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Atomistic mechanisms of viscosity in 2D
liquid-like fluids

Dong Huang1, Shaoyu Lu1, Chen Liang1, Matteo Baggioli 2,3 & Yan Feng 1

Viscosity reflects the resistance of a fluid to flow and plays a fundamental role
in fluid dynamics across several scales. Still, itsmicroscopicmechanisms at the
individual particle level remain a subject of ongoing research. Here, we sys-
tematically investigate the shear viscosity of two-dimensional (2D) simple
fluids using computer simulations of three different systems. We propose a
simple formula for the shear viscosity that is solely determined by the lifetime
of local atomic connectivity τLC, namely the average time an atom remains
bonded with its neighbors, and the average particle velocity. The derived
analytical expression shows excellent agreement with the simulation data. We
also construct amodel for τLCbased on the local atomic structure andwe show
that the microscopic length scale associated to viscosity directly determines
the propagation limit of collective shear waves in liquids, linking atomic
motion to collective dynamics.

As first described by Newton in his 1687 Principia, the shear viscosity
(η) characterizes themomentum flux transport in fluids, defined as the
ratio of shear stress to shear rate1,2 (see Fig. 1a). Newton’s law of visc-
osity provides amacroscopic framework that can be translated into an
operative definition using theGreen–Kubo formalism3 (see ref. 4 for an
example of its applications), nevertheless, it does not offer any phy-
sical insights about the microscopic and kinetic origin of viscosity.

In gases, a microscopic description of viscosity has been already
achieved more than 200 years ago with the formulation of kinetic
theory, where momentum transport is accomplished via molecular
collisions5. This led to the known relation of η / ρ�vplmfp and the typical
temperature dependence of η /

ffiffiffiffi
T

p
in the dilute gas regime, where ρ

is the mass density, �vp is the mean speed of particles, and lmfp is the
mean free path. Here, lmfp is the average distance between two con-
secutive collisions, which is independent of temperature. However, in
liquids, molecular dynamics are inherently collective and cooperative,
rendering traditional kinetic theory inapplicable as potential energy
contributions play a significant role. This leads to a completely dif-
ferent andmuch stronger temperature dependence η / expðΔG=kBTÞ,
indicating that viscosity in liquids is governed by the activation energy
barrier for molecular rearrangements ΔG, while not by thermal
collisions.

In line with the original picture of liquid dynamics proposed by
Frenkel6, consisting of solid-like quasi-harmonic vibrations in the
local basins interrupted by thermally activated hops over potential
barriers, numerous studies have attempted a description of liquid
viscosity based on activated-rate theory of chemical reactions. Eyring
theory7 is the most famous example of this sort, predicting that
η=A exp ΔG=kBT

� �
. Here, A is an undetermined pre-factor and ΔG is

the atomic hopping potential barrier (see Fig. 1c). The Eyring equation
for viscosity correctly captures the experimentally observed expo-
nential decrease in liquid viscosity with temperature8. However, it
remains a semi-empirical theory, since both A and ΔG are left
undetermined.

On the other hand, in Frenkel’s description of liquids dynamics6,
the potential barrier ΔG appearing in Eyring’s formula is interpreted as
the energy necessary to re-arrange the nearest-neighbor cage. The
typical timescale of these configurational re-arrangements was for-
mally defined by Egami9 using the concept of lifetime of local atomic
connectivity τLC. By definition, τLC (see Fig. 1b refers to the average time
in which one particle loses or gains one neighbor within the sur-
rounding cage. It was realized that above the Arrhenius temperature,
where the viscosity follows a simple exponential temperature depen-
dence, this timescale coincides with the collective Maxwell relaxation

Received: 22 January 2025

Accepted: 9 October 2025

Check for updates

1Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology,
SoochowUniversity, Suzhou, China. 2WilczekQuantumCenter, School of Physics andAstronomy, Shanghai Jiao TongUniversity, Shanghai, China. 3Shanghai
Research Center for Quantum Sciences, Shanghai, China. e-mail: b.matteo@sjtu.edu.cn; fengyan@suda.edu.cn

Nature Communications |        (2025) 16:10171 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9392-7507
http://orcid.org/0000-0001-9392-7507
http://orcid.org/0000-0001-9392-7507
http://orcid.org/0000-0001-9392-7507
http://orcid.org/0000-0001-9392-7507
http://orcid.org/0000-0003-1904-5498
http://orcid.org/0000-0003-1904-5498
http://orcid.org/0000-0003-1904-5498
http://orcid.org/0000-0003-1904-5498
http://orcid.org/0000-0003-1904-5498
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65246-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65246-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65246-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65246-5&domain=pdf
mailto:b.matteo@sjtu.edu.cn
mailto:fengyan@suda.edu.cn
www.nature.com/naturecommunications


timescale τM = η/G∞ (with G∞ the instantaneous shear modulus), pro-
viding a microscopic interpretation of structural relaxation and visc-
osity in high-temperature liquids. This observation suggests a
connection between viscosity and local configurational excitations in
liquids that was further discussed in refs. 10,11, revealing surprising
similarities with the Drude model for electric transport in metals12. By
looking at the atomic scale stress correlation function, the relevant
length-scale for viscosity was also related to the range of propagation
of shear waves11 (see Fig. 1d), providing another link to a modern ver-
sion of Frenkel’s ideas known as k-gap theory13,14, and also to the dual
model of liquid viscosity15.

