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Edge computing requires real-time processing of high-throughput analog
signals, posing a major challenge to conventional electronics. Although inte-
grated photonics offers low-latency processing, it struggles to directly handle
raw analog data. Here, we present a photonic edge intelligence chip (PEIC) that
fuses multiple analog modalities—images, spectra, and radio-frequency signals
—into broad optical spectra for single-fiber input. After transmission onto the
chip, these spectral inputs are processed by an arrayed waveguide grating
(AWG) that performs both spectral sensing and energy-efficient convolution
(29 fJ/OP). A subsequent nonlinear activation layer and a fully connected layer
form an end-to-end optical neural network, achieving on-chip inference with a
measured response time of 1.33 ns. We demonstrate both supervised and
unsupervised learning on three tasks: drug spectral recognition, image clas-
sification, and radar target classification. Our work paves the way for on-chip
solutions that unify analog signal acquisition and optical computation for edge

intelligence.

Over the past decade, the rapid expansion of edge devices has gen-
erated an unprecedented demand for real-time analytics at resource-
constrained edge nodes'. Applications ranging from machine vision in
robotics’ to pharmaceutical diagnostics® >, healthcare wearables®”’, and
radar surveillance®” all rely on the rapid handling of high-throughput
analog data, including images, spectra, and radio-frequency (RF) sig-
nals (Fig. 1a). Traditional digital approaches rely on sensors and analog-
to-digital convertors (ADCs) followed by extensive electronic proces-
sing (Fig. 1b(i)). This scheme faces significant throughput and energy
constraints'®, making it costly for ultra-low-latency or battery-powered
applications. As the scale and speed of edge data continue to rise",
there s a pressing demand for novel hardware paradigms to offer high-
throughput, low-latency, and energy-efficient performance.
Free-space optical systems have been extensively explored for
real-time analog image processing'> . They employ large-scale spatial
parallelism to accelerate computationally intensive tasks such as fea-
ture extraction and pattern recognition. By manipulating optical fields
in free space, they can efficiently manage spatial data with minimal

electronic overhead, enabling high-throughput image-based compu-
tations (Fig. 1b(ii)). However, these systems are often bulky, suscep-
tible to environmental disturbances, and fundamentally limited to
spatial inputs. As a result, they are impractical for compact edge
devices and cannot seamlessly accommodate other analog data types,
including spectral or RF signals, which are increasingly vital in diverse
edge applications. By contrast, integrated photonic computing archi-
tectures promise a compact, robust, and energy-efficient
alternative’®? through the monolithic integration of optical and
electronic components on semiconductor chips®?!. This scheme
yields enhanced compactness, reduced latency, and greater environ-
mental stability than free-space platforms.

Despite these advantages, incorporating raw analog signals into
waveguide-based integrated photonic circuits typically demands
extensive electronic preprocessing. In many cases, data must first be
digitized and manipulated in the electrical domain, then re-encoded
via on-chip modulators®*, as shown in Fig. 1b(iii)—a process that
executes multiple analog-to-digital and electro-optic conversions,
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Fig. 1| Concept and principle of PEIC. a Edge Applications: Various applications
relying on the rapid processing of large-scale analog data, which involve processing
images, spectra, and RF signals. b Existing solution for processing analog inputs
from the edge, including: conventional digital systems, free-space optical systems,
and integrated photonic systems. ADC analog-to-digital converter, DAC digital-to-
analog converter. ¢ Modal fusion and PEIC architecture. Modal fusion converts
diverse analog input signals—images, spectral data, and RF signals—into broadband
optical spectra, enabling high-throughput input via a single optical fiber. The PEIC
integrates a sensing and convolution layer, followed by a nonlinear activation
function (NAF) layer and a fully connected (FC) layer to form an end-to-end optical
neural network. d Principal and performance metrics of the sensing and convolu-
tion layer. (i) and (ii) depict the compute density and energy consumption com-
parison of the AWG-based convolution engine against other photonic solutions.
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The compute density (TOPS/mm?2) of the AWG is determined by the ratio of
quadratic-scaling operations to an area that grows as a sum of linear (from the
waveguide array) and quadratic (from the free-propagation regions) terms. This
density initially increases with scale, as the linear area term from the large wave-
guide array is often the dominant factor for a significant range of N, before satur-
ating towards a constant value for very large systems. The AWG minimizes energy
consumption by using a linear number of devices to perform quadratic-order
computing operations. This approach avoids the large cascading losses seen in
traditional methods. The dashed line indicates the limited scalability of the MRR
array due to the free spectral range (FSR) constraints. (iii) presents the workflow of
sensing and the convolution layer. MZI Mach-Zehnder interferometers, MRR
micro-ring resonator.

undermining the inherent energy and bandwidth advantages of pho-
tonic chips. Some research has attempted to bypass this challenge by
directly processing analog signals within photonic chips. For instance,
monochromatic illumination and two-dimensional grating coupler
arrays have been used to capture free-space images directly into the
chip, thus eliminating the need for full electronic preprocessing”.
Nevertheless, this method is limited by the planar nature of photonic
circuits: unlike free-space propagation, which supports two-
dimensional image encoding with an independent propagation axis,
planar waveguides, after defining the propagation direction, leave only
one degree of freedom for signal routing, making it difficult to handle

2D image data. As a result, attempts to scale to larger spatial inputs
encounter significant cross-talk and routing limitations. Similarly,
while integrated photonic devices capable of modulating RF signals at
high bandwidths show promise”, time-domain processing of these
signals remains difficult. This typically requires bulky optical delay
lines to manage temporal information”*?°, which compromises the
compactness and scalability that integrated photonics aim to provide.

