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Benchmarking informatics workflows for
data-independent acquisition single-cell
proteomics

Jianwei Wang 1,3, Yi Huang 1,2,3, Fanghua Lu1,2, Qinqin Xu2, Zhuo Yang2,
Yirong Jiang2, Shaowen Shi1, Jianzhang Pan 1,2, Yi Yang 1,2 &
Qun Fang 1,2

Recent years have seen a rise of single-cell proteomics by data-independent
acquisitionmass spectrometry (DIAMS).While diverse data analysis strategies
have been reported in literature, their impact on the outcome of single-cell
proteomic experiments has been rarely investigated. Here, we present a fra-
mework for benchmarking data analysis strategies for DIA-based single-cell
proteomics. This framework provides a comprehensive comparison of popu-
lar DIA data analysis software tools and searching strategies, as well as a sys-
tematic evaluation of method combinations in subsequent informatic
workflow, including sparsity reduction, missing value imputation, normal-
ization, batch effect correction, and differential expression analysis. Bench-
marking on simulated single-cell samples consisting of mixed proteomes and
real single-cell samples with a spike-in scheme, recommendations are pro-
vided for the data analysis for DIA-based single-cell proteomics.

Single-cell proteomics allows for the precise revelation of the hetero-
geneity of proteomes between individual cells, which is neglected or
masked in conventional bulk analysis1–4. Facing the challenge posed by
the lowabundance of proteins in single cells, efforts havebeenmade in
sample preparation, liquid chromatography (LC) separation, mass
spectrometry (MS) acquisition, and data analysis, enabling the mea-
surement of several thousand proteins in small subpopulations of cells
and even in single mammalian cells5–12. Recently, the combination of
trapped ion mobility spectrometry (TIMS) and data-independent
acquisition (DIA) MS, namely diaPASEF, has been one of the most
popular choices for single-cell proteomics13–17. Unlike data-dependent
acquisition (DDA) approacheswith stochastic precursor selectionused
in earlier single-cell proteomic studies, DIA facilitates data complete-
ness by fragmenting the same sets of precursors in every sample. In
addition, MS/MS acquisition of diaPASEF focuses on the most pro-
ductive precursor population, excluding most singly charged con-
taminating ions. These features have been demonstrated to
significantly improve the sensitivity of single-cell proteomic analysis13.

DIA MS data are highly convoluted, and their interpretation relies
on ingenious informatics solutions18,19. Typical DIA analysis methods
require a spectral library that determines the space of peptides possi-
bly detectable, as well as their retention time, ion mobility, and/or
fragment patterns20. Spectral libraries can also be generated by
deconvoluting the DIA data per se21,22 or by in-silico prediction23–26,
enabling library-free DIA analysis. Different DIA data analysis solutions
have been compared in a systematic way for bulk proteomics27–31, and
this has been extended to the single-cell level in a few recent studies32,33.
It has been observed that the mass spectral data of single-cell samples
have unique features, such as the loss of fragment ions and the blurred
boundary between analyte signals and background34. These features
are key factors in peptide identification and quantification. Thus, per-
formance of routine DIA informatics solutions, including identification
coverage anderror rates, aswell as quantitativeprecision andaccuracy,
requires specialized assessment at the single-cell level.

After protein identification and quantification, the subsequent
data processing procedures are crucial for gainingmeaningful insights
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into molecular mechanisms from differentially expressed proteins.
Common challenges in analyzing single-cell proteomic data include
handling the presence of missing values and resolving the batch
effects2. In single-cell proteomics, missing values tend to be more
prevalent as the abundance of proteins may be close to or below the
limit of detection. Moreover, systematic differences across batches
may lead to data biases mistaken for cell heterogeneity. There have
been prior efforts for identifying optimal data processingmethods for
bulk proteomic analysis, including performance evaluation of missing
value imputation methods35, benchmarking normalization and statis-
tical tests29,36, and optimizing workflows for differential expression
analysis37. Methods for batch effect correction were comprehensively
compared for single-cell transcriptomics38. Nevertheless, there has not
been a systematic evaluation covering combinations of popular
methods in the data analysis workflow for single-cell proteomics.

Here, we present a framework for benchmarking data analysis
strategies for DIA-based single-cell proteomics. This framework
enables a comprehensive comparison of popular DIA data analysis
software tools and searching strategies, as well as a systematic eva-
luation of method combinations in subsequent informatics workflow,
including sparsity reduction, missing value imputation, normalization,
batch effect correction, and differential expression analysis. Bench-
marking was conducted on simulated single-cell samples consisting of
mixed proteomes and real single-cell samples with a spike-in scheme.
Based on the benchmarking results, recommendations are provided
for choosing data analysis workflows for DIA-based single-cell
proteomics.

Results
Benchmarking DIA-MS data analysis solutions using simulated
single-cell samples
Hybrid proteome samples of organisms mixed in defined proportions
have been used as benchmarking samples for performance evaluation
of quantitative proteomic methods27. In this study, we constructed
simulated single-cell-level proteome samples consisting of tryptic
digests of human HeLa cells, yeast and Escherichia coli proteins with
different composition ratios. A sample consisting of 50% human, 25%
yeast, and 25% E. coli was used as reference (S3). In the other four
samples (S1, S2, S4, and S5), the human proteins were of equivalent
abundance to the reference, while the yeast and E. coli proteins had
expected ratios to the reference from 0.4 to 1.6. The total protein
abundance of the three organisms injected into the LC-MS/MS was
200pg to mimic the low input when analyzing single-cell proteome
samples. Each sample was analyzed by diaPASEF using a timsTOF Pro 2
mass spectrometer with six technical replicates (repeated injections).
These samples with ground-truth relative quantities allowed us to
evaluate the quantification performance of different data analysis
solutions at the single-cell level.

We surveyed the current mainstream solutions for DIA data ana-
lysis (Supplementary Note 1) and select three software tools, i.e., DIA-
NN39, Spectronaut22, and PEAKS Studio40, for benchmarking in this
study. DIA-NN and Spectronaut have been the most popular choices
for single-cell proteomic studies. PEAKS has been emerging as a sen-
sitive and streamlined platform for DIA data analysis41. All these soft-
ware support library-free and library-based DIA data analysis
strategies. For library-free analysis, DIA-NN and PEAKS build predicted
spectral libraries from protein sequences by deep learning, while
Spectronaut generates spectral libraries implicitly from the DIA data
per se by the directDIA workflow. For library-based analysis, Spectro-
naut (with Pulsar engine) and PEAKS can generate spectral libraries
from DDA data, while FragPipe can perform DDA data searching and
build spectral libraries for DIA-NN42. In this study, we built sample-
specific spectral libraries (DDALib) by multiple DDA injections of
individual organisms (2 ng) performed on the sample LC-MS/MS sys-
tem as the DIA experiments. Spectral libraries were also composed

from community resources (PublicLib) using timsTOF data of HeLa,
yeast, and E. coli digests (200ng) with high-pH reversed-phase frac-
tionation releasedby Sinitcyn et al.43. In addition, AlphaPeptDeep26was
used as an external source of predicted spectral libraries at the whole-
proteome scale of the organisms.

We first compared the performance of these searching strategies
within each software (Supplementary Note 2, Supplementary Data 1,
and Supplementary Figs. 1–6). For DIA-NN, the public spectral library-
based strategy quantifiedmore proteins and peptides (Supplementary
Figs. 1a and 2a), and the library-free workflow yielded higher protein
quantitative accuracy (Supplementary Figs. 1e and 2e). For Spectro-
naut, the sample-specific spectral library-based strategy outperformed
the others in terms of detection capabilities (Supplementary
Figs. 3a and 4a), and directDIA had an advantage in quantitative
accuracy (Supplementary Figs. 3e and 4e). The public spectral library-
based strategy showed the worst reproducibility with a high level of
missing values (Supplementary Figs. 3b and 4b). For PEAKS, the
sample-specific spectral library-based strategy outperformed the
others in proteome coverage (Supplementary Figs. 5a and 6a), while
the four strategies resulted in similar quantitative performance (Sup-
plementary Figs. 5e and 6e).

