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Enantiotopic-group-selective coupling for
unified access to carbazole atropisomers as
versatile chiral chromophores

Junqiang Wei1, Zhuoer Wang2, Pengyao Xing 2 & Ye Zhu 1

Chiral organic chromophores are foundational for advanced optical and
electronic devices. Despite the widespread use of N-aryl carbazoles in visible-
luminescent materials, chiroptical applications of their atropisomers have
remained underdeveloped due to the synthetic challenge of achieving remote
atroposelectivity necessitated by extended π-systems. Here, we present a
unified strategy for the efficient synthesis of enantioenriched N–C and N–N
carbazole atropisomers. By integrating 13C NMR-based ligand parameteriza-
tion, we achieve enantiotopic-group-selective coupling reactions that simul-
taneously incorporate tailored π-functionalities and establish axial chirality
(up to >99:1 er) using synthetic pathways established in carbazole chemistry.
Through covalent modulation and noncovalent complexation, we investigate
novel chiroptical functions of carbazole atropisomers, including circular
dichroism (CD), circularly polarized luminescence (CPL), charge-transfer CPL
(CT-CPL), and circularly polarized thermally activated delayed fluorescence
(CP-TADF). By establishing an electrostatic steering strategy for remote atro-
poselectivity, our work paves the way for integrating multifunctional carba-
zoles into advanced optical and optoelectronic technologies.

Chiral chromophores confer precise photon control via quantized
circular polarization, underpinning advances in quantum computing,
chemosensing, and optoelectronics1. Chiral organic chromophores
built upon visible luminescent, nitrogen-centered stereogenic scaf-
folds have remained elusive. N-aryl carbazoles are prominent compo-
nents in organic materials, conjugated polymers, metal–organic
frameworks, and covalent organic frameworks, representing a vast
class of synthetic chemicals ( > 1 million substructure entries in
SciFinder)2,3. Establishing stereogenicity directly about the nitrogen
core could represent a compelling strategy for designing novel chiral
chromophores that inherit the excellent luminescence and con-
ductivity of the privileged carbazole scaffold.

Despite the prevalence of atropisomerism4–9, N–C axially chiral
N-aryl carbazoles have only been utilized in a few cases as chiral
ligands10–12 and organocatalysts11,12, likely due to the lack of general
asymmetric synthetic methods beyond the two reports targeting

N-naphthyl mono−2-substituted carbazoles via asymmetric N-naph-
thylation (Fig. 1A)11,12. Given the dominance of cross-coupling in car-
bazole derivatization, we envisaged that enantiotopic-group-selective
coupling13–20 of dihalocarbazole could offer a modular approach to
establishing stereochemistry without changing the synthetic routes or
restricting the types of functional groups introduced.

Catalytic desymmetrization of pro-stereogenic biaryls typically
relies on the steric biasing by ortho substituents of the nonreacting
arenes; therefore, the reaction sites are invariably close to the emer-
gent chiral axes (Fig. 1B)21–33.To date, desymmetrizing cross-coupling
of 2,6-di(pseudo)halo biaryls are limited to C–C atropisomers34–37.
Notably, Miller38 and Akiyama39 achieved desymmetrizing C–O and
C–C coupling of 2,6-diOH and 2,6-diMe biaryls, respectively. However,
establishing axial chirality through reactions at remote enantiotopic
sites has remained a substantial challenge due to diminished stereo-
chemical effects of the further distanced prostereogenic axis.
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Fig. 1 | Synthetic strategy for axially chiral carbazoles. A Atropisomerism of N-
aryl carbazoles and its applications. B Conventional steric biasing does not confer
long-range stereochemical relay. C Huang, Wong & Yeung’s work on organocata-
lytic desymmetrization to 1-bromoN-aryl carbazoles.D This work: Catalytic remote