To address the aforementioned challenges, we propose a solution
that integrates analog modal fusion with a photonic edge intelligence
chip (PEIC) to create an end-to-end optical neural network as pre-
sented in Fig. 1c. The modal fusion component converts all input data
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Table 1| Performance comparison with state-of-the-art end-to-end photonic neural network chips

References Interface bandwidth per channel for analog input

Energy efficiency for the core linear
operator

Input modality

Huang et al.”®
improvement)

150 MHz per channel (Electronic bandwidth, 10 GHz with

Electronic encoding 273.6 fJJOP (MRR array)

Ashtiani et al.”’ 1.75 GHz per channel (Electronic bandwidth)

Single-modal (Images) 345 fJ/OP (Optical attenuators)

Bandyopadhyay et al.?* 150 MHz per channel (Electronic bandwidth, 10 GHz with

Electronic encoding 317.2f)J/OP (MZI mesh)

improvement)
This work 1.6 THz per channel (Optical bandwidth, 12.8 THz with Multi-modal (Spectra, Ima- 29fJ/OP (AWG)
improvement) ges, RF)

types into broad optical spectra. Specifically, image data is encoded
using scattering media, which can be viewed as the inverse process of a
speckle spectrometer. RF signals are modulated onto light via a phase
modulator, mapping high-speed time-domain information to the
optical spectrum by generating sidebands around the carrier fre-
quency. Spectral inputs are directly transmitted onto the chip without
additional conversion. By converting these various signal types into
unified optical spectra, the high-frequency nature of optical signals
(193.5THz at 1550 nm) provides vast bandwidth and ultra-high
throughput®. This physical property of the spectrum facilitates par-
allel transmission of large amounts of data and the unification of dif-
ferent analog signals into a single optical fiber for high-
throughput input.

Once the spectral inputs are transmitted onto the chip, they first
pass through the sensing and convolution layer, which is mainly
composed of an arrayed waveguide grating (AWG), as shown in Fig. 1d.
The inherent properties of the AWG enable it to perform spectral
sensing effectively’>**. Moreover, as we previously proposed and
demonstrated, the unique routing capabilities of the AWG allow it to
function as a redundancy-free optical convolution engine®, surpassing
all  other on-chip optical convolution schemes in
performance”?2?%**°, The convolution process using the AWG is
illustrated in Fig. 1d(iii). The original optical spectrum is first fanned
out before entering the AWG, where Mach-Zehnder interferometers
(MZIs) impose the kernel weights. Each MZI output is then directed to
one of the multiple AWG input ports, encoding different segments of
the weighted optical spectrum. From these input ports, the AWG’s
unique routing functionality directs the signals to specific output
ports, where they are fanned-in losslessly. This scheme ensures that
the same convolution kernel can be applied to multiple segments of
the input spectrum without redundant resource usage, thereby max-
imizing computational efficiency while minimizing the total number of
required devices (more information could be found in Supplementary
Note 1). By utilizing linear quantities of devices, this approach can
perform quadratic orders of computing operations while avoiding the
large-scale cascading losses typically encountered in other traditional
schemes. As presented in Fig. 1d(i), (ii), the convolution scheme based
on the AWG offers superior compute density and energy efficiency
compared to other solutions (detailed calculations can be found in
Supplementary Note 2). The advantages become even more pro-
nounced as the system scale increases.

Following the sensing and convolution layer, a subsequent non-
linear activation function (NAF) layer and fully connected (FC) layer
complete the end-to-end optical neural network, enabling on-chip
inference with a measured response time of 1.33 nanoseconds (ns).
This optical neural network architecture supports both supervised and
unsupervised learning across a range of tasks. These tasks involve
different signal modalities: drug spectral recognition uses spectral
inputs, image classification processes spatial (image) inputs, and radar
target classification works with RF signals. These examples highlight
the PEIC’s capability to efficiently handle multi-modal analog data,
showcasing its practicality in addressing a wide range of edge com-
puting challenges.

As shown in Table 1, we compare the PEIC’s performance with
state-of-the-art end-to-end photonic neural network chips. A key
metric we introduce is the “Interface bandwidth per channel for
analog optical input” (Table 1), which must be carefully distinguished
from the network’s overall operational speed. This metric quantifies
the efficiency of delivering raw analog data onto the chip. The ability
to handle such data efficiently represents a critical bottleneck for
edge intelligence hardware, particularly given the scarcity and high
cost of high-speed electrical I/O ports and optical fiber interfaces on
integrated photonic chips. Furthermore, it addresses the challenge
of directly inputting raw analog signals from sensing front-ends onto
the chip via optical fiber. While our modal fusion achieves a THz-
scale input bandwidth through a single optical port, the end-to-end
operational rate of our current proof-of-concept system is limited to
the ~100 MHz range by the nanosecond response time of the NAF.
This is a common limitation for contemporary end-to-end photonic
platforms, where nonlinearities are realized through photodiode-
driven micro-ring modulators leveraging the carrier injection
effect”®**., Our contribution lies in demonstrating an input archi-
tecture that decouples the per-port analog input bandwidth from the
system'’s repetition rate. This approach overcomes a fundamental
limitation of conventional electronic encoding schemes, which
require a large array of power-hungry electrical 1/O channels to
achieve high aggregate bandwidth, and represents a crucial step
towards future, faster all-optical processors.