Considering the potential limitation of spectral library availability
in practical applications, we focused on the inter-software perfor-
mance comparison without the need of external spectral libraries.
Spectronaut (directDIA) quantified 3066 ± 68 proteins (mean ±
standard deviation, sic passim) and 12 082 ± 610 peptides per run,
which is the highest numbers among the three software tools, followed
by PEAKS (2753± 47) ranked second at the protein level and DIA-NN
(11 348 ± 730) at the peptide level (Fig. 1b and Supplementary Fig. 7a).
From the 30 DIA runs, 3524 proteins were detected totally by Spec-
tronaut. Among them, 57% (2013) proteins were shared in all the runs.
DIA-NN resulted in the more missing values at the protein level with
48% (1468/3061) proteins shared in all the runs. With more stringent
criteria on data completeness, the quantified protein numbers by DIA-
NNdecreased,while the gap between the Spectronaut and PEAKSwere
closing (Fig. 1c). Considering proteins and peptides shared in at least
50% runs in each sample, the three software shared 61% (2225/3635)
proteins and 48% (8002/16 729) peptides (Fig. 1d and Supplementary
Fig. 7c). Spectronaut detected 11% more (3194/2879) and 23% more
(3194/2607) proteins than PEAKS and DIA-NN, respectively.

In terms of the quantification performance, coefficient of varia-
tion (CV) values of protein quantities were calculated among replicate
runs to evaluate the precision (Supplementary Figs. 1d, 3d, and 5d).
The median coefficient of variation (CV) values of protein quantities
were 16.5–18.4% by DIA-NN, slightly smaller than 22.2–24.0% of Spec-
tronaut. PEAKS quantified proteins less precisely (27.5–30.0%). A
similar trend was observed at the peptide level (Supplementary
Figs. 2d, 4d, and 6d). Fold change (FC) values protein and peptide
quantities of samples S1, S2, S4, and S5 to the reference S3 were cal-
culated based on average of the replicate runs of each sample (Fig. 1e).
Proteins and peptides shared among the four strategies were used to
compare the quantitative accuracy. In each of the 36 pairwise com-
parisons among the three software (of three organisms, with four
samples against the reference), the outperforming software was
determined with experimental median log2 FC values closer to the
theoretical values and significant differences (t-test p-value < 0.05 and
Cohen’s |d | > 0.2) of the log2 FC distribution. DIA-NN outperformed
the other software in 8 comparisons at the protein level and 3 at the
peptide level. Spectronaut came in a close second with 6 prevailing
comparisons at the protein level and 2 at the peptide level.

Inter-software performance comparison with other searching
strategies is summarized in Supplementary Data 1. In brief, with the
sample-specific spectral libraries, Spectronaut and PEAKS out-
performed DIA-NN in terms of protein detection capabilities, while
DIA-NN yielded higher quantification accuracy. With the public
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spectral libraries or predicted whole-proteome spectral libraries, DIA-
NN still performed well for protein detection and quantification.

The above analyses were performed on the data of injection
replicates of each sample. This design aims at evaluating the technical
performance of each software with ground-truth samples, precluding
bias originating from sample preparation. As for the latter, we gener-
ated a dataset of proteome samples prepared with independent

digestion at the single-cell level. Performance on this dataset using
different software and searching strategies is summarized in Supple-
mentary Data 2.

Modern DIA data analysis software allows transferring identifica-
tions from any one run to any of the others using the match-between-
runs (MBR) algorithms44, which enables peptides to be quantified
across injections even without being initially detected in every single
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injection. The original aim of this feature is to mitigate the missing
value problem. In single-cell proteomics, MBR across single-cell sam-
ples could lead to an increase in detected proteins14. Furthermore,
researchers have co-searched single-cell data with those of higher-
input samples, e.g., tens of cells, to enhance protein identification45,46.
To assess the risk of erroneous transfer of identifications across runs,
we performed a co-search test using organism-specific samples47. The
mixed-organism samples S1–S5 were co-searched with three single-
organism samples of human, yeast, and E. coli. The cross-organism
searches could mimic the difficulties in analyzing largely hetero-
geneous samples, e.g., different cell types. Proteins and peptides ori-
ginated fromorganisms absent in these samples were used to evaluate
the level of potential false positive detection in the results (Supple-
mentaryNote 3). Comparedwith separate searches for each organism-
specific sample group, co-searches with the mixed-organisms
increased the identified proteins from the wrong organisms (Supple-
mentary Figs. 8a and9a). Although thewrong-organismhitswere likely
less intense in terms of median values, their quantity distributions
shared a quite large overlap (Supplementary Data 1 and 2) and thus
they could not be filtered with a quantity threshold. However, their
high level ofmissing values indicated that false transfers were possibly
spurious. Therefore, constraints of data completeness may rule out
potential false positive hits partially (e.g., 75% data completeness
could remove 10–83% entrapment hits despite 6–28% loss of the
sample-specific proteins, Supplementary Data 1, Supplementary
Figs. 8b and 9b). It was further observed that the sample-specific
spectral libraries were beneficial in controlling false positive detection
as they reduced the percentage of incorrect targets. However, since
the generation of such spectral libraries requires some effort and may
not always be possible, library-free strategies were adopted in sub-
sequent benchmarking.

Performance assessments of batch effect correc-
tion and differential expression analyses
Using the scheme described above, we performed another two DIA
experiments of simulated single-cell-level samples with HeLa, yeast,
and E. coli peptide standards. A combined dataset consisting of three
batches of samples (batches of LC-MS analyses on different dates)
were constructed for benchmarking batch effect correction and dif-
ferential expression analyses. We started with the protein quantifica-
tion result using the library-free mode of DIA-NN. Subsequent analysis
steps included sparsity reduction, missing value imputation, normal-
ization, batch effect correction, and, ultimately, statistical test for
differential expression analyses (Fig. 2a). A set of popular algorithms
were used for each step. For sparsity reduction, we applied: (1) no
sparsity reduction (NoSR), (2) requiring >66% data completeness
(SR66), (3) requiring >75% data completeness, and (4) requiring >90%
data completeness per protein (SR90). For missing value imputation,
we used: (1) replacing by 0 (Zero)48, (2) replacing by half of the mini-
mum in each row (HalfRowMin), (3) replacing by themean in each row
(RowMean), (4) replacing by the median in each row (RowMedian), (5)
K-nearest neighbors (KNN)49, (6) iterative low-rank singular value
decomposition (IterativeSVD)49, and (7) soft-thresholded singular
value decomposition (SoftImpute)50. For normalization, we applied:

(1) unnormalized (this did not influence the potential internal nor-
malization by DIA data analysis software with the recommended
search settings), (2) median normalization, (3) sum normalization,
(4) quantile normalization (QN), and (5) tail-robust quantile normal-
ization (TRQN)51. For batch effect correction we used: (1) no batch
correction (NoBC), (2) limma52, (3) ComBat53 using the parametric
mode (ComBat-P), (4) ComBat53 using the non-parametric mode
(ComBat-NP), and (5) Scanorama54. Finally, statistical tests were used
to probe for differentially abundant proteins: (1) Welch’s t-test, (2)
Wilcoxon–Mann–Whitney test (Wilcox), (3) limma52 using the trend
algorithm (limma-trend), (4) limma52 using the voom algorithm
(limma-voom), (5) edgeR55 using the quasi-likelihood F-test (edgeR-
QLF), (6) edgeR55 using the likelihood ratio test (edgeR-LRT), and (7)
DESeq256. Detailed descriptions of these methods are present in Sup-
plementary Note 4. By jointly assessing these methods for each step, a
total of 4900 combinations were yielded.