It is important to note that a microscopic and exact expression for
viscosity in terms of liquid structure already exists. In 1947, Born and
Green achieved this by formulating a relation based on the radial dis-
tribution function16. Since then, the Born-Green formalism has seen
significant development and has been extended to account for strain-
rate-dependent viscosity as well (see, for example, refs. 17,18). However,
the Born-Green theory requires solving a complex integro-differential
equation (see Chapters 5 and 6 in ref. 16) and does not provide direct
insight into the underlying dynamics governing liquid viscosity.

Another microscopic formula for liquid viscosity was recently
suggested based on viscoelastic non-affine motion19 but the identifi-
cation of the relevant degrees of freedomwas not properly clarified. A
follow-up analysis20 showed that, within that framework, only unstable
localized normal modes contribute to viscosity with a possible cross-
over to a stable mode dominated regime at low temperatures. The
results of ref. 20 align with the idea of Egami that viscosity in liquids is
governed by localized events. Interestingly, in water, the timescale
relevant for shear viscosity was proven to correlate with the con-
nectivity of the fluctuating hydrogen bond network and the evolution
of the first and second nearest neighbors21,22.

More recently, the microscopic origin of viscosity for 2D Yukawa
fluids was revisited under the view of Egami’s idea and discovered to
coincide with the momentum transfer process of losing/gaining
nearest neighbors for individual particles23, leading to the phenom-
enological expression η =nm�v2pτLC (with �vp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
the averaged

particle speed and ρ = mn, where n is the number density). Never-
theless, the validity of this expression was verified only in one specific
system and was not derived using any physical argument.

In summary, although viscosity is a fundamental property of
fluids, a successful anduniversal theory basedonparticle-levelmotion,
akin to kinetic theory for dilute gases, is stillmissing, particularly in the
dense regime. In this work, we propose a simple, approximate theory
of viscosity that captures the main mechanisms of stress relaxation
and momentum transport in the dense fluid state. We present two
analytical and closed-form formulae for the viscosity based on (I) sin-
gle particle motion and local configurational excitations and (II) pure
structural information, encoded in the short range behavior of the pair
correlation function.We demonstrate the validity of these expressions
using extensive simulations in 2D Lennard–Jones (L-J), Yukawa, and
one-component plasma (OCP) systems, proving the universality of our
findings. Finally, we demonstrate that the length-scale relevant for
liquid viscosity aligns with the propagation length of collective shear
waves, bridging particle level motion to collective dynamics in liquids,
and unifying the previous theoretical frameworks for liquid viscosity.

Results
Fluid viscosity from microscopic particle motion
Following Frenkel’s liquid description6, self diffusion can be regarded
as a hopping process between potential minima for individual atoms/
molecules, where the average distance between two potential minima
is assumed to be ξ, while the average hopping period is given by the
Frenkel time τF. By assuming simple randomwalkmotion for the liquid
constituents, the diffusion constant D can be written in terms of these
two parameters asD = ξ2/(4τF). At the same time, themobility α in a 2D
liquid is expressed using Stokes law as α = 1/(4πη), and the Einstein’s
relation implies D = αkBT. By combining these expressions, we can
obtain a simple formula for the shear viscosity of 2D liquids,

η=
kBTτF
πξ2

: ð1Þ

Fig. 1 | Viscosity, particle motion, and collective shear dynamics in liquids.
a The shear viscosity η determines the macroscopic resistance to shear flow in
fluids. b A local configurational excitation consisting in losing or gaining one
neighbor. τLC, the lifetime of local connectivity, is the average timescale associated
to thismicroscopic process. c Structural rearrangements in liquids are governed by
localized events in which one or few particles hop a potential barrier (ΔG), as
assumed in Eyring and Frenkel theories of liquid viscosity. This activated process

happens with an averaged rate τ�1
F , where τF is the microscopic Frenkel time.

d Collective shear waves in liquids propagate only up to a length-scale l ~ 1/kg, with
kg the wave-vector gap in their dispersion. According to Maxwell viscoelasticity
theory, kg ~ 1/(CTτM) where CT is the high-frequency speed of propagation for shear
waves and τM is the collective Maxwell relaxation time. Panel (a) is created with the
help of ChatGPT.
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This equation is a straightforward 2D adaptation of the original Fren-
kel’s liquid formula for 3D systems (see ref. 6). Despite the elegance of
this formula, its usefulness is questionable since nor τF or ξ are expli-
citly defined and hence they cannot be estimated from simulation or
experimental data.