The PEIC delivers superior energy efficiency and input bandwidth,
positioning it as an ideal candidate for real-time, energy-efficient
processing at the edge. Our work lays the foundation for next-
generation edge intelligence systems by integrating multi-modal ana-
log signal acquisition and processing on a single photonic chip. Our
scheme has the potential to drive advancements in fields such as
autonomous systems, robotics, wearable healthcare, and environ-
mental monitoring, where high-throughput, low-latency processing is
critical for real-time decision-making.

Results
Building blocks of PEIC
We implemented the PEIC using the commercial foundry process. Fig-
ure 2a shows a microphotograph of the PEIC, highlighting the mono-
lithic integration of all required subsystems, including the sensing and
convolution layer, the NAF layer, and the FC layer. The final classification
result is determined by identifying which of the chip’s physical output
ports receives the maximum optical power, with no subsequent digital
post-processing. Detailed information on the chip fabrication process is
provided in the “Methods.” As shown in Fig. 2b, we use a custom pho-
tonic packaging that integrates three fiber arrays for input, output, and
monitoring. The electrical interfaces connect to the chip through wire
bonding, linking the chip devices to a printed circuit board for control.
Figure 2c-f shows the characterization results of the sensing and
convolution layer. Figure 2c presents a microphotograph of the MZI
used for convolution kernel loading. The MZI is designed with wide
waveguides and inverse-designed multi-mode interference structures®
to minimize the effect of fabrication errors and ensure broad spectral
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Fig. 2 | Characterization of PEIC. a Microphotograph of the fabricated PEIC.
b Packaging of the PEIC. ¢ The fabricated MZI for kernel loading.

d Microphotograph of the AWG. e Transmission spectrum of the AWG.

f Computing accuracy measurement with 2000 random inputs and kernels.
g The fabricated NAF unit. h The diagram and measured output response
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of the NAF unit. i Response time measurement of the NAF unit. j The fabricated
MZI mesh for the FC layer. k Transmission curve for tuning the phase shifter of
the MZI. 1 The histogram illustrates the measured fidelity for 1000 randomly
selected real-valued matrices.

response. Since the convolution process only requires intensity mod-
ulation, phase shifters are placed solely on the upper MZI arms, with
thermal isolation between the upper and lower arms to prevent thermal
cross-talk. Figure 2d shows a microphotograph of the AWG used in the
sensing and convolution layer. It overlaps the input and output star
couplers to reduce the device footprint, resulting in a size of
1.5x1.5mm. The device contains 185 arrayed waveguides, with an
adjacent waveguide length difference of 19.394 pm, corresponding to a
grating order of m = 35. Figure 2e displays the transmission spectrum of
the AWG, which includes 16 spectral channels, each with a 100 GHz
channel spacing. The measured insertion loss is approximately 3.66 dB.
Figure 2f shows the convolution precision test performed on the AWG-
based convolution layer. The experiment used 2000 random input
signals and convolution kernels, with results showing a standard
deviation of 0.94%, corresponding to 6.73 bits of precision according
to ref. 43.

Figure 2g shows a microphotograph of the fabricated NAF unit,
which consists of an integrated photodetector (PD) and a micro-ring
modulator (MRM). The PD is electrically connected to the MRM,
forming the core structure of the NAF unit. Figure 2h illustrates its
operational diagram. When an optical input is applied, the PD gen-
erates a photocurrent, which changes the refractive index of the micro-
ring modulator via carrier injection. The output signal from the NAF
unit is a nonlinear function of the input light, determined by the
electro-optic transfer function of the MRM*. As shown in Fig. 2h, the
NAF unit begins to exhibit nonlinear behavior beyond approximately
20 uW of input optical power. Figure 2i presents the time-domain
response of the NAF unit, characterized by a pump-probe experi-
mental setup. The pump signal (magenta curve) is generated by a
10 GHz intensity modulator and a bit pattern generator, while the
probe signal (blue curve) represents the response of the output of the
NAF unit. The time traces are captured using a high-speed photodiode
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and oscilloscope. Detailed information on the experimental setup can
be found in Supplementary Note 3. The full-width-at-half-maximum
(FWHM) difference between the pump and probe signals is 1.33 ns,
which we take as the response time of the NAF unit.

Figure 2j shows the microphotograph of our optical FC layer,
which adopts the incoherent real-valued matrix scheme we previously
proposed*. In this design, any N x N real-valued matrix can be imple-
mented using N? phase shifters with an optical depth of N+1, effec-
tively halving both the optical depth and the number of phase shifters
required by the conventional coherent MZI mesh (details in Supple-
mentary Note 4). To ensure consistency across the chip, each indivi-
dual MZI in the FC layer uses the same design as the MZI for
convolution kernel loading. Figure 2k illustrates the transmission curve
of asingle MZl in the FC layer as a function of the voltage applied to the
phase shifter. We evaluated the performance of this scheme by ran-
domly selecting 1000 real-valued matrices and measuring their optical
implementations on chip. As shown in Fig. 2I, the average correlation
coefficient between the measured matrices and the target matrices
reaches 0.9949, reflecting a high degree of fidelity in reproducing
arbitrary real-valued connections.