desymmetrization offers modular access to carbazole atropisomers for chiroptical
functions. Ar aryl, Bu butyl, CD circular dichroism, CPA chiral phosphoric acid, CPL
circularly polarized luminescence, CT charge transfer, TADF thermally activated
delayed fluorescence.
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Specifically, steric biasing of the prochirality-determining substituents
(R1 and R2) would become ineffective for the proposed desymmetriz-
ing coupling of prochiral dihalocarbazole. Very recently, Huang,
Wong, Yeung and coworkers reported organocatalytic asymmetric
bromination at C1 of N-aryl carbazoles using chiral phosphoric acids
(CPA) and a Lewis base (3-bromo-4-pyrrolylpyridine, Fig. 1C)40. Sub-
sequent cross-coupling furnished novel molecules featuring two or
three chiral axes that exhibited circularly polarized luminescence
(CPL). Nevertheless, highly efficient synthetic methods to access N–C
stereogenic carbazoles with differentiated 2,7-bis-substituents for
exploiting of the chiroptical functions of this privileged scaffold
remain unexplored.

Herein, we report a unified strategy for accessing axially chiral
carbazoles (up to >99:1 er) that overcomes the challenges posed by
remote reaction sites, even when the ortho groups are not sterically
differentiated (Fig. 1D). Unexpectedly, we identified the relationship
between atroposelectivity and distal 13C NMR chemical shifts through
ligand parameterization. This strategy was adaptable to various scaf-
folds, including the previously unexplored atropisomerism of N-aryl
phenoxazine and N-aryl dihydroacridine, as well as N–N stereogenic
carbazoles—anuntapped class ofN–Nstereogenic compounds41–49 that
lacks enantioselective access50. Themodular synthesis of N–C andN–N
axially chiral carbazoles enabled versatile chiroptical functions,
including circular dichroism (CD), circularly polarized luminescence
(CPL), charge-transfer CPL (CT-CPL) and circularly polarized thermally
activated delayed fluorescence (CP-TADF), thereby setting the foun-
dation for applications in optical and optoelectronic materials.

Results
Catalyst development for remote atroposelectivity
We initiated our study by investigating the Suzuki−Miyaura reaction of
2,7-dichlorocarbazole 1 (Fig. 2A). Using 3’-carboxyl L1 as chiral ligand,
the reaction proceeded in 17% yield with 70.5:29.5 er. Gratifyingly,
stereoinduction was modulated through incorporating an amino acid
moiety in the ligand. While (Sa, S)-L2 was less effective (66:34 er), the
reaction using diastereomeric (Sa, R)-L3 afforded 2 in 83:17 er. Repla-
cing 5’-Me of L1 for 5’-Ph improved the stereoselectivity (L4, 82:18 er).
Although introducing an alanine moiety did not make a noticeable
difference (L5, 81.5:18.5 er), leucine-derived 5’-Ph ligandgave improved
results (L6, 86.5:13.5 er).

Encouraged by the results, we obtained the crystal structures of
L6 and 2 to elucidate the stereocontrol (Fig. 2B). The distance between
CO2H and Cl in 2 is 6.8 Å, and the distance between CO2H and phos-
phorus atom in L6 is 8.3 Å. It is unlikely that the catalyst differentiates
the 2’-CO2H and 6’-Me of 1 (effective radii 1.62 Å and 1.80Å,
respectively51) through steric biasing because of their similar steric
propertieswhen comparedwith their distances from theCl of 1 (6.8 Å).
This was confirmed by the diminished 45:55 er of desymmetrizing
reaction when CO2H of 1 was masked as an ethyl ester.

The chiral ligand’s distal carboxylate serves as a nonligating ionic
group for substrate recognition in the absence of steric biasing. Based
on the absolute configurations of the ligand and the product, we
hypothesized a model for stereoinduction. The substrate-catalyst
complex is preorganized by the distal ionic interactions between their
anionic carboxylates via cation bridges52,53. The steric map54 of L6
indicates that the buried volumesof the four quadrants are very similar
(Vburied 51.4% to 53.8%).