In order to overcome this problem, we first identify the Frenkel
time with the lifetime of local atomic connectivity, τF = τLC. This is
reasonable since particle hopping in the potential landscape corre-
sponds to local structural rearrangements described in real space by
changes in the short-range topology. We then introduce the mean
squared particle velocity, defined by �v2p =2kBT=m, and rewrite the
expression as:

η=
1

2πξ2
m�v2pτLC : ð2Þ

Toproceed further, weuse that the length-scale ξ is proportional to the
mean interparticle distance, introducing a dimensionless constant δ of
order one:

ξ =
δffiffiffi
n

p , ð3Þ

where n is the number density. Notably, in first approximation, ξ does
notdependon temperature. Substituting this into the expression forη,
we obtain:

η=
1

2πδ2 ρ�v2pτLC , ð4Þ

where ρ =mn is themass density. Finally, we define the prefactor λ ≡ 1/
(2πδ2) to arrive at the compact form:

η= λ ρ�v2pτLC , ð5Þ

with λ being an unknown constant of order unity, encapsulating the
uncertainty in the precise relation between ξ and the interparticle
spacing. Eq. (5) is our final theoretical prediction for the viscosity that
involves only one unknown constant (in temperature and density)
parameter λ.

In summary, we have shown analytically that Eq. (5) is equivalent
to Frenkel’s expression for the liquid viscosity Eq. (1) upon identifying
the Frenkel time with τLC. We notice that, despite the simplifying
assumptions, we are not able to derive the value of λ. Nevertheless, by
invoking phonon dynamics and the identity �v2pτLC � C2

TτM , that has
been directly verified in 2D Yukawa liquid-like fluids23, where CT is the
transverse sound speed, one can speculate that λ ≈ 1.

We also emphasize that expression for viscosity, Eq. (5), relies on
only two parameters: the average particle speed �vp and the lifetime of
local connectivity τLC. The first is a straightforward thermodynamic
quantity, readily obtained from the system’s temperature and particle
mass. The second is easily accessible in simulations (e.g., refs. 9,24).
Moreover, it is experimentally measurable in more macroscopic sys-
tems, such as colloidal and granular fluids (see, for instance, ref. 25).

Before proceeding, we notice that the the application of Stokes’
law to atomistic fluids, and particularly to 2D systems, might be
questionable. For instance, in two dimensions, a logarithmic depen-
dence on system size is generally expected (see, e.g., Eq. (9) in ref. 26).
Despite our use of an inverse proportionality between mobility and
viscosity may be a simplifying assumption, our numerical results (see
below) indicate that any corrections to this relation are small within the
regime of interest. Along these lines, it is important to emphasize that
the very concept of viscosity may be ill-defined in 2D systems due to
the so-called hydrodynamic long-time tails27,28. While a comprehensive
of this issue lies beyond the scope of the present work, we have

conducted an initial analysis in the Supplementary Information (SI), as
shown in Supplementary Figs. 1 and 2. Our findings show no clear
evidence of a 1/t long-time tail in the shear stress autocorrelation
function, nor any significant system size dependence in the viscosity
obtained via the Green–Kubo formalism. These results are consistent
with previous studies29,30, which also found no indication of hydro-
dynamic long-time tails in the shear stress autocorrelation function in
comparable systems. In summary, based on our current analysis,
viscosity appears to be a well-defined transport coefficient in the 2D
systems studied here. Finally, we emphasize that long-time tails are
expected to influence both the definition of the diffusion constant D
and the validity of the Stokes-Einstein relation. Although these quan-
tities do not enter directly into our proposed formula, Eq. (5), it is
important to investigate their role further in future work.

To validate Eq. (5), we perform numerical simulations of 2D L-J,
Yukawa, and OCP systems. In 2D L-J systems31, the interparticle inter-
action ϕðrÞ=4ϵ ðσ=rÞ12 � ðσ=rÞ6

h i
consists of both repulsive and

attractive terms, where ϵ and σ are the energy and distance para-
meters. In 2D Yukawa systems, the interaction between particles is a
screened Coulomb repulsion ϕðrÞ=Q2 exp �r=λD

� �
=4πϵ0r, where λD is

the Debye length and Q is the particle charge. In 2D OCP systems, the
interaction is the classical Coulomb repulsion ϕ(r) = Q2/4πϵ0r. For our
simulated 2D systems under various conditions, the reduced tem-
perature T/Tm is specified from ≥1.1 to 20 atmost. Since the concept of
melting in 2D systems is subtle, in the Supplementary Information we
clarify how the “melting temperature” Tm (used with a slight abuse of
terminology) is defined for the various systems considered. We
emphasize that Tm serves only as a reference scale for normalizing the
temperature axis and does not affect the physical conclusions of
our work.

Besides the temperature T, we also vary the number density n of
2D L-J systems and the screening parameter κ = a/λD of 2D Yukawa
systems, where a is the Wigner–Seitz radius32–36. All simulation details
are provided in the Methods section. Our simulations provide a rather
large sample of 2D fluids with remarkably different particle interac-
tions under various conditions, allowing us to test in detail the uni-
versality of our findings. For more details about the phase diagram of
these systems and the regions explored in our analysis, we refer to
Supplementary Fig. 3 in Supplementary Information. We nevertheless
anticipate that, unless stated otherwise, we always work in the liquid-
like fluid phase.