PEIC for spectral recognition

Efficient spectral recognition is crucial for a range of edge applications,
including pharmaceutical quality control, chemical analysis, and
environmental monitoring. However, conventional methods depend
on bench-top spectrometers coupled with digital processors, making
them impractical for real-time, on-site deployment. By integrating
sensing and computation on a single chip, photonic solutions promise
a compact, low-power platform for rapidly analyzing spectra at the
edge. To verify the schematic of the PEIC, we conducted the experi-
mental setup shown in Fig. 3a. We employed an amplified spontaneous
emission (ASE) source followed by a programmable waveshaper to
encode spectral samples derived from a public dataset’. In total,
120 samples were included in the dataset, each corresponding to one
of four tablet types (A, B, C, and D). The waveshaper precisely mod-
ulates the ASE output so that the shaped spectra accurately replicate
the reference profiles provided by the dataset. After wave-shaping, the
light was amplified by an erbium-doped fiber amplifier (EDFA) to
ensure sufficient optical power before coupling it into the PEIC. Once
inside the PEIC, the spectra are processed by an end-to-end photonic
neural network chip for classification.

The AWG carries out spectral sampling to extract the relevant
information (sensing), and then leverages its unique cyclic routing
property to realize the convolution step in the sensing—-convolution
layer. Examples of the samples from the dataset and their corre-
sponding spectral sampling results are shown in Fig. 3b(i), (ii),
respectively.

Figure 3c(i) presents the network diagram. The AWG in our design
provides 16 channels, corresponding to a neural network input
dimension of 16. The inputs (4 x 4) are fed into a convolution layer with
a 3 x3 kernel (details on the 2D convolution can be found in Supple-
mentary Note 1). The resulting 2 x 2 output feature map is flattened
before entering an FC layer, which translates these extracted features
into final classification outputs for the four target categories. To
mitigate the impact of fabrication-induced variations in the deployed
PEIC, we implement an in situ supervised learning procedure directly
on the chip (Fig. 3c(ii)). In situ training refers to optimizing parameters
directly within the physical hardware (with the help of a digital com-
puter), distinguishing it from in silico training, where a digital model is
trained offline and its parameters are subsequently transferred to the
hardware. Specifically, we use the final classification loss—namely the
mean cross-entropy—to iteratively adjust tunable on-chip devices via a
gradient descent algorithm (details in Supplementary Note 5). This
scheme enables the PEIC to converge efficiently and maintain high
accuracy. In future implementations, calculating partial gradients in

parallel’*** could further accelerate this training process and reduce

the hardware burden on the training circuits.

Moreover, unlabeled data are especially relevant for edge
deployment. Once the PEIC is operating at the edge and begins pro-
cessing raw analog signals in real time, ground-truth labels are often
unavailable. To address this scenario, we propose a fine-tuning tech-
nique that compensates for fabrication imperfections without requir-
ing labeled samples (Fig. 3c(iii)). We initialize the on-chip parameters
using the in silico training model. We then fine-tune the actual hard-
ware deployment by minimizing the local loss function at each net-
work layer (as follows):

Li = Lcorr,i + al-div,i (1)

Where « is the scaling hyperparameter that balances the two loss
components. The first term, L.,;, ensures that the physical operation
of the on-chip hardware correctly mimics the target mathematical
operator. The second term, Ly,;, aims to align the statistical output
distribution of the physical layer with that of the ideal in silico model.
This alignment is particularly crucial as L;,,;, implicitly incorporates
the effects of the on-chip NAF. The inclusion of a is vital to prevent the
distribution alignment from causing severe deviations from the
original model’s intended operation. The first term L.,,; is given by
Leorr, ;=1 — Corr;, where Corr; is the correlation between the ith layer’s
linear operator and the target operator. Inspired by the concept of
distribution alignment in unsupervised learning®®, the second term
Lgi,; uses the Jensen-Shannon divergence to align the output
distribution of the ith layer in actual hardware (Q;) with that of the
reference in silico model (P;):

Leiy, i = Dy (QylIM;) + Dy, (P;1I1M ) 2

Where M; = (P;+ Q;)/2 is the midpoint distribution and Dk; denotes the
Kullback-Leibler divergence, defined by: Dy, (P||Q)=>_,P(x) log(%).
By iteratively minimizing L; at each layer, the PEIC could adjust its
hardware parameters for consistent performance without labeled
training data. This fine-tuning method ensures that the network output
remains aligned with the intended model behavior, enhancing
reliability and accuracy when facing unlabeled, real-world signals at
the edge. Its unsupervised approach makes it well-suited for edge
applications, where labeled data may be unavailable and the system
must adapt to manufacturing variations without supervision.

Figure 3d presents the in situ supervised learning results. It shows
the training curves (loss versus epoch and the corresponding accu-
racy) and the confusion matrix for the four-class spectral classification
task over 200 epochs, demonstrating that our PEIC achieves an accu-
racy of 98.3% with in situ supervised learning. Figure 3e displays the
results of unsupervised fine-tuning. It compares the confusion matri-
ces obtained without and with the fine-tuning process. Without fine-
tuning, the parameters that were trained in silico are directly deployed
in the PEIC. However, due to factors such as fabrication errors, this
leads to a classification accuracy of 75%. In contrast, the unsupervised
fine-tuning method, performed in situ on the PEIC, adjusts the on-chip
parameters without requiring knowledge of the specific input signal
labels. This fine-tuning improves the overall accuracy to 97.5%, effec-
tively compensating for the manufacturing discrepancies and ensuring
better alignment with the desired in silico model behavior.