Therefore, the ligand possesses an electronically asymmetric yet
sterically unbiased environment, a feature rarely shared by commonly
used chiral catalysts. The crystal structure of L6 reveals hydrogen
bonding interactions between 2’-OiPr and amide NH. In addition, the
estimated torsion angle H–Cα–N–C(O) is 8°, which is consistent with
conformations of typical peptides. Compared with the CO2H, the side
group (i.e., iBu) points away from themetal center. Such conformation is
consistent with the experimental results that the diastereomeric (Sa, S)-

L2 was less effective than (Sa, R)-L3. In an analogous conformation, the
CO2H of L2 would be pointing toward the opposite side of the ligand
scaffold when viewed from the phosphorus atom.

The tunability of the ligand’s amino acid moiety allowed us to
improve the stereoselectivity to 96:4 er (L7 to L9, Fig. 2A). Intriguingly,
side group R modulates the stereoselectivity, even though it points
away from the phosphorus atom. The results contrast with our pre-
vious experience that altering the side group R was not influential55.
Ligand parameterization56–58 allowed us to further elucidate their
effects (Fig. 2B). After surveying common side chain parameters
(Table S1 in Supplementary Information, SI), positive correlation
between energetic term ln(er) and graph shape index—steric para-
meter of amino acids—was revealed (R2 = 0.831), but the trenddoes not
hold for L7 and L8. By contrast, we found a strong linear correlation
between ln(er) and the experimental 13CNMRchemical shift (δppm)of
Cα of the ligands (R2 = 0.992). The results suggest that both the steric
bulkiness and the electronic property of R influence the stereocontrol
control.

Reaction development
With the optimal catalyst in place, we explored the reaction scope. A
spectrum of (hetero)aryl boronic acids and p-anisidine were success-
fully coupled in high stereoselectivity (up to 99:1 er) (Fig. 3A). Electron-
donating (3, 8 and 9) and electron-withdrawing functional groups
(4–7) at para (3–5), meta (6–9) and ortho (10) positions were well
tolerated. The reaction was applied to heterocycles including pyridine
(11), furan (12), thiophene (13 and 14), and extended π-systems com-
monly used in organic materials (15–20) including dibenzothiophene
(18 and 19) and carbazole (20). In addition, Buchwald–Hartwig reac-
tion proceeded in excellent stereoselectivity (21, 99.5:0.5 er), thereby
further expanding the functionality of carbazole atropisomers.

Desymmetrization of prochiral biaryls is typically effective for a
specific set of ortho substituents that preserves the steric biasing by a
given catalyst. Considering that ionic stereocontrol could potentially
overcome such limitation through electronic differentiation, we pro-
bed the ionic catalyst’s adaptability to substrates bearing various ortho
groups (Fig. 3B).

Although 2’-aryl substituted N-aryl carbazoles are widely used as
organic materials ( > 146,000 substructure entries in SciFinder), their
enantioenriched forms have remained unknown. Using the same cat-
alyst optimized for model substrate 1, the stereocontrol was effective
irrespective of the electronic property of the 6’-aryl (22 vs 23). In
addition, incorporating a bulky 6’-(1-naphthyl) resulted in slow rota-
tion along the C–C bond connecting the naphthyl, as revealed in the
NMR spectra of 24. Such steric effect does not influence the asym-
metric induction (93:7 er), demonstrating the advantages of substrate
recognition through attractive ionic interactions compared with steric
biasing.

Substrates bearing 6’-alkenyl groups including cyclohexenyl (25)
and 3,6-dihydro-2H-pyranyl (26), and 6’-chloro group (27–29) under-
went the stereoselective reactions with various functionalized aryl
boronic acids (up to 99.5:0.5 er). When 6’ position is unsubstituted,
racemic product was isolated (30). We suspected that the reduced
rotational barrier about N–C axis led to racemization at 60 °C, even if
the product was formed stereoselectively. Indeed, appreciably enan-
tioenriched product (91:9 er) was isolated when the reaction was
performed at 40 °C for 1 h. The er eroded to 66.5:33.5 at 40 °C for 20 h,
and the product racemized rapidly at 60 °C. Moreover, incorporating
MeO groups adjacent to the reaction sites had an insignificant impact
on enantioselectivity (31, 93:7 er). The results corroborate the notion
that the catalyst does not rely on a sterically congested chiral pocket to
exert stereoinduction.