Our numerical results obtained using the Green–Kubo formalism
are presented in Fig. 2a. Following ref. 37, we present the obtained
viscosity in a dimensionless form η= nmkBT

� �1=2. Interestingly, both
the 2D L-J data and the 2D Yukawa/OCP ones collapse into two uni-
versal curves as a function of the reduced temperature T/Tm. For all
systems, the shear viscosity in the liquid phase decreases with tem-
perature, as expected.

To reveal the fundamental origin of viscosity at the particle level
motion, we calculate the lifetime of the local atomic connectivity τLC

9,38

for the simulated 2D liquids by tracking the neighbors of each particle
(see Methods), as presented in Fig. 2b. By employing the same dimen-
sionless form, τLC= nkBT=m

� ��1=2, all the data collapse into twouniversal
curves as well. We notice the discrepancy between these two curves, as
in the case of viscosity in Fig. 2a, probably due to the attractive con-
tribution to the potential that is present in the 2D L-J systems but absent
in the 2D Yukawa and 2D OCP fluids.

The similarity in the shape of the normalized viscosity and the
normalized local connectivity time is striking, suggesting a direct
relation between these two quantities. In order to investigate this
point, we rewrite Eq. (5) in dimensionless units37,

η

nmkBT
� �1=2 = 2λ

τLC

nkBT=m
� ��1=2

: ð6Þ
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This identity can now be directly tested using the simulation data
presented in Fig. 2a, b. In Fig. 2c, we test directly our proposed
expression Eq. (6) for 2D L-J, Yukawa and OCP fluids. Our numerical
results confirm the validity of Eq. (5) with λ ≈ 1.03 for 2D Yukawa and
OCP fluids, and λ ≈ 1.18 for 2D L-J fluid. As already anticipated, these
values are surprisingly close to λ = 1.

By using the values of λ obtained from simulations, we can esti-
mate the parameter δ in Eq. (3) using λ ≡ 1/(2πδ2). We find δ ≈ 0.39 for
2D Yukawa and OCP fluids, and δ ≈ 0.37 for the 2D Lennard–Jones (L-J)
fluid. This corresponds to ξ ≈0.69 a for 2D Yukawa andOCP fluids, and
ξ ≈0.66 a for the 2D L-J fluid, wherea is theWigner–Seitz radius. These
results confirm that, to a first approximation, ξ coincides with the
Wigner–Seitz radius and is thus proportional to the average inter-
particle distance. This finding will be further supported by the struc-
tural analysis presented below.

In summary, our analysis supports the physical idea that, in 2D
simple liquids, the momentum transport process responsible for the
macroscopic shear viscosity does originate from losing/gaining
neighbors at the individual particle level. Since η/ρ in liquids controls
the diffusive transport of transverse collective momentum, our results
also indicate that this macroscopic dynamical process is associated to
a characteristic microscopic time-scale τLC and a microscopic length-
scale lp = �vpτLC . We also emphasize that Eq. (5) establishes a direct link
between macroscopic dynamics and microscopic particle motion,
providing a fundamental understanding of shear viscosity in liquids at
all scales.

We note that the dynamics of the atomic connectivity network
underlying the definition of τLC merit further attention. An extended
analysis is provided in Supplementary Figs. 4 and 5 in the Supple-
mentary Information (SI), while amore comprehensive study is left for
future work.

Regime of validity of the proposed formula
In Fig. 2, we presented numerical evidence supporting the validity of
our viscosity formula, Eq. (5). However, it is essential to more rigor-
ously delineate the regime in which our theoretical model holds. The
validity of our theoretical model, Eq. (5), has been already clearly
demonstrated in the liquid-like regime of 2D Yukawa fluids in23. Here,
we extend the study of the regime of validity of our viscosity formula
to 2D L-J fluids. To this end, we conducted a complementary analysis

using the L-J system by scanning across the density axis n, from the
dilute limit (n ≈ 0.1) to the dense regime (n ≈ 1), while keeping the
temperature fixed above the critical point, ensuring we remain in the
fluid phase39.

A detailed representation of the regimes of exploration within the
2D L-J phase diagram is provided in Fig. 3a. The background red and
blue colors represent respectively the dilute gas-like regime and the
dense liquid-like fluid phase. The two phases are separated by a
dynamical crossover, that emerges roughly around nc ≈ 0.4 for the
temperature values considered. This dynamical crossover can be dis-
tinguished using several physical observables.

Figure 3b displays the normalized viscosity as a function of den-
sity, revealing aminimum around n = nc, and confirming the boundary
between two regimes with distinct dynamical behaviors and mechan-
isms of viscosity. Support for this separation comes also from Fig. 3c,
where we plot the ratio of the high-frequency transverse velocity CT

(determined by the instantaneous, or high-frequency, shear modulus,
and controlling the propagation of shear waves in the high-frequency
regime,ωτ≪ 1) to the average particle velocity �vp. This ratio transitions
from less than one below nc to greater than one above, consistent with
a dynamical crossover from gas-like to liquid-like behavior (see, e.g.,
Fig. 1 in ref. 23). We also note that nc lies close to the critical density of
the L-J fluid.