We used several benchmarkingmetrics to assess the performance
of batch effect correction and differential expression analyses. The
adjusted Rand index (ARI)38 was employed to evaluate the batch effect
correction results, which computes similarity between discovered
clusters (with the clustering parameters surveyed in Supplementary
Note 5 and Supplementary Fig. 10) and ground-truth sample groups.
After batch effect correction, the 7 statistical test methods were used
to screen differential proteins between sample groups S4 and S2. For
each method combination, the receiver operator characteristic (ROC)
curve was obtained using the −log10 p-value output by the statistical
test (adjusted by theBenjamini-Hochbergmethod) and the partial area
under ROC curve (pAUC)29 was determined. The pAUC value is a global
performance indicator capturing the area under a low false positive
rate (FPR) and can be interpreted as the average true positive rate
(TPR) over the FPR range. In this study, we focus on the cases with FPR
below 10% and thus the maximum possible pAUC value was 0.1. In a
differential expression analysis task, differential proteins are typically
detected at a given fold change (FC) and p-value threshold rather than
an FPR range. Therefore, we further computed the accuracy, precision,
recall, and F1-score with |log2 FC | <log2 1.2 (for S4/S2) and p-value <
0.05. Choices of these thresholds are explained in Supplementary
Note 6 and Supplementary Fig. 11. Stricter p-value thresholds resulted
in slightly fewer false positives but did not lead to significant changes
(Supplementary Fig. 12). Themethod combinationswere ranked based
on ARI, pAUC, and F1-scores. The robustness of the metrics and
ranking schemewasdemonstratedbycross validation (Supplementary
Note 7 and Supplementary Fig. 13).

We first investigated the influence of sparsity reduction. More
strict sparsity reduction resulted in higher ARI, pAUC, and F1-scores
(Supplementary Data 3). Despite the loss of quantified proteins after
sparsity reduction, the higher data completeness facilitated the dis-
crimination between truly differential proteins and false positives. The
Pearson correlation coefficient (PCC) of the ranks of method combi-
nations was computed across the sparsity reduction criteria. Amedian
PCC of 0.86 was achieved (Supplementary Fig. 14a), indicating that
ranking was stable regardless of sparsity reduction criteria.

In a comprehensive consideration of error rate control in protein
identification (Supplementary Fig. 8) and detectability in differential

Fig. 1 | Performance comparison of different DIA data analysis software tools.
a Construction of the benchmarking samples and the evaluated data analysis
strategies. b Numbers of quantified proteins per run. The bars indicate the mean
values and the error bars indicate the standarddeviations. Significant differences (t-
test p-value < 0.05, two-sided, no multiple comparison adjustments) are indicated.
c Numbers of proteins quantified in at least specified percentages (data com-
pleteness) of runs. d Overlap of the proteins quantified in at least 50% runs.
e Measured fold change (FC) values of protein quantities using sample S3 as
reference. FC values were calculated only for proteins quantified in at least 3 runs
for each sample of the comparison. Numbers (n) of proteins are indicated for each

species. The boxes mark the first and third quantile and the lines inside the boxes
mark the median; the whiskers extend from the box to the farthest point lying
within 1.5 times the inter-quartile range; outliers are not shown. The theoretical
ratios are highlighted as dashed lines. Differences between the measured median
FC values and theoretical values are indicated, among which the smallest ones are
darkened. Significant differences (t-test p-value < 0.05 and Cohen’s |d | > 0.2, two-
sided, no multiple comparison adjustments) are indicated. In b–e, the data was
analyzed using the library free strategy. Source data are provided as a Source
Data file.
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expression analysis, we focused on interpreting the results of SR75.
The top 1% and 5 %method combinations, along with their metrics are
visualized in Fig. 2b. The top 1% method combinations concentrated
mostly in sum normalization, as well as Combat-P, Combat-NP, or
limma for batch effect correction, and DESeq2 for statistical test
(Fig. 2c). Among them, the best method combination (SoftImpute,
Sum, Combat-P, DESeq2) resulted in an ARI of 1.0, a pAUC of 0.067,

and an F1-score of 93%. The variation of the metrics with different
method choices are visualized in Figs. 2d–f. The ARI values were <0.5
without batch effect correction, while all the batch effect correction
methods enhanced the clustering performance of the sample groups.
The ARI values were more sensitive to normalization methods
than missing value imputation. The pAUC values and F1-scores were
mainly influenced by the choices of statistical tests, where DESeq2
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fitted most of the imputation, normalization, and batch correction
methods.

The same benchmarking workflow was performed on protein
quantification results by the library-free mode of Spectronaut (Sup-
plementary Fig. 15) and PEAKS (Supplementary Fig. 16). For Spectro-
naut, the top 1%method combinations concentratedmostly inmedian,
sum, or no normalization, coupled with Combat-NP, Combat-P, or
limma for batch effect correction, as well as DESeq2 and limma-trend
for statistical test (Supplementary Fig. 15a, b). For PEAKS, limma was
the optimal method for batch effect correction, and DESeq2 or limma-
trend for statistical test (Supplementary Fig. 15a, b). With the same
sparsity reduction criteria, a median PCC of 0.68 was obtained among
the ranks of method combinations starting with quantification results
by the three software (Supplementary Fig. 14c). Using the optimal
method combinations, more truly differential proteins were screened
from the DIA-NN result (Supplementary Fig. 14d), as a result of the
higher accuracy in protein quantification. We further explored the
performance of differential expression analysis between other sample
groups (Supplementary Note 8).

It should be noted that biological covariates were provided to
limmaandCombat using batch effect correction in the above analyses.
Although these covariates are given in the experimental settings of this
study, we also simulated the scenario that covariates are not available
in some single-cell studies (Supplementary Note 9 and Supplementary
Data 4). We further tested the workflows with no imputation and
ignoring the missing values for differential analyses as a strategy in
some proteomics studies (Supplementary Note 10 and Supplemen-
tary Data 4).

Mining the patterns of high-performing method
combinations
To discover the patterns in the high-performing method combina-
tions, we fitted the ranking results using a learning-to-rank model with
extreme gradient boosting (XGBoost). Shapley additive explanations
(SHAP) were performed on the top 25% method combinations. The
resulting SHAP values quantify the contribution of each feature
(method) to a prediction, and the SHAP interaction values extend this
by measuring how pairs of features (methods of two steps) jointly
influence predictions, capturing their combined effects beyond indi-
vidual contributions. For the dataset of peptide standards, the statis-
tical test step contributed the most to the ranking of method
combinations (Supplementary Fig. 17a, b), where DESeq2 and limma-
trend is themethod choices with highest SHAP values (Supplementary
Fig. 17c). Interactions between statistical test and normalization were
also the highest (Supplementary Fig. 17d), where the combination of
DESeq2 and Sum yielded the highest gains, followed by cross combi-
nations of DESeq2/limma-trend and median/no normalization.
The largest proportion of contribution by the statistical test step is
reasonable since the samples were aliquots taken from of a large
amount of peptide standards and the batch effect was dominated by

the LC-MS instrument status, which minimizes the biases during
digestion.