PEIC for vision task

Real-time processing of visual data at the edge is essential for appli-
cations spanning from autonomous navigation to wearable health
monitoring. While traditional edge devices rely heavily on digital
processors and sensors, they often struggle with performance limita-
tions in terms of throughput and power efficiency. To address these
limitations, we demonstrate the application of the PEIC for image
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Fig. 3| Spectral recognition experiment using the PEIC. a Experimental setup: An
amplified spontaneous emission (ASE) source is shaped by a waveshaper into four
tablet types (A, B, C, D) derived from a public dataset. The shaped spectra are
amplified by an erbium-doped fiber amplifier (EDFA) and then coupled into the
PEIC for classification. b (i) Example input spectra for the four tablet types. (ii)
Corresponding spectral sampling results after the AWG, where each channel cap-
tures a portion of the spectrum for parallel processing. ¢ Neural network archi-
tecture and in situ learning methods on the PEIC. (i) The neural network diagram of

the PEIC. (ii) In situ supervised learning uses labeled data to update on-chip tunable
devices via gradient descent. (iii) Fine-tuning with unlabeled data aligns the hard-
ware output distribution with a reference model through a local loss function,
mitigating process variations and device nonuniformities without requiring labels.
d Training curves over 200 epochs and the corresponding confusion matrix.

e Comparison of confusion matrices without (left) and with (right) the hardware
fine-tuning procedure. After fine-tuning, the accuracy increases from 75% to 97.5%.

classification tasks, which utilizes spatial-to-spectral mapping to
enable high-throughput, low-latency, on-chip visual data processing,
providing an efficient solution for edge-based image classification
tasks. As shown in Fig. 4a, the experimental setup begins with broad-
band illumination generated by an ASE source and shaped by a
waveshaper. The light is directed toward an object, which is encoded
by a spatial light modulator (SLM) to represent the object’s image. The

light then passes through a 4f relay system to relay the spatial light field
to the random scattering chip. At the random scattering chip, the
spatial image information is converted into spectral data, which is then
transmitted through a fiber. The spectrally encoded light is passed
through an EDFA to ensure sufficient optical power before entering the
PEIC. The PEIC processes the spectral data and outputs the classifica-
tion results.
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Fig. 4 | Experimental results of PEIC for vision tasks. a Experimental setup for
image classification using the PEIC. b Structure and microscope image of the ran-
dom scattering chip, which features waveguides etched with random duty cycle
gratings. The chip utilizes multi-stage scattering and coupling to convert spatial
image data into unique spectral signatures. ¢ Measured optical intensity distribu-
tions of the random scattering chip at two input wavelengths (1542 nm and

1543 nm), highlighting the differences in the resulting speckle patterns. d Measured
average normalized spectral correlation function of the scattering chip.

e Schematic of the spatial-to-spectral mapping process, where the spatial dis-
tribution of light is transformed into spectral signatures. f Example of spatial inputs
and the corresponding spectral samples after processing through the random
scattering chip and subsequent AWG sampling. g Training curves of the vision task
and the corresponding confusion matrix. h Comparison of confusion matrices for
the image classification task, with (right) and without (left) the unsupervised
hardware fine-tuning procedure.
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Figure 4b illustrates the structure of the random scattering chip,
which consists of 64 waveguides arranged side-by-side along the x-
axis. The waveguides are etched with gratings that have random duty
cycles. The light entering this array undergoes continuous scattering
and coupling within the waveguides, ultimately combining at the
output. The spatial distribution of the incident light affects the com-
bined spectral output, thus enabling spatial-to-spectral mapping.
Along the y-axis, the chip is divided into five alternating regions of
grating regions and coupling regions. The grating regions receive the
incoming spatial optical field and generate random scattering. The
coupling regions introduce additional optical path diversity for the
scattered light, achieved through cross-talk between waveguides. This
multi-stage scattering and coupling process ensures that the device
can effectively translate the spatial profile of the input beam into a
unique spectral response. Further details are provided in “Methods”
and Supplementary Note 6.

We first tested the spectral-to-spatial mapping features of the
fabricated random scattering chip to get its quantitative properties.
Details regarding the experimental setup for characterizing the ran-
dom scattering chip can be found in Supplementary Note 6. Figure 4c
shows the speckle patterns obtained at 1542nm and 1543 nm,
respectively, using a tunable laser source. The distinct difference
between the two speckles demonstrates the feasibility of the mapping
process. To evaluate the device’s spectral resolution, we measured the
average normalized spectral correlation function, yielding a FWHM of
576 pm (Fig. 4d). For spectral-to-spatial mapping, this indicates that
when the wavelength shifts by more than 576 pm, the speckle pattern
undergoes a noticeable change. For spatial-to-spectral mapping, this
implies that a spectral sampling interval larger than 576 pm can
effectively capture the spatial distribution of the input light. Since our
AWG employs a 0.8 nm spectral sampling spacing, it satisfies this
requirement and ensures mapping performance. Instead of relying on
wavelength changes to generate different scattering patterns*>*°, we
employ the inverse process of the conventional speckle spectrometer,
as described in Fig. 4e. Using the random scattering chip, we convert
the spatial information of an image, o(x), into a unique set of spectral
signatures, S(A). This inversion can be mathematically represented by:

/ A4 x) - 000)dx = S 3)

where A(Ax) is the transmittance matrix, which characterizes the
interaction between light and the chip’s scattering medium. This
inversion is crucial for high-throughput, on-chip image classification,
enabling the PEIC to process incoming visual data in the spectral
domain. As an example, Fig. 4f demonstrates how several sample
images from the MNIST dataset are transformed into their corre-
sponding spectral signatures after passing through the chip and
subsequent AWG sampling.