We then move to testing the validity of our theoretical model for
the viscosity. Figure 3d shows the ratio between the viscosity com-
puted via the Green–Kubo formalism (ηGK) and our theoretical pre-
diction (ηLC) from Eq. (5). Above the crossover density nc (white
background region), our model yields an excellent estimate of the
viscosity, with the ratio ηGK/ηLC ≈ 1 (horizontal red line). In contrast, for
n < nc, our formula underestimates the viscosity and fails to capture its
density dependence.

So far, we have not identified an exact limiting case for our for-
mula, analogous to the dilute (or high-temperature) limit in kinetic
theory. Nevertheless, we have verified that within the liquid-like
regime, the averaged error of our theoretical estimates consistently
remains between 0.09 and 11.5%, with an average error of 3.91%, for all
these three studied 2D fluids when compared to the numerical data.

In conclusion, our viscosity formula, Eq. (5), accurately describes
the liquid-like regime and breaks down only in the dilute gas-like
phase. While this limitation may appear restrictive, it is important to

1 10
T/Tm

0.1

1

1

10

0.1

Coulomb:L-J: n= 0.80 , 0.85 , 0.90 , 0.95 , 1.00 ; Yukawa: = 0.5      , 1.0      , 2.0       ;

Fig. 2 | Microscopic origin of viscosity as diffusive transport of average particle momentum. a Dimensionless viscosity as a function of reduced temperature.
b Dimensionless local connectivity time as a function of reduced temperature. c Test of the universal formula for viscosity proposed in Eq. (5) of the main text.
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recall that the microscopic origin of viscosity in the gas-like regime is
well captured by kinetic theory and its extensions, such as Enskog
theory and the hard-sphere fluidmodel. In this context, our framework
complements these established approaches by offering a predictive
tool for viscosity and its dependence on temperature and density in
the dense liquid-like fluid regime.

Connecting microscopic particle motion with collective shear
dynamics in fluids
We now take a step back and reconsider the collective shear dynamics
in liquid under Maxwell’s perspective40. CombiningMaxwell approach
with Navier–Stokes equations, it has been shown13,14 that the dynamics
of collective shear waves in liquids are described by the following
telegrapher equation:

ω2 + iω=τM =C2
Tk

2
: ð7Þ

This equation implies that the real part of the shear wave dispersion
relation presents a gap in momentum space,

ReðωÞ=CT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

g

q
, kg =

1
2CTτM

, ð8Þ

where the expression of kg relies onMaxwell viscoelasticity theory (see
ref. 41 for one alternative interpretation). This k-gap feature has been
confirmed in many simulation works (e.g., ref. 42) and also in a few
experimental setups25,43. Most importantly, this result implies that the
propagation of collective shear waves in liquids is confined up to an
elastic length-scale given by l ≡ 1/kg. In other words, one could
construct an idealizedmodel of a liquid as composedof elastic patches
of size l in which the dynamics are solid-like and mainly composed of
quasi-harmonic oscillations localized at the bottom of the potential14

(see Fig. 1d). Beyond this elastic length-scale, elastic forces get
screened, shear stresses are not supported anymore and the dynamics
become liquid-like, i.e. dominated by shear diffusive transport rather
than coherent wave-like excitations as in solids. Moreover, within

Maxwell’s theory, the average size of these solid-like regions shrinks
with temperature, as a direct consequence of τM decreasing rapidly
with T.

Following this idea, one could ask whether this collective elastic
length-scale bears any relation to the particle-level length-scale gov-
erning viscosity, lp = �vpτLC , connecting somehow the macroscopic
Maxwell view with the particle level Frenkel’s description. We notice
that themicroscopic scale lpmight be associated in Frenkel’s picture of
liquid dynamics (see Fig. 1a) to the average length ξ made by one
particle hopping across potential barriers that is directly related to the
viscosity of the system (see Eq. (1)). However, the two length scales
have significantly different temperature dependence. ξ is in first
approximation temperature independent, while lp decreases by
increasing temperature. It would be interesting to conduct a more in
depth analysis about the relation, if any, of these two scales.

In Fig. 4a we present the numerical results for the dispersion
relation of collective shear waves of the 2D Yukawa liquid-like fluids
with κ= 1. Thepresence of a cutoffwave-vector kg is evident and its size
growswith temperature, as expected. By tracking the position atwhich
ReðωÞ ! 0, we are able to derive the temperature dependence of kg. A
similar analysis has been performed for the 2D L-J liquid-like fluids and
the corresponding results are presented in Fig. 4b.