With the benchmarking framework established, we then per-
formed another experiment to mimic the real variations of single-cell
proteome sampleswhich are actually prepared from very little amount
of proteins subjected to independent digestion (250pg proteins in
total as starting materials). Three batches of data were generated,
resulting in a dataset containing two batches of samples preparation
and another one containing two batches differing in LC-MS instru-
ments (timsTOF Pro 2 and timsTOF Pro, Fig. 3a). Ranks and metrics of
themethodcombinations on the dataset are present inSupplementary
Data 5. Still, we focused on interpreting the results of differential
analyses between sample groups S4 and S2 startingwith SR75 from the
quantification matrix of DIA-NN. For normalization, QN yield the most
positive gain (Fig. 3d). While DESeq2 was the best choice considering
the statistical method alone, limma-voom and edgeR-LRT were also
high-performingmethods if coupledwithQN (Fig. 3e). For batch effect
correction, Combat-NP, Combat-P, and limma resulted in positive
gains per se and coupled with QN. The contributions of Scanorama
were less stable. Missing value imputation by zero led to a negative
impact.

The results by Spectronaut and PEAKS can be interpreted in a
similar manner (Supplementary Figs. 18 and 19). Common patterns
included: normalizationwas themost important step (Fig. 3b, c, as well
as Supplementary Figs. 18a, b, 19a, b); statistical tests and batch effect
correction had strong interactions with normalization (Fig. 3e, Sup-
plementary Figs. 18d and 19d); imputation was relatively less impor-
tant. The key difference of these datasets from that of peptide
standards was the systematic variations introduced by the sample
preparation process (e.g., differences in digestion efficiency). These
variations require normalization and batch effect correction to correct
biases before statistical analysis.

Performance evaluation on real single-cell samples
We further evaluated the generalizability of the above data analysis
method recommendations in characterizing real single-cell pro-
teome samples (Fig. 4a).MCF-7 cells were treatedwith doxorubicin, a
potent genotoxic agent, or DMSO as a control. Single-cell proteome
samples were prepared using a pick-up single-cell proteomics ana-
lysis (PiSPA) platform14 based on amicrofluidic liquid handling robot.
For each of the treatment and control cell group, half of the samples
were spiked with 20 pg yeast and 40 pg E. coli digests (1Y2E), and the
others with 40 pg yeast and 20 pg E. coli digests (2Y1E). The spike-in
samples were analyzed by diaPASEF on a timsTOF Pro mass spec-
trometer in 3 batches, yielding a dataset containing a total of 60
samples. Different from the simulated samples consisting of tryptic
digests, the spike-in single-cell proteome samples contained more
complex matrices sourced from the cells. Although we tried to pick
cells of close sizes, the abundance of human proteins may not be
constant due to cell heterogeneity. Therefore, we selected a subset of

Fig. 2 | Performance comparison of different statistical method combinations
for batch effect correction and differential expression analysis. a Construction
of the benchmarking dataset and the evaluated method combinations. b Parallel
coordinate representation showing metrics using different method combinations.
Line colors indicate the percentile rank of themethod combinations. cCompositions
of the top 1% and 5% method combinations in a. Mappings of the serial numbers to
detailed methods for each step are present in (a). d Adjusted Rand index (ARI)
metrics. e Partial area under receiver operator characteristic curve (pAUC)metrics. In
c and d, the metrics are visualized in a hyperbox, where each face displays the
metrics with two steps variable and the other steps fixed to those of the bestmethod
combination. For the best method combination, the method choice in each step is
marked with dashed lines. Dot sizes and colors indicate themetric values. f Accuracy
(dots), recall (triangles), precision (squares), and F1-score (bars) metrics. Rows
represent batch effect correction methods and columns represent normalization

methods. The other steps are those of the best method combination. g Clustering
result of the five groups of samples visualized using principal component analysis for
dimension reduction. The fill colors indicate the sample groups and the shape
indicate the batches. The border colors indicate the clusters. h Receiver operator
characteristic (ROC) curves using −log10 p-value as scores. The optimal cut-offs with
false positive rate (FPR)≤0.1 aremarked using black dots with score threshold (Thr),
FPR, and true positive rate (TPR) values indicated. i Volcano plots. Blue dots repre-
sent true positive (TP) E. coli proteins, red dots represent TP yeast proteins, green
dots represent true negative (TN) human proteins, and gray dots represent false
positive (FP) or false negative (FN) proteins. Benchmarks are performed on protein
quantification results by DIA-NN. The data were processed starting with SR75. Dif-
ferential analysis was performed between the S4 and S2 sample groups. Differential
proteins are determined with p-value <0.05 and |log2 FC | > log2 1.2.

Article https://doi.org/10.1038/s41467-025-65174-4

Nature Communications |        (2025) 16:10276 6

www.nature.com/naturecommunications


5 ratios
6 replicates

Organisms

S1 S2 S3 S4 S5

Single-cell level
sample preparation

Mixed proteome
samples

Proteins
(250 pg)

Peptides

Mass spectrometry
analysis

2 timsTOF
systems

Pro 2

Pro

D
at

e
of

sa
m

pl
e

pr
ep

ar
at

io
n

Batches of 
sample preparation

Batches of 
instruments

Explainable 
machine learning

Benchmarking
informatic workflows

Learning to rank
by XGBoost

…
…
…
…
…

1

2

3

4

5

Method
combinations

SHAP
explanation

a

b

c

e

d

f

Statistical TestNormalization

Batch Correction

Statistical Test & Normalization

Statistical Test & Batch Correction

Batch Correction & Normalization

Imputation

Normalization & Imputation

Statistical Test & Imputation Batch Correction & Imputation

S4/S2  SR75 p-value < 0.05 |log2 FC| > log2 1.2

Fig. 3 | Patternsofhigh-performingmethodcombinations. aConstructionof the
benchmarking dataset and the strategy for explaining the performance of the
method combinations. b Feature importance of the model. c Mean absolute
Shapley additive explanations (SHAP) values for each step. d SHAP values for the
method choices in each step. eMeanabsolute SHAP interaction values for each two
steps. f SHAP interaction values for pairwise method choices in each two steps. In
d and f, the boxes mark the first and third quantile and the lines inside the boxes
mark the median; the whiskers extend from the box to the farthest point lying

within 1.5 times the inter-quartile range. Individual data points are overlaid as dots.
The median values and frequency (n) are indicated for each method choice.
Benchmarks are performed on protein quantification results by DIA-NN. The data
are processed starting with SR75. Differential analysis was performed between the
S4 and S2 sample groups. Differential proteins are determined with p-value < 0.05
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human proteins, including histones with cell size-independent copy
numbers57,58, as well as housekeeping proteins with probably stable
expression59,60 for the control groups (Supplementary Data 5). All the
processing steps were applied on a matrix containing only the spike-
ins and the subset of human proteins. In this setting, other proteins

form the single cells should only provide the chemical background
that challenges the overall analysis. The normalization and batch
correction will work with the assumption that the real distributions
of the samples were comparable, which they were not due to the
variable cell sizes.