Despite broad applications of N-aryl phenoxazines and N-aryl
dihydroacridines in organic materials, their atropisomerism have
remained unexplored. Reactions of phenoxazine derivative yielded 32
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in 63.5:36.5 er at 60 °C and in 85.5:14.5 er at 50 °C. Enantiopurity of 32
likely eroded under the reaction conditions, given its ethyl ester
racemized slowly at room temperature. The conformational flexibility
of phenoxazine likely result in low rotational barriers about N–C axis.

By contrast, N-aryl 9,9-dimethyl-9,10-dihydroacridine 33 was synthe-
sized in 91.5:8.5 er, demonstrating high conformational stability. In
both cases, the chiral catalyst preserves effective stereocontrol despite
changes in the substrate scaffolds.
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Adaptability to N–N axial chirality
Aiming at a unified strategy, we probed the outcome of replacing N–C
for N–N axes (Fig. 4A).N-pyrrol-1-yl-carbazole 34 coupled with a broad
range of aryl boronic acids, affording the products in high stereo-
selectivity (35–48, 92:8–99.5:0.5 er). The absolute stereochemistry of
44 is consistent with that of N-aryl carbazole 2, corroborating the
determinant role of carboxylates. Interestingly, the N–N axis and the

carbazolemoiety of44 are not coplanar, contrasting with the coplanar
N–C axis of 2.

The chiral catalyst optimized for N–C substrate 1 was highly
adaptable to N–N substrate 34. Non-directional ionic interactions tol-
erate changes in the spatial arrangements of Cl and CO2H. The results
prompted us to test the catalyst’s adaptability by shifting CO2H to 3’-
position of N-pyrrolyl moiety, further away from the N–N bond
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(Fig. 4B). The same catalyst remained effective in spite of the pro-
nounced structural change (49, 96:4 er). The 3’-CO2H is stereo-deter-
mining: masking it as an ethyl ester led to formation of racemic 49
(51:49 er). The results also showed that simple steric biasing at ortho
positions of N–Nbond (Ph vsMe) is insufficient in directing the remote
stereocontrol.

Diverseproducts (50–54)wereobtained in 89.5:10.5–97:3 er using
substrates bearing various (hetero)aryl groups at the 5-position of the
pyrrolyl moiety. While modest er was obtained with a 5-cyclopropyl
substituent (55, 82:18 er), 2-Et and 2-Bu did not impact the enantios-
electivity (56, 96.5:3.5 er; 57, 96:4 er). Furthermore, Sonogashira cou-
pling proceeded in 95:5 er (58). When 55 (82:18 er) was subjected to
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Sonogashira coupling using enantiomer of L9, bisfunctionalized pro-
duct 59 was isolated in an improved 88.5:11.5 er. Plausibly, a kinetic
resolution of 55 was operating.

Synthetic utilities
The new strategy enables modular access to functionalized N–C and
N–N axially chiral carbazoles through sequential coupling (Fig. 5). To
illustrate, 3,6-dichloro N-pyrrolyl carbazole 60 underwent Suzuki
−Miyaura reaction in 83.5:16.5 er (61, Fig. 5A). This class of N–N axially
chiral carbazoles exhibits excellent configurational stability. No ero-
sion in enantiopurity was observed even after refluxing 42 and 61 in
toluene for 24 hours. Subsequent reaction of 61 using the enantiomer
of catalyst supported by (R)-L4 yielded product 62 in 93:5:6.5 er. The
improvement in enantiopurity is attributed to a secondary kinetic
resolution, which favors themajor enantiomer of 61 during the second
coupling reaction by inducing a configuration opposite to that of the
initial step. Electronically differentiated arenes were incorporated at
remote sites, and the stereochemistry of N–N axis was established
concurrently. In contrast, 3,6-dichloro N-aryl carbazole underwent the
desymmetrization reaction in only 69.5:30.5 er (see SI, SI-10).