Finally, in Fig. 4c, we plot the dimensionless cutoff wave-vector
kga as a function of the dimensionless inverse length-scale a/lp, with
lp = �vpτLC . For all the systems considered, we find a universal linear
relation:

kg =βl
�1
p , ð9Þ

where β is a constant of order one: β ≈ 0.88 for 2D L-J systems and
β ≈ 0.98 for 2D Yukawa and OCP systems.

This result implies a direct proportionality between the elastic
length-scale l � k�1

g , relevant for collective shear dynamics, and the
microscopic length-scale lp = �vpτLC that governs the macroscopic
shear viscosity through Eq. (5). It also suggests that the propagation of
collective shear waves in liquids is hindered by local configurational

Fig. 3 | Gas-like to liquid-like transition and the validity of the proposed visc-
osity formula. a Studied 2D L-J system at constant temperature. The colored
symbols indicate the constant-temperature scans in the fluid phase. The back-
ground colors show the dynamical crossover (white) between the dilute gas-like
phase (red) and the dense liquid-like fluid phase (blue). b Normalized viscosity as a

function of the density at constant temperature. c Ratio of the high-frequency
transverse speed of sound CT to the average particle speed �vp as a function of
density. d Ratio between the viscosity obtained numerically using the Green–Kubo
formalism (ηGK) and our theoretical formula Eq. (5) (ηLC) as a function of density n.
The same background color scheme is used in all panels.
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excitations that drive structural rearrangements within the nearest
neighbor cage. Furthermore, it is important to stress that, despite a lot
of discussions in the past13,14, a formal connection between Frenkel’s
ideas and k-gap theory has never been achieved before. In fact, despite
k-gap theory was strongly motivated by Frenkel’s intuition, the rele-
vant timescale has been always identified with the collective Maxwell
relaxation time that, in first approximation, bears no connection with
the microscopic Frenkel’s time. Eq. (9) provides the missing link
between collective shear dynamics, as envisaged by k-gap theory, and
microscopic particle hops à la Frenkel, formalized using the concept of
local connectivity time proposed by Egami. Motivated by this obser-
vation, we proposed that the length-scale associated to the k-gap
should not be associated to the Maxwell length-scale lm = CTτM but
rather to the particle length-scale lp, in better alignment with Frenkel’s
initial proposal.

Structural model of viscosity
So far, we have succeeded in connecting the local connectivity time
with themacroscopic shear viscosity and showed that the length-scale
associated to it aligns (up to an order one constant) with the propa-
gation length of collective shear waves in liquids. In Frenkel’s liquid
description6, fluidity and viscosity arise from particles’ hopping over
potential barriers, as depicted in Fig. 1c. The average hopping time τF
can be expressed as τF = τ0 expðΔG=kBTÞ, where ΔG is the potential
energy barrier, while τ0 is the corresponding time in the limit of very
high temperatures.

From a structural point of view, a particle hopping over a single
potential barrier corresponds to a re-arrangement of its cage or its
neighbors. We have therefore advanced the idea that the single par-
ticle Frenkel time should be taken to coincide with τLC. This idea is also
supported by the validity of Eq. (9) that has been directly verified in
Fig. 4. Following this hypothesis, the energy barrier ΔG should corre-
spond to the energy for one particle hopping outside the cage formed
by its neighboring particles. As a result, the pair correlation function
g(r) should encode the information about ΔG.

In Fig. 5a, we plot the calculated g(r) and the corresponding
effective potentialwðrÞ=kBT = � lnðgðrÞÞ2 for a typical 2DL-J liquidwith
n = 1 and T/Tm = 5. We propose that the energy barrier ΔG governing
the hopping of individual particles in the Frenkel description of liquids
is given by

ΔG � Δw= kBT ln gðrÞmax=gðrÞmin

� �
, ð10Þ

wheremax andmin correspond respectively to the position of the first
maximumand firstminimum in g(r). Themagnitude ofΔG in Eq. (10) is
represented with the vertical black arrows in Fig. 5a.

We then calculate expðΔw=kBTÞ= gðrÞmax=gðrÞmin for different 2D
liquids under various conditions and present these results as a func-
tion of the reduced temperature in Fig. 5b. These obtained data points
for expðΔw=kBTÞ collapse into twouniversal curves andpresent similar
variation trends as those for η and τLC in Fig. 2, clearly indicating the
strong correlations between these three physical quantities.

To further elucidate this connection, in Fig. 5c we plot the
dimensionless local connectivity time as a function of exp Δw=kBT

� �
.

