen most acutely at low N. Finally, despite the high rate of
type |, type II, and type M errors encountered when comparing sub-
sampled and gold standard DEGs, overall concordance of changes, as
measured by correlation of log2FCs or Wald statistics, was strongly
significant. This lends support to the idea of favoring gene-aggregation
approaches rather than focusing on individual gene changes. Pathway
analysis may be fairly robust for sample sizes of 6 or greater®, though
these results vary by algorithm, pathway size, and other factors®.

We had similar findings with two separate sets of heterozygous
animals - analyzing two distinct genes. Fat4 heterozygosity showed a
less pronounced phenotype than did Dchsl, leading us to exclude the
largely unaffected heart and lung from the Fat4 analysis. The Fat4 (+/-)
kidney also showed a weaker signature than other tissues, and didn’t
reach an asymptote by N =14 in the disjoint method. Notwithstanding,
both kidney and liver recapitulated the relationships between sample
size and FDR/sensitivity we observed for Dchsl, as well as the impact of
varying fold change, P-value, or absolute expression filters. Given that
these relatively high Ns were found for an inbred strain, it should also
be acknowledged that it’s highly likely that even higher Ns would be
needed for outbred strains, as well as human studies. One might ask

whether there is some idiosyncracy in the two heterozygotic lines
studied that would make the data adduced in this study more variable
than that found in other settings. Of course, the only way to answer this
would be to do similar studies in still more genetically modified lines vs
wild-type controls. The expression and function of Dchsl and Fat4 are
not known to be circadian, or feeding-dependent, for example, or
dependent on other highly variable factors. Therefore, there is no
particular reason to believe that the two heterozygous strains high-
lighted in this paper are unusually variable.

From both an ethical and financial perspective, one might like to
minimize the number of animals used in an experiment to the degree
possible. One should of course use as few mice as necessary, but no
fewer. Sacrificing mice in the service of an underpowered experiment
yielding misleading or irreproducible results is also a major concern,
the correction of which will likely involve the use of many more ani-
mals. We hope this study will be generally useful for the determination
of N in future RNA-seq studies, and in evaluating the utility of prior-
published work. This study should also help contextualize studies
done with comparatively low Ns.

Methods
The research in this study comport with all relevant ethical regulations.
Mouse protocols were approved by the company’s internal IACUC
committee.

Transgenic mice

C57BL/6NTac mice were purchased from Taconic Biosciences (USA)
and maintained at Regeneron animal holding facilities under specific
pathogen free (SPF) conditions. Mice were housed in groups of 4-5 per
cage with controlled temperature and light (22 °C, 12-h light/12-h dark
cycle: lights on at 0600 h/lights off at 1800h) and with ad libitum
access to food (PicoLab Rodent Diet 20, Lab Supply) and water. Sam-
ples were obtained from 11-12 week old C57BL/6NTac male mice after
overnight fasting. As Fat4 (-/-) and Dcshi(-/-) are lethal as homo-
zygotes, comparisons were done between heterozygous (+/-) and WT
mice taken from the same litters. Transgenic mice were generated
using Regeneron’s VelociGene technology*’%. Both the Fat4 and Dchsi
deletions removed cExonl, starting at the ATG. LacZ was used as a
reporter. All animal procedures were conducted in compliance with
protocols approved by the Regeneron Pharmaceuticals Institutional
Animal Care and Use Committee.

RNASeq processing

RNA was prepped from tissues stored in RNAlater using MagMAX
Nucleic Isolation Kits on KingFisher Instruments (ThermoFisher).
Strand-specific RNA-seq libraries were prepared from 500 ng RNA
using KAPA Stranded RNA-Seq Kit for Illumina Platforms (Roche).
Twelve-cycle PCR was performed to amplify libraries. Sequencing of
single-end, 33 base pair reads was performed on lllumina HiSeq®2500
(Illumina) by multiplexed sequencing with 33 cycles. Sequencing
depth across samples had a mean of 23.8 million reads, standard
deviation of 3.6 million.