pAUC/0.1
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Fig. 4 | Performance evaluation of high-performing method combinations on
spike-in single-cell samples. a Construction of the spike-in single-cell samples.
b Selection of the high-performing method combinations based on the bench-
marking results. c Performance of the selected high-performing method combi-
nations on the spike-in single-cell samples. Metrics include: the adjusted Rand
index (ARI) and partial area under curve (pAUC) values (indicated by dot sizes and
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bars), false positive (FP, red bars), and false negative (FN, purple bars) proteins, as
well as true positive rate (TPR, green lines) and false positive rate (FPR, red lines)
values. Mappings of the serial numbers to detailed methods for each step are
present in Fig. 2a. Average metrics of all the 1225 method combinations were used
as a baseline (Base Avg). The data were processed starting from SR75. Differential
analysis was performed between the C2Y1E and C1Y2E sample groups. Differential
proteins are determined with p-value < 0.05 and |log2 FC | > log2 1.5.
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Based on the patterns of high-performing method combinations
mined from the simulated samples, we established a strategy for the
selection of method combinations (details in the Methods section).
From the benchmarking result (S4/S2, SR75) on the quantification
matrix by each software, 12 method combinations (~1% of all the
method combinations) were selected by beam search (Fig. 4b). Per-
formance of themwas evaluated for screening differential proteins (p-
value < 0.05 and |log2 FC | > log2 1.5) between the two sample groups in
the control subset (C2Y1E/C1Y2E). Average metrics of all the 1225
method combinations were used as a baseline, reflecting the expec-
tation of random choices in the space of available method combina-
tions. Generally, the selected method combinations resulted in higher
TPR than the baseline for DIA-NN and PEAKS (Fig. 4c). Although the
difference of TPR was small for Spectronaut, FPR was reduced for all
three software. Results of other sparsity reduction criteria are pre-
sented in Supplementary Data 6, where false positives were at a low
level (Supplementary Figs. 20). The results demonstrated the utility of
the data analysis method selection strategy in real single-cell pro-
teomic analyses.

Similarities and differences of biological insights
across data analysis workflows
The selectedmethod combinations were then employed for screening
differential proteins (p-value < 0.05 and |log2 FC | > log2 1.5) between
the treatment and control cells (T2Y1E/C2Y1E). For each method
combination, Gene Ontology (GO)61 and Reactome62 pathway enrich-
ment was performed on the differential proteins. Based on the enri-
ched terms (adjusted p-value < 0.05), the method combinations were
then clustered with the Jaccard distance (see Methods for details).

For the results with SR75, down-regulation of GO terms and
Reactome pathways related to ribosomes, rRNA processing, transla-
tion, and cell-substrate junction were shared by the three software
tools and most method combinations (Fig. 5, block 1). Some terms of
nucleosome and nuclear transport were additionally enriched from
DIA-NN results (block 2), while others of preribosome and nuclear
speck were enriched from Spectronaut and PEAKS results (block 3).
Oxidized DNA binding, as well as regulation of translation and some
enzyme activities were detected uniquely by PEAKS (block 4). Up-
regulation of GO terms related tomitochondrial matrix, aswell as NAD
andNADPmetabolic processwerediscovered commonly (block 5). GO
terms related to detoxification, oxidoreductase activity, some other
small molecule catabolic process, as well as some organelles and
granules were up-regulated in DIA-NN and/or PEAKS results (block 6).
Spectronaut yieldedup-regulated termsof amino acid transmembrane
transport, nucleotide metabolic process, and microvillus components
(block 7). Half of workflows starting with DIA-NN results detected the
up-regulated of the TP53 pathway that regulates the transcription of
metabolic genes (block 8).

The enriched results by workflows starting with different sparsity
reduction conditions are presented in Supplementary Data 7 and
Supplementary Fig. 21. From the protein quantification results by DIA-
NN, although workflows starting with SR75 screened fewer differential
proteins than NoSR, they yielded more enriched terms (at median). It
also increased the stability of enriched terms across different work-
flows for all the software. The results stressed again the necessity to
control data completeness, which could rule out potentially false hits.

Doxorubicin is known to intercalate with DNA base pairs, which
eventually leads toDNAdamage and the generation of reactive oxygen
species (ROS)63. The p53 protein can be activated by DNA damage to
induce a cell cycle arrest for damage repair64,65, related to the enriched
terms of DNA recombination, DNA packaging, and nucleosome. DNA
damage can also induce a global decrease in translation and ribosome
stalling through a p53-independent mechanism66, consistent with the
corresponding down-regulated terms. In addition, the enrichment
results indicated that the cells upregulated energy production and

detoxification pathways to counteract oxidative stress and drug-
induced toxicity. Amino acid transporters are essential for balancing
intracellular amino acid pool for many cellular functions, including
regulation of ROS levels and oxidative damage protection, which can
enhancedrug resistance67. This is supportedby the up-regulated terms
of amino acid transmembrane transporter activity. The alteration
observed inmicrovillus, lysosomal, vacuolar and granule components,
and other cellular components suggests the impacts of drug on cel-
lular transport, metabolism, and secretion. Taking together the results
by the data analysis workflows, the significant altered protein expres-
sion signatures can reflect basically the biological response in the
presence of doxorubicin.

Discussion
The recent technological and computational advances in DIA MS have
powered label-free single-cell proteomics with promoted accessibility
to the general proteomics audience and diverse core facilities10,13,14,17.
While records have been chalked up in the numbers of identified
proteins in single cells, diverse data analysis strategies have been
employed in these reports, incorporating different software tools,
spectral libraries, and downstream bioinformatics workflows. The
impact of data analysis workflows on the outcome of single-cell pro-
teomic experiments has been rarely investigated, which calls for
dedicated benchmarking studies. Compared to prior efforts bench-
marking DIA software and optimizing bioinformatics workflows for
bulk proteomics29,31,37, our study design provided a comprehensive
comparison of DIAdata analysis strategies for protein quantification at
the single-cell level and embraced the complete statistical processing
workflow in single-cell proteomics, including batch effect correction
and differential expression analysis.

Our benchmarking included the two most popular software tools
in DIA data analysis, i.e., DIA-NN and Spectronaut, as well as PEAKS
Studio, a new choice that has not been used in published single-cell
proteomics studies. Different types of spectral libraries and searching
strategies were compared. Based on the overall performance of pro-
tein identification and quantification, we provided the following
recommendations for single-cell DIA MS data analysis: (1) DIA-NN is
preferred owing to its robustness across various spectral library types.
Of note, DIA-NN is free for academic use and available to general
proteomics researchers. (2) A project-specific spectral library built
with low-input samples, if possible, is favorable, whereas a remote one
of bulk samples is not advantageous. Spectronaut and PEAKS Studio
could be alternative solutions when using a project-specific spectral
library, although their results would be sensitive to the choice of
libraries. (3) Co-searching with higher-input samples is risky for het-
erogeneous samples and close attention should be paid to the quality
control. Data completeness is a useful criterion to control false iden-
tifications. (4) When a project-specific spectral library is not available
(e.g., the samples are rare or resources for additional injections are not
sufficient), Spectronaut directDIA is recommended as it yields more
protein identifications, higher data completeness and comparable
FPRs in differential protein analysis. The built-in prediction by DIA-NN
is also an appropriate choice with high quantification accuracy and
precision for library-free analysis. Currently, spectral library prediction
using off-the-shelf models is not beneficial, as most of them are not
optimized for single-cell samples. More precise prediction may be an
option if the requirements and cost of training a model are affordable
to general proteomics researchers in the future.