We find that these quantities present a robust linear relation inde-
pendently of the thermodynamic conditions, i.e. the valueofT/Tm. This
suggests a simple and striking relation between the local connectivity
time and the short-range structural properties of liquids that can be
formalized as

τLC = τ0 exp
Δw
kBT

� �
= τ0

gðrÞmax

gðrÞmin
: ð11Þ

Additionally, our numerical analysis points to a simple and natural
definition for the timescale τ0. In particular, we find that
τ0 = γ nkBT=m

� ��1=2, where γ is just the slope of the linear fitting in
Fig. 5c, i.e., γ ≈ 0.181 for 2D L-J liquid-like fluids while γ ≈ 0.201 for 2D
Yukawa and OCP liquid-like fluids. Importantly, despite τ0 scales with
temperature as 1=

ffiffiffiffi
T

p
, mirroring the temperature dependence of the

collision time in kinetic theory, its physical interpretation is totally
different and cannot be rationalized within ideal kinetic theory. We
notice that the empirical expression obtained for τ0 can be further
simplified to relate this timescale to other fundamental quantities. In
particular, by using the relation between the density n and the
Wigner–Seitz radius a, and by assuming an approximate value of γ
extracted from simulation data, one can infer that τ0 � a=ð2�vpÞ and
ξ �

ffiffiffi
2

p
�vpτ0. Interestingly, these findings are consistent with Frenkel’s

interpretation (see page 200 in ref. 6), which states that τ0 is roughly
the time required to travel a distance ξ at the thermal velocity vth.

The correction coming from gðrÞmax=gðrÞmin in Eq. (11) takes into
account the short-range and mid-range correlations that become
important in the liquid state upon decreasing temperature. This term
indeed vanishes if the pair correlation function loses its first peak and
first valley, as expected in the ideal gas state. It is immediate to verify
that the parameter γ is related to λ in Eq. (5) via
λ= 1=ð4πn�v2pτ20Þ= 1=½8π ðτ0 nkBT=m

� �1=2Þ2�= 1=ð8πγ2Þ by substituting

Fig. 4 | Bridging collective shear dynamics to particle-levelmotion. a Spectra of
transverse modes in a 2D Yukawa liquid-like fluid with κ = 1, and the corresponding
dispersion relation marked as dots. Frequencies are normalized by the nominal
dusty plasma frequency ωpd � Q2=2πmϵ0ma3

	 
1=2
49, while wave-vectors are nor-

malized using the Wigner–Seitz radius a. The obtained dispersion relations under

different reduced temperatures are presented in the inset. b Same analysis for 2D
L-J liquid-like fluids with particle density n = 1 at different reduced temperatures
T/Tm. c Universal linear relation between the dimensionless cutoff wave-vector kg
and the inverse dimensionlessmicroscopic length-scale lp = �vpτLC . The slopesof the
two fitting lines are ≈ 0.98 and 0.88, respectively.
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the derived ξ �
ffiffiffi
2

p
�vpτ0 above into Eq. (2), as obtained by directly

numerical comparison.
One cannow re-write the formula for the viscosity in the following

form

η =
m

4πτ0

gðrÞmax

gðrÞmin
, ð12Þ

in termsof themass of eachparticlem, the high-temperature timescale
τ0, and the pure short-range structural information based on the pair
correlation function g(r).

Equation (12) completes in a sense Eyring’s expression,
η=A exp ΔG=kBT

� �
7, by providing a clear definition of the pre-factor A

and the energy barrier ΔG. Indeed, in 2D liquids, in view of our results

A � m
4πτ0

, ΔG=Δw= kBT ln gðrÞmax=gðrÞmin

� �
: ð13Þ

In fact, A = m/(4πτ0) is just the viscosity at high temperatures, i.e.
approaching the gas-like state, and the potential barrier ΔG is directly
defined from the short-range order properties of the liquid.

After proving that the energy barrier governing liquid viscosity is
the one between the firstmaximumand firstminimum in g(r), it comes
naturally to identify the distance between these two as the length-scale
ξ associated to the potential hops in Frenkel’s description of liquid
dynamics. To confirm this hypothesis, we have computed the pair
correlation functions g(r) for 2D Yukawa and L-J fluids in a wide range
of conditions, as presented in Fig. 6a, b.

We have then computed the distance Δ between the first peak
and first valley in g(r) as a function of the reduced temperature T/Tm,
as presented in Fig. 6c. Interestingly, when normalizing Δ using the
Wigner–Seitz radius a, we find that this length-scale is approximately
constant in temperature, showing mild deviations only at low tem-
peratures. For both systems, we find that Δ ≈ 0.87a. Using the values
of δ from Eq. (3), we find that ξ ≈ 0.79Δ for the 2D Yukawa and OCP
systems, and ξ ≈ 0.76Δ for the 2D L-J fluid. These results support the
notion that the length scale ξ in Frenkel’s framework is temperature-
independent and determined solely by the density n, which remains
constant in Fig. 6. Moreover, they confirm that ξ can, to a good
approximation, be identified with Δ as defined from structure. This

reinforces the idea that ξ is effectively set by the average interparticle
distance, consistent with the trends shown in Fig. 6c and with the
assumption made in deriving Eq. (5).

Finally, it is worth noting that in the high-temperature regime,
Eyring proposed a simple expression for viscosity, η = nh44, where h is
Planck’s constant and n the particle number density. By invoking the
uncertainty principle, ΔxΔp = h, and identifying the relevant length
scale with themicroscopic length-scale lp and themomentumwith the
average particlemomentum, this expression reduces to our prediction
in the high-temperature limit where τLC = τ0.