The vision-task results are summarized in Fig. 4g, h. For the drug
spectral recognition and radar target classification tasks, the entire
datasets were used. For the vision task, due to the large size of the full
MNIST dataset, a randomly selected subsample was used for our proof-
of-concept demonstration. This demonstration consists of 640 sam-
ples for the training set and 320 samples for the testing set. As shown
in Fig. 4g, the in situ supervised training phase converges to a classi-
fication accuracy of 83.75%. This 83.75% accuracy for the MNIST task is
currently lower than what is achievable with digital full-precision
models having the same parameter count and network architecture,
which typically reach around 90% accuracy (see Supplementary Note 7
for details). Figure 4h compares the confusion matrices for the clas-
sification task, with and without unsupervised fine-tuning. Without
fine-tuning, the PEIC achieves a classification accuracy of 39.375%.
After applying the fine-tuning method, the accuracy improves
to 75.625%.

PEIC for radar classification

Radar classification is a cornerstone of many edge applications,
including autonomous navigation and security systems, where rapid
object detection is critical. Conventional radar systems rely on digital
signal processing techniques that introduce significant latency and
power consumption. These issues are magnified when processing
high-speed radar signals for real-time applications, exacerbating the
strain on the limited energy budgets of edge devices. Our PEIC
addresses these challenges by converting radar signals into optical
spectra and processing them in the optical domain. It exploits the
ultra-high bandwidth and inherent parallelism of integrated photonic
systems. To evaluate the PEIC’s capability for radar classification, we
adopt a radar detection scheme featuring two transmit antennas (TA1
and TA2) and one receive antenna (RA), as illustrated in Fig. 5a. The
time-domain waveforms at the RA vary with the object’s geometry and
position. Using a geometric optics (GO) method, these temporal
waveforms are computed to capture the reflection characteristics of
different shapes. This method approximates each object as a set of
reflecting surfaces, yielding distinct time delays and amplitudes in the
received signals. Further details of the GO method can be found in
“Methods” and Supplementary Note 7. Following this modeling, the
receiver signals S(¢) are applied to modulate the phase of an optical
carrier at frequency ,. The temporal output field is:
E, . = Ey cos(wyt +B5(t)), where B is the modulation depth. In the
frequency domain, the radar signal S(t) gives rise to a series of side-
bands around w,, with amplitudes governed by the Bessel functions.
The frequency response can be represented as:

0 T
E (@)= Z jn(/OﬁS(t’)dt')Eo [6(® — wy — nQ)+6(w +wy +nQ))|
(4)

Where Q characterizes the main frequency components of 5(t), and the
integral || gﬁS(t’)dt’ captures the accumulated phase modulation over
one observation period T. This expression shows how the time-varying
radar signal 5(¢) is translated into frequency components, enabling the
PEIC to perform radar classification by processing these modulated
optical spectra.

Next, the optical signal undergoes sampling for spectral analy-
sis. Ideally, the frequency response of the optical carrier could be
directly sampled spectrally. However, due to experimental limita-
tions, additional modifications are required. The spectral channel
spacing of the AWG and the sampling rate of the arbitrary waveform
generator impose constraints on the available frequency range. The
direct use of the AWG for spectral sampling of the optical signal is
limited by these factors, as a single optical carrier’s frequency
spectrum cannot be extended beyond a certain bandwidth. To
overcome this limitation, a multi-wavelength laser is used as the
input source. It generates multiple discrete optical lines across a
broad spectral range, providing a method to offset-sample the radar-
modulated optical signal. As illustrated in Fig. 5a, the optical signal is
sampled at different spectral intervals corresponding to the posi-
tions of these laser lines. This results in displaced sampling across the
optical spectrum, effectively enabling a wider spectral range to be
sampled despite the hardware limitations. While this technique
successfully addresses the challenges in the current experimental
setup, it imposes certain limitations on the sampling efficiency for
future applications. These constraints and potential improvements
will be discussed in the Discussion section.

Figure 5b(i) shows a schematic for radar detection, where differ-
ent objects (square, cross, circle, and plus) are detected by the radar
system. The objects reflect the transmitted radar signal, and the
receiver detects variations in the waveform based on their geometry
and position. Figure 5b(ii) presents the temporal responses for each
object. These waveforms, simulated using the GO method, vary in
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intensity and pattern based on the object’s shape, reflecting distinct
radar signatures. Figure 5b(iii) illustrates the experimentally measured
spectral response corresponding to the temporal signals. The radar-
modulated optical signal produces unique spectral profiles for each
object, with shifts centered around the carrier wavelength, revealing
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the object’s characteristics in the optical domain.
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Figure 5c shows the in situ supervised training curves for radar
classification, with loss (orange) and accuracy (blue) plotted over
epochs. The accuracy reaches 83.4% after training. Figure 5d presents
confusion matrices comparing performance with and without fine-
tuning. Without fine-tuning, the accuracy is 28.1%, while with unsu-

pervised fine-tuning, the accuracy improves to 76.9%.
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Fig. 5 | Radar classification experiment using the PEIC. a Schematic of the
experimental setup. It illustrates the radar detection system, where microwave
signals are transmitted and reflected by various objects (square, cross, circle, plus).
The reflected signals are received and converted into optical spectra via an electro-
optic phase modulator. The multi-wavelength laser is used to generate discrete
optical lines across a broad spectral range, enabling precise sampling of the radar-
modulated optical signal. The PEIC processes these signals for radar classification.
b (i) Different objects (square, cross, circle, plus) used to demonstrate radar

detection. b (ii) Time-domain waveforms at the receiver, computed via the geo-
metric optics (GO) method, showing distinct signal patterns for each object. b (iii)
Experimentally measured spectral responses of the radar-modulated optical signal,
revealing each object’s unique spectral signature. ¢ In situ supervised training
curves for radar classification, reaching 83.4% accuracy. d Confusion matrices
comparing classification results with and without fine-tuning. Accuracy improves
from 28.1% to 76.9% through unsupervised fine-tuning.