Our study conducted a systematic evaluation of statistical analysis
workflows for single-cell proteomics. While clustering-based metrics
such as ARI are commonly used to evaluate the performance of batch
effect correction in single-cell omics in previous research38, metrics
based on the number of true/false differential proteins ismore reliable
as they reflect the performance of the workflow for differential
expression analysis in practice. In this study, themethod combinations

Article https://doi.org/10.1038/s41467-025-65174-4

Nature Communications |        (2025) 16:10276 9

www.nature.com/naturecommunications


b

a GO

Reactome

DIA-NNSpectronautPEAKS

DIA-NNSpectronautPEAKS

1

1

2

33

4

5

6

7

8
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were compared in a comprehensive consideration of ARI, pAUC, and
F1-score, where the differential protein-basedmetrics served as a basis
for comparison, supplemented with clustering-based metrics. Missing
values in proteomics may originate from various mechanisms35,48,
including missing completely at random (MCAR) and missing at ran-
dom (MAR) due to stochastic fluctuations (e.g., precursor selection in
DDA and failed inter-run alignment in DIA), as well as abundance-
dependent missing not at random (MNAR). In DIA single-cell datasets,
analytes with a higher rate of missing values are probably close to the
limit of detection or simply not present (false identification). After
strict sparsity reduction, the remaining missing values could be better
resolved by MAR/MCAR-devoted imputation methods. When analyz-
ing the simulated single-cell samples, sum normalization was the
optimal method since the total protein abundance was constant.
However, this constraint is notmet for the real single-cell samples, and
choices of normalization methods depend on biological assumptions.
As a standard part of many analysis pipelines for a wide range of data
types68, QN assumes the distribution of each sample is the same and
can be used when no global changes may be of biological interest. For
batch effect correction, ComBat (either parametric or not) and limma
were preferred inmost cases in our study, even if biological covariates
were not available. It should be noted that the aim of batch effect
correction for our single-cell proteomics workflow is to minimize the
technical variability throughout the sample processing and MS
acquisition (e.g., effects by analyzing the cells on different days) for
differential expression analysis. This task is different from the sce-
narios of datasets integration (e.g.,multiple experimentswithdifferent
sequencing technologies or across labs)38 and cell type identification.
For statistical test, DESeq2 and limma-trendwere present frequently in
the high-performing method combinations. Nevertheless, the best
statistical test methods were unstable across different DIA analysis
software tools and sparsity reduction criteria.

Collectively, our study arrived at the following findings and
recommendations for choosing data analysis workflows for DIA-based
single-cell proteomics: (1) Sparsity reduction is a primacy in the whole
workflow. For the homogeneous cell lines in this study, working with
75% data completeness is a good trade-off between gaining detected
proteins and reducing the burden of missing value imputation. This
will be more complicated when analyzing many different cell types,
where missing values will be much higher due to cell-type-specific
effects. (2) It is unfeasible to find a one-size-fits-all workflow that is
optimal for various single-cell proteomics datasets. Researchers may
use a set of high-performingmethod combinations demonstrated here
(Fig. 4b) or determined from spike-in experiments more specific to
their sample processing schema and instrument settings. (3) Data
analysis workflows can result in similar or contrary biological insights.
Parallel analysis by the set of high-performing method combinations
could allow a comprehensive interpretation of single-cell proteomics
results. A promising future development would be the integration of
the results across workflows (e.g., using a voting model).

Notably, the results were produced by the latest versions of
software that we had access at the time this study started. As the
software is rapidly evolving, benchmarkingof their performanceneeds
an active update by the community beyond this study.We released the
framework for benchmarking and analysis as an open-access tool
named SCPDA. Although it was demonstrated here for timsTOF series
instruments, the same processing scheme can be applied to optimiz-
ing data analysis workflows for Orbitrap or the recently emerging
Astral mass spectrometers12. We expect that our work will provide
resources aiding the data analysis of single-cell proteomics to the
community.

Methods
Preparation of mixed-proteome samples
Two types of mixed-proteome samples were used for benchmarking.

(1) Mixed peptide standard samples. Pierce HeLa Protein Digest
Standard (Thermo Fisher Scientific, 88329), MS Compatible
Yeast Protein Extract Digest (Promega, V7461), andMassPREP E.
coli Digest Standard (Waters, 186003196) were used to prepare
the simulated single-cell-level proteome samples with different
composition ratios (Supplementary Table 1). The total peptide
concentration of the three organisms was 40pg·μL−1.

(2) Mixed-proteome samples subjected to independent digestion.
MSCompatibleYeast Protein Extract Intact (Promega, V7341), as
well as HeLa and E. coli protein extracts (obtained from Fudan
University) were mixed with different composition ratios
(Supplementary Table 1). For each sample, 250 pg proteins in
total (12 nL) were transferred into an insert tube and processed
like a real single-cell sample (see Preparation of single-cell
samples below).

Cell culture
Human breast adenocarcinoma MCF-7 cells (American Type Culture
Collection, HTB-22) were authenticated by STR profiling and tested
mycoplasmanegative. Cells were cultured inDMEMmedium (VivaCell,
C311-0500) supplemented with 10% fetal bovine serum (VivaCell,
C04001-500) and 1% penicillin/streptomycin solution (VivaCell,
C3420-0100) and incubated at 37 °C in an atmosphere of 5% CO2.
Treatment with genotoxic agent doxorubicin (Sigma Aldrich, D1515)
diluted in DMSO at final concentrations of 0.5 µM and with 0.1% (v/v)
DMSO (Solarbio, D8371) as a control was performed for 24 h, respec-
tively. For single-cell analysis, cells in a 6 cm dish were collected at
60–80% confluency using 0.25% trypsin with 0.02% EDTA (VivaCell,
C3530-0500), and washed three times with phosphate buffer
solution (PBS).

Preparation of single-cell samples
Single-cell proteome samples were prepared using a PiSPA platform14

based on a microfluidic liquid handling robot. Cell suspension
(30–50 µL) was taken into a culture dish (35mm diameter) and diluted
by PBS to a final volume of 2mL (corresponding to a cell suspension
density of <10 000mL−1). Then the single target cell was picked up by
the robot capillary probe into an insert tube.

After that, the robot was used to perform the subsequent sample
pretreatment operations. First, 100 nL of 0.3% (w/v) RapiGest (Waters)
was added to the insert tube with a sealing cap, reacted at 60 °C for
20min for cell lysis, and cooled to room temperature; then 100 nL of
20mM tris(2-carboxyethyl)phosphine was added to insert tube, reac-
ted at room temperature for protein reduction; after that, 100 nL of
125mM iodoacetamidewas added, reacted at room temperature in the
dark for 15min; then 100 nL of mixed enzyme solution containing
0.05μg·μL−1 trypsin (Promega, V5111) and0.05μg·μL−1 Lys-C (Promega,
V1671) was added, reacted at 37 °C for 2 h; finally, 100 nL of 5% (v/v)
formic acid was added to terminate the protein digestion for 30min at
room temperature.

Yeast and E. coli peptide standards with different composition
ratios were spiked to the digested single-cell samples (Supplementary
Table 2). Thefinal single-cell samplewas dilutedbyultrapurewater to a
final volumeof 5 µL and centrifuged at 500 × g for 3min before LC-MS/
MS injection.

LC-MS/MS analysis
Two timsTOF systems were used for MS analysis.
(1) Most of the mixed-organism (all the samples of peptide

standards and twobatches of samples subjected to independent
digestion) and single-organism samples were analyzed by a
timsTOF Pro 2 mass spectrometer (Bruker) with an Vanquish
NEO UHPLC system (Thermo Fisher Scientific). For each
injection, 5 µL (200pg) of peptides were loaded to an in-house
capillary LC column (6 cm length, 50μminner diameter, 360μm
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outer diameter) packed with C18 particles (1.7μm particle size,
120Å pore size; Suzhou NanoMicro Technology) and separated
with a 21min gradient (Supplementary Table 3). Phase A was
0.1% formic acid in water, and phase B was 0.1% formic acid in
100% acetonitrile. The LC flow rate was 150nL·min−1 and the
column temperature was 50 °C.