Enantio- and site-selective coupling of trichloro-substituted 63
afforded 64 in 97.5:2.5 er (Fig. 5B). Subsequent coupling with excess
aryl boronic acid using SPhos as ligand yielded 65 without change in
the enantiopurity (97.5:2.5 er). However, complexproductmixturewas
obtained when stoichiometric quantity of aryl boronic acid was used,
presumably due to low selectivity between two remaining chloro
groups of64. This issue was overcomeby employing the enantiomeric
chiral ligand, which led to formation of 66 in 77% yield. The hetero-
functionalized carbazole 67 (97.5:2.5 er) was successfully synthesized
upon a final coupling. The sequential coupling approach provides an
efficient synthetic method for enantioenriched monomers and tactic
oligomers. AB-typemonomer 71 (95:5 er) was prepared by coupling 68
to 4-B(dan) phenylboronic pinacol ester 69, and subsequent Pd-
catalyzed polycondensation yielded tactic conjugated oligomer
72 (Fig. 5C).

The carboxyl group serves as a versatile handle for chemical
derivatization. The coupling reaction using amine-substituted boronic
acid 73 afforded 74 in 99:1 er. Upon N-deprotection, the resulting
amine–carboxylic acid intermediate was subjected to amide coupling
conditions. Because of the rigid N-aryl carbazole backbone, intramo-
lecular lactamization was not observed, and a 24-membered macro-
cyclic dimer 75 featuring two N–C chiral axes was obtained with
>99.5:0.5 er (Fig. 5D). Curtius rearrangementof acyl azidederived from
9 in tBuOH yielded Boc-protected amine 76 in high enantiopurity (99:1
er), alongwith a novel C2-symmetric chiral urea 77 (Fig. 5E). TheDIBAL-
H reduction of 3 and ent-3 to benzyl alcohols followed by subsequent
oxidative condensation with benzimidamide afforded 1,3,5-triazine-
substituted N-aryl carbazoles 78 (98:2 er) and ent-78 (3:97 er),
respectively. Upon Pd-catalyzed proto-dehalogenation of 78, the des-
chloro analog 79 (98.5:1.5 er) was successfully prepared (Fig. 5F).

Finally, desymmetrization reaction of 2,7-dibromocarbazole (80)
proceeded in 92.5:7.5 er (81), affording 2,7-disubstituted N-aryl car-
bazoles 83 in 92:8 er after a subsequent cross-coupling with 82
(Fig. 5G). The results further demonstrates the applicability of the
desymmetrization strategy.

Chiroptical properties
The modular synthesis of enantioenriched carbazoles provided an
opportunity to evaluate carbazole atropisomers as potential chiral
chromophores. We first studied their photophysical properties in
diluted solution (see SI, Fig. S1–S3). They exhibit violet to blue emis-
sion (λPL = 354–425 nm) with nanosecond-scale lifetime. The N–N
compounds emit at shorter wavelengths than the corresponding N–C
compounds, introducing a distinct dimension to tuning fluorescence
beyond modifications of the peripheral substituents. The absolute

quantum yields range from moderate to high (Φ up to 82.4% for S-5),
demonstrating their excellent photophysical properties as models for
chiroptical functions.

We next investigated the ground-state chiroptical properties in
solution. The circular dichroism (CD) spectra exhibits active Cotton
effects (see SI, Fig. S4). The dissymmetry factors (gabs up to 5.36×10-4

for S-53) indicate a moderate degree of circular polarization, which is
expected for typical chiral organic molecules.