Discussion

Scalability of PEIC

The scalability of the PEIC is one of its core strengths, allowing it to
handle increasingly complex tasks at the edge. Central to this scal-
ability is the AWG-based convolution engine, which offers high energy
efficiency and computational density. Unlike traditional optical com-
puting methods that rely on cascaded devices, the AWG’s unique
routing capabilities enable it to perform a quadratic number of con-
volution operations with a linear number of devices and avoid the
cascading losses typically encountered in conventional systems.

The scalability of PEIC can be enhanced by increasing the scale of
the AWG. Currently, the scale of AWG can reach 512 channels®,
achieving a throughput of 12.8 THz per input port. Such an expansion
optimizes performance and enables real-time, high-throughput edge
computing applications. Additionally, when used for convolution
operations, a 512-channel AWG can achieve an energy efficiency as low
as 4.6 femtojoules per operation (fJ/OP), enabling more parallel pro-
cessing and increasing the system’s capacity to handle complex, multi-
modal data without significantly increasing energy consumption.

Beyond the scaling of AWG, expanding PEIC’s neural network
architecture provides another significant avenue for growth. By inte-
grating multiple AWG convolution engines, PEIC can support a
monolithic end-to-end photonic neural network with numerous con-
volutional layers, which enhance the ability to extract increasingly
complex features at different levels of abstraction. This hierarchical
processing enables PEIC to learn complex representations of data,
improving its capacity to perform advanced tasks like real-time deci-
sion-making in autonomous systems. The implementation of multiple
convolutional layers can be facilitated through the addition of on-chip
pooling and more scalable NAFs, as outlined in Supplementary Note 8.
Furthermore, to enhance integration density, the AWG can be fabri-
cated using silicon nitride, which offers superior performance in
photonic applications. The adoption of multi-layer silicon nitride
technology enables the 3D stacking of a series of convolutional layers,
which further increases integration density and expands PEIC’s
capability.

Seamless integration of visual and radar sensing with PEIC

One promising direction for vision tasks with PEIC is the use of multi-
mode fiber for spatial-to-spectral mapping. Multi-mode fibers inher-
ently exhibit frequency-dependent propagation, where different gui-
ded modes travel at different speeds. It enables the encoding of spatial
information into the spectral domain with significantly lower loss and
higher spectral resolution, reaching the femtometer and even att-
ometer levels>*®. This approach is particularly beneficial for fiber-
based endoscopic sensing applications®*, where a single fiber can serve
as an ultra-thin imaging probe. The spatial information captured
through the fiber is directly converted into spectral signatures that
PEIC can process, enabling ultra-low-latency, low-power computation
at the edge.

In addition to the advancements in visual sensing, future radar
integration with PEIC will also benefit from higher-density AWGs with
reduced channel spacing. State-of-the-art AWGs have achieved spec-
tral channel spacings as low as 1 GHz”, which allows for finer spectral
resolution of incoming radar signals. Furthermore, the broad spectral

processing capability of PEIC makes it well-suited for integration with
emerging THz radar systems**®, The extended bandwidth of THz
radar signals can be efficiently processed within PEIC’s optical com-
puting framework. Another potential enhancement is the use of an on-
chip time-lens® for frequency-domain stretching of radar signals
before they enter PEIC. This will align the radar signal’s spectrum with
the AWG’s spectral sampling interval, enhancing sensing efficiency and
classification performance. These techniques together enable PEIC to
fully leverage wider spectral bandwidths for radar processing with
greater parallelism and efficiency.

To address the path towards a practical, fully integrated system, it
is important to distinguish between the core PEIC architecture and the
laboratory equipment used to validate it. In this proof-of-concept
demonstration, components such as the ASE source, waveshaper, and
SLM served as part of the testing apparatus to emulate a wide variety of
real-world analog signals (e.g., the SLM simulates an image input, while
the ASE and waveshaper simulate a spectral input). In a deployed edge
scenario, the PEIC would directly receive raw analog signals from the
sensing front-end, meaning these emulation components would not
be part of the system'’s final footprint.

Furthermore, for practical edge deployment, the PEIC must be
able to process potentially weak analog signals from the environment,
which often necessitates optical pre-amplification. While our current
demonstration uses an external EDFA, a clear pathway exists for full
integration. Future implementations can be deployed by endowing
silicon nitride (SizN4) photonic integrated circuits with erbium-based
gain®. This would enable the realization of compact and efficient on-
chip optical amplifiers, eliminating the need for bulky external com-
ponents. Such integration, along with the peripheral circuits for static
control and calibration***!, would represent a crucial step towards fully
monolithic photonic edge intelligence.

In summary, the fusion of diverse analog inputs into broad optical
spectra unlocks the exceptional parallelism of optical signals. It
enables efficient, high-throughput photonic computing with a single
optical fiber for raw analog data input. Combined with the AWG-based
convolution engine, this fusion approach facilitates seamless, energy-
efficient real-time processing of multi-modal data streams from the
edge. As AWG channels scale and advanced architectures are inte-
grated, these innovations will redefine performance limits, paving the
way for compact, energy-efficient edge intelligence solutions. Our
work in photonic computing lays the foundation for next-generation
edge intelligence applications, offering transformative potential in
fields such as autonomous systems, healthcare monitoring, and
environmental sensing, where rapid, adaptive decision-making is cri-
tical for real-time operations.