MS data were collected using Compass HyStar software
(version 6.0). The DIA parallel accumulation serial fragmenta-
tion (diaPASEF) mode was used for MS andMS/MS acquisition.
The range of the ion mobility 1/k0 was 0.75–1.3. The m/z
acquisition range was 300–1500, the spray voltage was 1550 V,
and the ion accumulation time was 166ms. MS/MS was con-
ducted with collision-induced dissociation and the collision
energy was in the range of 20–59 eV, which varied with ion
mobility. Six groups of 30 isolation windows with a width of 25
were set to cover a m/z acquisition range of 399–1149
(Supplementary Table 4).

(2) The rest of the mixed-organism samples (one batch of samples
subjected to independent digestion) and the spike-in single-cell
samples were analyzed by a timsTOF Pro mass spectrometer
(Bruker) with an EASY-nLC 1200 system (Thermo Fisher
Scientific). The sample was separated with a 21min gradient
(Supplementary Table 3). Phase A was 0.1% formic acid in water,
and phase B was 0.1% formic acid in 80% acetonitrile. MS data
were collected using CompassHyStar software (version 5.1). The
spray voltage was 1750 V. Other conditions were the same as
those for the mixed-organism samples.

Spectral library building
Three types of spectral libraries were built for DIA data analysis.
(1) Sample-specific spectral libraries (DDALib). HeLa, yeast, and E.

coli digest standards were individually analyzed by DDA
experiments on the timsTOF Pro 2 system. For each injection,
1 µL (2 ng) of peptides was loaded. Other conditions were the
same as those for the DIA experiments. For each sample, 30
replicates (repeated injections) were performed. These data
were used to build the spectral libraries for the analysis of the
mixed peptide standard samples. Similarly, the protein extracts
digested in our lab were used to build the spectral libraries for
the mixed-proteome samples subjected to independent
digestion.

The raw DDA data were searched against Swiss-Prot/
UniProtKB69 databases of Homo sapiens (organism ID 9606,
20 422 entries, access date 2023-03-21), Saccharomyces cerevi-
siae strain ATCC 204508/S288c (organism ID 559292, 6727
entries, access date 2023-07-14), and Escherichia coli strain K12
(organism ID 83333, 4530 entries, access date 2023-07-03). For
DIA-NN, FragPipe (version 22.0)70 with MSFragger (version 4.1),
IonQuant (version 1.10.27), and Philosopher (version 5.1.1) was
used for protein identification and spectral library generation.
For Spectronaut, spectral libraries were generated directly from
the DDA data using the built-in function. For PEAKS, the DDA
data were subjected to database searching and the spectral
libraries were exported from the search results.

(2) Spectral libraries from community resources (PublicLib). Raw
DDAdata of HeLa, yeast, and E. coli digests (200 ng) acquired on
timsTOF and released by Sinitcyn et al.43 were searched using
the samemethods and parameters as those for building sample-
specific spectral libraries.

(3) Predicted whole-proteome spectral libraries. AlphaPeptDeep
(version 1.0.2)26 was used for spectral library generation from
the protein sequence databases. In each predicted spectrum,
only the 12 highest peaks of at least 0.01 relative intensity
were kept.

DIA MS data analysis
Raw DIA data of the mixed-proteome samples were analyzed by DIA-
NN, Spectronaut, and PEAKS. All of the software workflows were run
using the default settings with modifications to make their results
comparable. Trypsin/P was set as enzyme, and the maximum number
of missed cleavages was set as 1. Carbamidomethylation (C) was spe-
cified as a fixed modification. Oxidation (M) and Acetylation (Protein
N-term) were specified as variable modifications.
(1) DIA-NN (version 1.9.2)39. For the library-free analysis, deep

learning-based in silico spectral library generation was enabled.
For the library-based analysis, the sample-specific spectral
library and the public spectral library built by FragPipe, as well
as the predicted spectral library generated by AlphaPeptDeep,
were used. Heuristic protein inferencewas enabled tomake sure
that no protein was present simultaneously in multiple protein
groups. Detailed parameters are present in Supplementary
Table 5.

The main report output by DIA-NN was processed the
following filters: Q.Value (run-specific, at the precursor level) at
0.01 and Lib.Q.Value (for the respective library entry, at the
precursor level) at 0.01, as well as PG.Q.Value at 0.05 and
Lib.PG.Q.Value at 0.01 (same as above, at the protein group
level). For the peptide-level quantification, the precursor-level
results were aggregated by “Stripped.Sequence” and the
quantity of each peptide was the sum of those of the top 3
corresponding precursors.

(2) Spectronaut (version 19.5.241126.62635, Biognosys)22. For the
library-free analysis, the directDIA+ (Deep) workflow was used.
For the library-based analysis, the sample-specific spectral
library and the public spectral library built by Spectronaut were
used.Detailedparametersarepresent inSupplementaryTable6.
The exported report files were used for benchmarking. For the
protein-level quantification, the columns “PG.ProteinAcces-
sions” and “PG.Quantity” were used. For the peptide-level
quantification, the columns “PEP.StrippedSequence” and “PEP.-
Quantity” were used.

(3) PEAKS Studio (version 12.0, Bioinformatics Solutions)40. For the
library-free analysis, database searching was enabled and
spectral library search was disabled. For the library-based
analysis, database searching was disabled, while the sample-
specific spectral library and the public spectral library built by
PEAKS were used. De novo sequencing was disabled. Label-free
quantificationwas switched to the high accuracymode. In order
to export the complete quantification results, protein signifi-
cance filter was set to 0, protein fold change filter to 0.0–64.0,
and used peptide filter to 0. Detailed parameters are present in
Supplementary Table 7. The exported quantification report files
(lfq.dia.proteins.csv and lfq.dia.peptides.csv) were used for
benchmarking. For the protein-level quantification, the columns
“Accession” and “Area [SampleName]” were used, where only
the top protein in each protein group (indicated by the columns
“Top” and “Protein Group”) were kept. For the peptide-level
quantification, the columns “Peptide” and “Area [SampleName]”
were used. For the error rate estimation with single-organism
samples, the exported identification report files (dia_db.pro-
teins.csv and dia_db.peptides.csv for library-free analyses, or
sl.proteins.csv and sl.peptides.csv for spectral library searches)
were used.

Data analysis workflows for differential expression analysis
The protein quantification matrices were subjected to data analysis
workflows comprised of different combinations of sparsity reduction,
missing value imputation, normalization, batch effect correction, and
statistical test methods.
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(1) Sparsity reduction. All proteins (NoSR) were kept; alternatively,
only those present in at least 66% (SR66), 75% (SR75), or 90%
(SR90) of all samples.

(2) Missing value imputation. The missing values were imputed by
zero, half of row minimum, row mean, or row median; alter-
natively, the Python package fancyimpute (version 0.7.0) was
used for KNN, IterativeSVD or SoftImpute.

(3) Normalization. No normalization was performed on the protein
quantificationmatrices output by the DIA data analysis software
(internal normalization implemented by the label-free quantifi-
cation algorithms of the software was not taken into considera-
tion in the benchmarking); alternatively, the protein
quantification matrices were normalized by sum; the R package
limma (version 3.56.2)52 was used for median normalization; the
R packageMBQN (version 2.12.0) was used for QN or TRQN. The
normalized protein quantification matrices were then log2
transformed (plus 1 before log transform to avoid log 0).

(4) Batch effect correction. No batch effect correction (NoBC) was
performed; alternatively, the R packages limma (removeBatch-
Effect) or sva (ComBat53, version 3.48.0) were used; otherwise,
the Python package scanorama (version 1.7.4)54 was used.