Genome and transcriptome reference

To NCBI's GRCm38/mml0 genome assembly, we added 22 short
sequences corresponding to markers of interest (including the LacZ
reporter), whose sequences are shown in Supplementary Data File 1).
All transcripts’ exon regions, which include 3’ and 5 untranslated
regions (UTRs), are listed in the GTF file (Supplementary Data File 2).
The transcripts used in the analysis are derived from 20,670 protein-
coding genes, 3292 non-coding RNAs, 326 pseudogenes, 119 snoRNAs,
22 tRNAs, 10 rRNAs, 5 snRNAs, as well as the 22 marker genes. The
genes are further annotated in Supplementary Data File 3. Supple-
mentary Data Files 1-3 are also hosted on our Github page, DOIfiles
were converted to Fastq format via lllumina Casava 1.8.2. Reads were
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decoded based on their barcodes, mapped to the mouse tran-
scriptome (described above) using Omicsoft’s OSA aligner, with the
following parameters: Read Trim Quality =2 (Bases are trimmed from
the 3’ end until the first base with quality score > 2 is encountered.
Reads with fewer than 17 bp remaining are excluded from analysis.);
Maximum penalty = 2 (If a read cannot be perfectly aligned, up to 2
mismatches or indels are permitted); Report Cutoff = 10. (Reads with
more than 10 non-unique mappings are excluded). Reads that failed to
align with the transcriptome were mapped to the full genome refer-
ence. For each RNA sample, the fraction of intronic, intergenic, exonic,
duplicated, and other mapping quality statistics are available in Sup-
plementary Data File 4 and 5 (Dchsland Fat4, respectively). Further
details of the alignment algorithm are described in Hu et al.?’, and here:
https://resources.omicsoft.com/downloads/whitepaper/
OmicsoftAligner.pdf. Exon mapped reads were summed at the gene
level using Omicsoft Studio software (Summarize Gene/Transcript
Count Module). Briefly, this module quantifies reads mapped to the
transcriptome by counting individual reads. An Expectation-
Maximization (EM) algorithm statistically allocates reads mapping to
multiple transcripts based on their likelihood of originating from each
transcsript. From the allocated reads, Omicsoft calculates transcript-
level expression values in TPM (Transcripts Per Million), dividing the
raw count of reads mapped to a transcript by its length, and then
scaling these values by the total across all transcripts. To obtain gene-
level expression, Omicsoft sums the transcript-level TPM values for all
transcripts belonging to a specific gene. The samples from one Dchs1
WT mouse (5153265) were excluded from the analysis, as these clus-
tered with Dchsl heterozygotes in all four tissues assayed. Plots cor-
responding to these observations are included in the
Supplementary Information file.

P-values and fold changes (effect sizes) for determining differen-
tially expressed genes were obtained using DeSeq2*® (1.34.0), with
default parameters, except for alpha, which was set to 0.05. For a
subset of the analysis, fold changes were shrunk using the ashr
algorithm®.,

Comparison between gene signatures

Down-sampling (Figs. 2B-D and 3) was performed by selecting N WT
and N Het mice without replacement from the initial 30 + 30 cohort.
DEGs were then derived for all four tissues assayed using the selected
mice and compared to the gold standard (N = 30) signature.

For the alternative, “disjoint” approach (Fig. 2), two non-
overlapping sets of N WT and N Het mice were selected, and the
DEGs from these two sets were compared using Cohen’s unweighted
kappa (k) measure, which quantifies to what extent two judges agree in
categorizing elements. The four inputs are: number of genes found in
both signatures, number of genes found in neither signature, number
of genes unique to signature 1, number of genes unique to signature 2.
The first two numbers represent agreement, the next two, disagree-
ment. The measure was calculated with the Kappa function from the
vcd R package. As an alternative to Cohen’s k, the intra-class correla-
tion coefficient (ICC) was also calculated, using the icc function of the
irr package. The input here is a Gx2 matrix, where G is the number of
genes assayed. The two columns represent the two signatures being
compared, with one and zero values indicating presence or absence in
the signature, respectively. Though Cohen’s kis typically used for
categorical variables, and the ICC for continuous ones, the two
approaches yielded strikingly similar results.

For showing effect size differences, representative genes were
chosen randomly from each tissue’s gold standard DEG list, with
adjusted P-value threshold of 0.05. For each tissue, 20 genes were
selected, evenly distributed among: DEGs with absolute fold change
between 1-1.2 (up to 20% up- or down-regulation); between 1.2-1.5;
between 1.5-2; and greater than 2. All plots were generated using the
ggplot2 package™.

Data visualization

For all boxplots, the center line denotes the median of the distribution;
the lower and upper hinges of the box denote the 25" and 75" per-
centile, respectively, and the distance between these two is the inter-
quartile range (IQR); “whiskers” extend from both upper and lower
hinges to the farthest data point within 1.5 IQR from the hinge; points
more than 1.5 IQR from a hinge are plotted individually.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Summarized counts and TPM data, raw fastq files, as well as sample
metadata, have been deposited to the Gene Expression Omnibus
(GSE272152  [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE272152], Bioproject PRJNA1135223).

Code availability

All code and data necessary to reproduce these results are available on
Github at  https://github.com/regeneron-mpds/mouse_RNA-Seq_
sample_size. We have also used Zenodo to assign a DOI to the repo-
sitory: https://doi.org/10.5281/zenodo.17137282.
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