Methods

Dataset

The dataset of tablet spectra and MNIST handwritten digits was
respectively taken from https://ucphchemometrics.com/tablet/ and
https://yann.lecun.com/exdb/mnist/.

Chip fabrication
The photonic integrated circuits were fabricated on a 200 mm silicon-
on-insulator (SOI) platform. The starting wafers feature a 220 nm-thick
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top silicon device layer over a 2 um buried oxide (BOX). Waveguides
were formed through a series of lithographic and etching steps,
allowing both fully etched and partially etched silicon regions for strip
or rib geometries as needed. Multiple ion-implantation steps intro-
duced p-n doping profiles (including contact regions) for modulators,
photodiodes, and other active devices. Germanium epitaxy was per-
formed to create on-chip photodiodes. Localized thin-film heaters
were added for thermal-phase tuning, followed by tungsten contacts
and two levels of copper interconnect for electrical routing.

Arrayed waveguide grating design

The AWG is based on a commercial SOl wafer with a 220 nm top silicon
thickness and SiO2 top cladding. It has a channel spacing of 100 GHz
(i.e., 0.8 nm) and a free spectral range of 34.246 nm. Both the arrayed
waveguides and free-propagation region (FPR) are silicon ridge
waveguides with an etch depth of 70 nm to reduce phase errors and
sidewall scattering loss in the arrayed waveguides. The AWG has 12
input channels and 27 output channels. The input and output star
couplers are overlapped to make the device more compact, with a size
of 1.5 x 1.5 mm. There are 185 arrayed waveguides, each consisting of a
bent waveguide and a straight waveguide. The straight waveguide
width is 1.2 um, the bent waveguide width is 800 nm, and the bent
radius is between 47 and 53 pm. Tapers are used between the straight
and bent waveguides. The star coupler radius is 353.877 um. The
adjacent arrayed waveguide length difference is 19.394 um, corre-
sponding to a grating order m=35. The waveguide spacing is 3 um,
both on the input/output star coupler circumference and on the AWG
circumference. To reduce coupling loss between the arrayed wave-
guides and FPR, the arrayed waveguide width on the grating cir-
cumference is expanded to 2.8 um. The input and output waveguides
on the star coupler circumference have a width of 1.5 pm.

Experimental setup

An ASE source (Amonics ALS-CL-15) serves as the broadband light
source, with its output shaped by a programmable waveshaper
(Finisar WaveShaper 1000S). The light is amplified by the EDFA (GF-
PA-45-09-1-1-B) before coupling into the PEIC. The PEIC is controlled
by a custom field-programmable gate array (FPGA) based framework.
DAC modules (LTC2688) supply voltage outputs from O to 10 V with
16-bit resolution across 96 channels, under the control of an Xilinx
7K325T FPGA chip. These voltages are used to load the network
weights in the PEIC during both inference and in situ training. For the
image classification experiment, a 4f optical system relays the image
from an SLM (Holoeye PLUTO-2.1, 1920 x 1280 pixels with an 8 um
pixel pitch) onto a random scattering chip. The first lens in the 4f
system has a focal length of 100 mm, while the second lens has a
focal length of 25 mm. In the radar classification experiment, a multi-
wavelength laser source (IDPHOTONICS CoBrite-DX) generates dis-
crete optical lines. An arbitrary waveform generator (Keysight
M8195A), followed by an electrical amplifier (GT-LNA-47GHz), pro-
duces the time-domain radar signals. These signals drive an electro-
optic phase modulator (EOSPACE PMP-SHJ911) to encode the radar
waveforms onto the optical carriers.

Random scattering chip design

The chip is composed of 64 parallel waveguides arranged side-by-side
along the x-axis. To minimize combining losses, eight waveguides
(evenly spaced among the 64) are specifically dedicated to gathering
the scattered optical signals at their top and bottom ends, whereas the
remaining waveguides terminate with distributed Bragg reflectors to
extend their effective optical path length. Along the y-axis, the chip
alternates between grating regions and coupling regions. Each grating
region is 2 um wide, with a grating period of 0.58 um, a duty cycle in the
range of 0.45 to 0.55, and a total of 30 periods. In contrast, each
coupling region features waveguides of 400 nm width with 180 nm

spacing to introduce additional path diversity through cross-talk. A
compact taper, designed via inverse methods, bridges the width
transition between grating and coupling sections. By combining mul-
tiple rounds of scattering in the grating regions and mode-mixing in
the coupling regions, the chip effectively translates the spatial dis-
tribution of incident light into unique spectral signatures. Further
details are provided in Supplementary Note 6.

Radar simulation

We employed the GO method, which is widely used in radar
simulation®?, to compute the backscattered signals from various tar-
gets. Each ray from the transmitter was traced until it either reflected
off the target and returned to the receiving antenna or exited the
simulation boundary. Summing these individual “sub-echoes” pro-
duced the overall radar echo. By shifting the targets’ positions, we
obtained 80 distinct echo profiles per target, yielding 320 samples in
total across four target categories. Further details on the simulation
parameters can be found in Supplementary Note 7.

Data availability

All the data supporting this study are available in the paper and Sup-
plementary Information. Additional data related to this paper are
available from the corresponding authors upon request.
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