Furthermore, the Cotton effects are consistent between analo-
gous N–C andN–N stereogenic carbazoles (i.e., positive Cotton effects
observed for R-isomers at λmax, Fig. 6A and Table S2). The calculated
CD spectra of S-4 and S-5 optimized using density functional theory
(DFT) shows negative Cotton effects at the maximum absorbances,
which aligns well with the experimental data (Fig. 6B–D and see
SI, Fig. S5).

Chiral fluorescent molecules’ unique ability to emit left and right
circularly polarized lights with different intensities have garnered
increasing attention as photonic and electrooptical materials59,60. The
luminescence and CD results motivated us to investigate the photo-
excited chiral properties in thin-film state. By dispersing S-5 in poly-
methyl methacrylate (PMMA), we observed an r-CPL signal at the
highest emission wavelength (410 nm) with a glum value of −0.004
(Fig. 6E). Importantly, compounds including N–C carbazole 4, N–C
acridine 33, as well as N–N carbazoles with π-conjugated electron-
deficient arene (35), electron-rich arene (38), and heteroarene (44) all
exhibit CPL activities (see SI, Fig. S6 and Fig. S7). Scaffold-tuned
maximum emission wavelengths were observed for N–N carbazoles
(ca. 380 nm), N–C carbazoles (ca. 410 nm), and N–C acridine (518 nm).

Besides structural modifications, the electron-rich carbazole
offers opportunity in achieving charge transfer-modulated chiroptical
functions. To investigate this noncovalent strategy, we introduced
tetracyanobenzene (TCNB) as an electron-acceptor. Fabricating S-5
and TCNB (1:1 molar ratio) in PMMA afforded orange luminescence
(580 nm), and the CPL property was preserved with a similar glum
value (Fig. 6E).

DFT optimization revealed the exquisite π–π stacking between
carbazole of S-5 and TCNB (d = 3.44Å, ΔE = -15.64 kcal/mol, Fig. 6F).
The computed HOMO–LUMO energy gap narrows upon formation of
the charge-transfer complex (2.46 eV vs. 4.06 eV), leading to
bathochromic-shifted emissions for CT-CPL (Fig. 6G). The CT-CPL
strategy is applicable to N–C carbazole 4, as well as N–N carbazoles
coupled with π-conjugated electron-deficient arene (35) and electron-
rich arene (38) (see SI, Fig. S8–S10).

Molecules that possess both TADF and CPL activities are parti-
cularly appealing for achieving highly efficient circularly polarized
luminescence61. The potential of axially chiral carbazoles as functional
luminescent materials was further illustrated by the CP-TADF activity
of 78 and 79 (Fig. 6H). The through-space electron transfer between
triazine and carbazole moieties could facilitate the intersystem cross-
ing (ISC)62. Using bis[2-(diphenylphosphino)phenyl] ether oxide
(DPEPO) as the host material, the emission curve of 78 exhibited a
prolonged lifetime of 6.34 μs (Fig. 6I). The prompt and delayed
emission spectra display identical shape and peak locations (Fig. 6J),
indicating delayed fluorescence rather than phosphorescence63. The
TADF activity was further evidenced by temperature-variable emission
spectra from 80K to 380K (Fig. 6K). As the temperature increased
from 80K to 220K, the emission of 78 increases, contrasting normal
luminophores (Fig. 6L). The reversal ISC (RISC, T1→ S1) could be
facilitated at elevated temperature, thereby improving the efficiency
of TADF. Increasing the temperature further led to nonradiative tran-
sitions through skeleton motions, resulting in reduced RISC. The des-
chloro analogs 79 also exhibited TADF phenomenon with similar
luminescence properties (see SI, Fig. S11). DFT calculation of the
excited states of 78 showed a narrow gap between S1 and T1 (ΔEst =
0.23 eV), leading to accelerated ISC and RISC processes. Furthermore,
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strong Cotton effects were observed for 78 in solution, reflecting
conformational rigidity of its molecular scaffold (Fig. 6M). When
doped in DPEPO, R-78 and S-78 exhibited fine mirrored CPL signals,
giving rise to l- and r-CPL respectively (500nm, glum ± 0.008). Mean-
while, S-79 and R-79 exhibited l- and r-CPL respectively with compar-
able glum values (see SI, Fig. S11 and Fig. S12). The chiroptical

handedness l- and r- is determined by the relative stereochemistry of
the luminophores rather than the R/S configurations.