(5) Statistical tests. Welch’s t-test or Wilcoxon–Mann–Whitney test
was performed using the Python package scipy (version 1.5.4);
alternatively, the R package limma was used with the trend or
voom algorithm; the R package edgeR (version 3.42.4)55 was
used with the QLF or LRT algorithm; the R package DESeq2
(version 1.40.2)56 was used. The statistical tests were performed
mainly based on the log2 transformed quantities except for
limma-voom, DESeq2 and edgeR, which were originally
designed for RNA-seq read counts-based data type36. For
limma-voom, DESeq2, and edgeR, the log2 quantities after batch
effect correctionwere transformed inversely. SinceDESeq2only
accepts integers within the normal read counts range, the
quantities were multiplied by 10000 and then rounded up. The
raw p-values output by the statistical tests were adjusted by the
Benjamini-Hochberg method.

Metrics for performance evaluation and ranking
For performance evaluation of batch effect correction, the samples
were clustered using the Louvain algorithm implemented in the R
package Seurat (version 4.3.0.1)71. The adjusted Rand index (ARI)38

metrics were computed by comparing the sample group labels against
the clustering results:

ARI =
2 ad � bcð Þ

a+bð Þ b+dð Þ+ a+ cð Þ c +dð Þ ð1Þ

wherea is the number of pairswith the same true label and in the same
cluster, b is the number of pairs with the same true label but in dif-
ferent clusters, c is the number of pairs with the different true labels
but in the same cluster, and d is the number of pairs with the different
true labels and in different clusters. An ARI of 0 stands for random
clustering, and 1 for perfect match.

To evaluate the performance of statistical tests, the adjusted
p-value was transformed to −log10 p-value and used as thresholds to
classify proteins into positive and negative categories. For human
proteins, the ones with −log10 p-value > threshold were false positive
(FP) cases and the others were true negative (TN) cases; for yeast
proteins, the ones with −log10 p-value > threshold and log2 fold change
(FC) < 0were true positive (TP) cases; for E. coli proteins, the ones with
−log10 p-value > threshold and log2 FC>0 were TP cases; the others
were false negative (FN) cases. The receiver operator characteristic
(ROC) curve was generated using the Python package scikit-learn
(version 0.24.2) by plotting true positive rates (TPR) against false

positive rates (FPR) under various thresholds:

TPR=
TP

TP+FN
ð2Þ

FPR=
FP

FP+TN
ð3Þ

The partial area under the ROC curve (pAUC)29 was computed
within the range of FPR < 10%.

To evaluate the overall performance of differential protein
detection, 0.1, 0.05, 0.01, and 0.001 were chosen as p-value thresholds
(p0) and the optimized threshold of |log2 FC| (t0) was searched. For
human proteins, the ones with −log10 p-value > −log10 p0 and |log2
FC | > t0were FP cases and the otherswere TN cases; for yeast proteins,
the oneswith −log10 p-value > −log10 p0 and log2 FC <−t0were TP cases;
for E. coli proteins, the ones with −log10 p-value > −log10 p0 and log2 FC
> t0 were TP cases; the others were FN cases. The precision–recall (PR)
curve was generated using the Python package scikit-learn by plotting
precision (also known as positive predictive value, PPV) against recall
(i.e., TPR) under various thresholds:

Precision =PPV=
TP

TP+FP
ð4Þ

The optimal p-value and |log2 FC| thresholds were determined to
maximize the recall at 95% precision. Other performance metrics,
including accuracy values and F1-scores were computed based on the
optimal thresholds:

Accuracy =
TP+TN

TP+TN+FP+FN
ð5Þ

F1� score =
2 ×Precision ×Recall
Precision +Recall

ð6Þ

The method combinations were ranked by ARI, pAUC, and F1-
score separately. A final rank was given by aggregating the ranks of
individual metrics:

Total Rank=Rank Rank ARIð Þ+Rank pAUCð Þ+Rank F1� scoreð Þ� � ð7Þ

Explanation and selection of the high-performing method
combinations
To mine the patterns of high-performing method combinations, the
benchmarking results were submitted to a learning-to-rank (XGBRan-
ker) model using the Python package xgboost (version 1.5.2)72. The
method combinations were regarded as categorical features, encoded
as an integer array (OrdinalEncoder), andused as input. The rankswere
used as output. The objective function was “rank:pairwise”, which
transformed the ranking task into a pairwise classification problem,
learning to predict which item in a pair should be ranked higher. The
model assigned an importance score to each feature based on their
contribution to the model’s predictions. A SHAP explainer (TreeEx-
plainer) was built for the model using the Python package shap (ver-
sion 0.41.0)73. SHAP values (for each method) and SHAP interaction
values (for eachmethod pair) were computed for the high-performing
(top 25%) method combinations. The mean absolute SHAP values and
SHAP interaction values were calculated to measure the global effect
of each step and their pairwise influences.

Based on the SHAP explanations, a strategy was established for the
recommendations of high-performing method combinations. The steps
(i.e., imputation, normalization, batch correction, and statistical test)
were ordered by their mean absolute SHAP values. For each step,
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candidate method choices were prioritized using their individual con-
tributions. To dynamically refine selections, a beam search algorithm
iteratively expanded themethod combinations stepby step: at each step,
it evaluates candidate method choices by combining their standalone
contributions with pairwise interaction contributions from previously
selected parameters, maintaining only the top-W partial combinations
(controlled by beam width W; W= 12 in this study). In a conservative
manner, the 5th percentile (P5) of the SHAP values and SHAP interaction
values was used as the standalone contribution of each candidate
method choice and pairwise interaction contributions of each method
pair (analogous to “value at risk”, the maximum loss −P5 expected with a
95% level of confidence). This setting aims tomanage the risk of choosing
a low-performing method for analyzing a new dataset. This process
generated a tree-like structure retaining hierarchical decision rules,
where nodes represent method choices and branches indicate condi-
tional priorities. Visualization of the tree was implemented by Graphviz
Online (https://dreampuf.github.io/GraphvizOnline/).

Differential expression analysis and enrichment analysis on real
single-cell samples
The selected high-performing method combinations for each DIA
analysis software were employed for screening differential proteins
between the treatment and control cells (T2Y1E/C2Y1E). For each
method combination, differential proteins were determined with
adjusted p-value < 0.05 and |log2 FC | > log2 1.5. GO

61 enrichment was
performed using the R package clusterprofiler (version 4.12.6)74.
Reactome62 pathway enrichment was performed using the R pack-
age ReactomePA (version 1.48.0)75. Terms with p-value < 0.05
(Fisher’s exact test, adjusted by the Benjamini-Hochberg method)
were kept. A hint of overall regulation for each term was given by
Z-score calculated based on the numbers of up- and down-regulated
proteins76:

Z =
CountUp � CountDownffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Count
p ð8Þ

where Z-score > 0 indicates up-regulation and Z-score <0 for down-
regulation. The enrichment result for each method combination was
considered as a set of terms with regulation {up/down-regulated term
1, up/down-regulated term 2, …, up/down-regulated term n}. Jaccard
distance was calculated between each pair of method combinations
(A, B):

J A,Bð Þ= A \ Bj j
A∪Bj j =

Term i, j,ZAiZBi ≥0
� ��� ��

Aj j+ Bj j � Term i, j,ZAiZBi ≥0
� ��� �� ð9Þ

where i represents any term (independent of regulation) shared by the
two method combinations. Specially, Z-score = 0 was considered as
either up- or down-regulated. The Jaccard distances were used for
hierarchical clustering.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawmass spectrometry data, spectral libraries, and search results have
been deposited in the ProteomeXchange Consortium via the iProX77

partner repository with the dataset identifier PXD056832 or
IPX0009767000. Source data are provided with this paper.

Code availability
The source code of SCPDA is available at Github (https://github.com/
WangJianwei1991/SCPDA) and Zenodo (https://zenodo.org/records/
17140070)78.
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