Discussion
In summary, we have developed a unified enantiotopic-group-selective
strategy to access highly enantioenriched carbazole atropisomers and
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established their functions as chiral chromophores. We addressed the
synthetic challenge of remote atroposelectivity through leveraging the
fundamental phenomena of ionic interactions. The ionic catalyst sys-
tem maintained effective stereocontrol while enabling the incorpora-
tion of diverse functionalities into a variety of N–C and N–N axially
chiral scaffolds. The high substrate adaptability allowed for tailored
synthesis of carbazole-, phenoxazine-, and dihydroacridine-derived
atropisomers that are inaccessible through conventional methods. We
found that establishing stereogenicity around the nitrogen atomof the
carbazole core is an effective approach for conferring chiroptical
functions. Cotton effects are consistent between N–C and N–N ana-
logs, with the latter exhibiting blueshifted emissions. CPL activities
could be modulated (380nm to 580nm) through structural diversifi-
cation (e.g., CP-TADF) and noncovalent complexation (e.g., CT-CPL).
Given the widespread applications of π-systems in organic materials
and the importance of cross-coupling reactions in their functionali-
zation, we anticipate that catalyst engineering will facilitate long-range
stereoinduction in extended π-systems for function-oriented applica-
tions. Future studies on nitrogen-centered chiral chromophores will
stimulate their applications in photonic and optoelectronic materials
for future computing, sensing, and display technologies.

Methods
General
procedure for desymmetrizing Suzuki−Miyaura cross-coupling
reaction. Under N2 atmosphere, Pd2(dba)3 (1.0mol%) and L9 (2.0mol
%) were dissolved in THF (0.5mL), and the resulting mixture was then
stirred at room temperature for 20min. The resulting solution was
added to a reaction flask containing dichlorocarbazole 1 (0.25mmol),
arylboronic acid (0.35mmol), K3PO4 (1.25mmol), THF (4.5mL) andH2O
(0.10mL). The reaction mixture was then sealed under N2 atmosphere
and heated to 60 oCwhile stirred using amagnetic stirring bar for 18 h.
Upon reaction completion, the mixture was neutralized to pH 3–5 with
1.0N aqueous solution of HCl and then extracted with ethyl acetate
(4.0mL) three times. The combined organic phase was washed with
brine, dried over Na2SO4, and concentrated in vacuo to give the crude
product. The desired cross-coupling product was purified using flash
column chromatography on silica gel. In cases that ester products were
isolated, a Schlenk-tube was charged with the crude product of the
cross-coupling reaction, followed by addition of N,N-Dimethylforma-
mide (1.0mL), EtI or MeI (0.5mmol) and K2CO3 (1.0mmol). The reac-
tion mixture was then stirred overnight at room temperature. The
resulting mixture was diluted with ethyl acetate (20mL) and washed
with water, brine, and dried over Na2SO4. The organic layer was con-
centrated in vacuo, and the desired product was purified using flash
column chromatography on silica gel.

Data availability
The authors declare that all data generated and analyzed in this study
are available within the article and its Supplementary Information file.
For experimental details, spectra for all new compounds, and chir-
optical properties data associated with all tables and figures, please see
Supplementary Information. TheX-ray crystallographic coordinates for
structures reported in this study have beendeposited at theCambridge
Crystallographic Data Center (CCDC) under deposition number
2390746 (2), 2390747 (ethyl ester of 44) and 2390748 (L6). These data
can be obtained free of charge from The Cambridge Crystallographic
Data Center via (www.ccdc.cam.ac.uk/data_request/cif). All data are
available from the corresponding authors upon request.
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