Moreover, it is interesting to compare the high-temperature limit
of our viscosity formula η = A with the expression from ideal kinetic
theory, η2D

kin =
1
2nmhvi lmfp, where 〈v〉 is the average particle speed and

lmfp is the mean free path. The average speed is given by 〈v〉2 = πkBT/
(2m), derived by averaging over the two-dimensional Maxwell-Boltz-
mann distribution. To first approximation, in 2D systems, the mean
free path is given by lmfp = 1=ð2

ffiffiffi
2

p
naÞ, where n is the 2D areal number

density of particles and a is the Wigner–Seitz radius. Putting these
together, the kinetic theory expression for viscosity in two dimensions
becomes:

η2D
kin =

ffiffiffi
π
2

p
m�vp
8a

� 0:63
m�vp
4a

: ð14Þ

On the other hand, using that γ = 0.18 for the 2D Lennard–Jones sys-
tem, and γ = 0.20 for the 2D Yukawa and OCP systems, our analysis
yields:

A � 0:72
m�vp
4a

for the 2D Lennard� Jones system , ð15Þ

A � 0:65
m�vp
4a

for the 2D Yukawa and OCP systems : ð16Þ

Thus, A shares the same functional form as the ideal kinetic theory
expression for viscosity, and the numerical prefactors agree within 3%
for the Yukawa and OCP systems, and within 12% for the 2D
Lennard–Jones system. This level of agreement is expected to be
better for systems without attractive interactions, such as Yukawa and
OCP models. It is worth noting that the kinetic theory formula used

Fig. 5 | Structural definition of the local connectivity time. a Calculated pair-
correlation function g(r) of a 2DL-J liquid (red line) and the corresponding effective
potential w(r)/kBT (blue dashed line). The vertical black arrows indicate the
potential differencebetween thefirstmaximumandfirstminimumthat is identified
with the potential barrier ΔG in Frenkel’s description, Eq. (10). b The temperature

dependence of the potential factor exp Δw=kBT
� �

as a function of the reduced
temperature T/Tm for the various systems studied. c The universal linear relation
between the dimensionless local connectivity time τLC= nkBT=m

� ��1=2 and
exp Δw=kBT

� �
for all systems considered.
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here is the ideal version, where collision integrals are taken as unity, as
in the case of perfectly rigid particles with no interactions. It is possible
that incorporating approximate collision integrals within the
Chapman-Enskog formalismcould further improve thematchbetween
our expression and kinetic theory, extending the latter slightly beyond
the ideal limit.

We note that the same surprising agreement with the expression
from kinetic theory was already remarked upon in Frenkel’s book
(page 200 in ref. 6), where it is stated: “It is interesting to note, however,
that the magnitude of the viscosity coefficient which follows from our
theory in the case of high temperatures lies very close to that which is
obtained in the usual way from the kinetic theory of gases.” Our results
in 2D are fully consistent with this observation.

Despite the interesting agreement with kinetic theory that emer-
ges in the high-temperature limit, where τLC = τ0, we emphasize that
the physical principles underlying our formula are fundamentally dif-
ferent from those of kinetic theory. In particular, particle dynamics are
not assumed to be collisional, ξ does not represent a mean free path,
and τ0 is not a collision time.

Discussion
In this work, we have considered the long-standing problem of
deriving a microscopic and predictive formula for the shear visc-
osity of 2D simple fluids, a notorious challenge that can be sum-
marized by the famous Landau argument that is “impossible to
derive any general formulae giving a quantitative description of the
properties of a liquid”45. Our findings prove that, in the dense liquid-
like regime, an approximate microscopic formula for the viscosity
can be found, in excellent agreement with the simulation data in
several systems characterized by profoundly different particle
interactions. In fact, our microscopic formula for the viscosity has
been achieved not only at the particle level motion, but also from
direct information of the short-range structural correlation of the
liquid, which is encoded in its pair correlation function. Our derived
viscosity equation connects the microscopic motion of particles,
the macroscopic dynamics of collective shear waves, and the liquid
structure of g(r).

Our formula does not contradict Landau’s well-known argument, as
it is not universally valid and breaks down in the dilute, gas-like regime.
Nevertheless, it offers a useful and complementary framework to
established theories such as Enskog theory and the hard-sphere fluid
formalism, which are more appropriate for describing dilute systems.
Importantly, our results complete three of the most successful frame-
works to describe liquid dynamics and viscosity: Frenkel’s theory,
Maxwell’s theory, and Eyring’s theory. First, we propose and confirm the
idea of identifying the microscopic Frenkel’s time with the lifetime of
local connectivity. Second, we find that the elastic length-scale below
which collective shear waves propagate in liquids according to Maxwell
model and k-gap theory can be directly connected to a single particle
length-scale governing the diffusive transport of particle’s momentum.
Finally, we provide a precise definition of the undetermined parameters
in Eyring’s formula for viscosity and in particular we propose a simple
method to obtain the hopping potential barrier from the short-range
properties of the pair correlation function.

Do similar simple arguments apply to 3D liquids?Do our formulae
provide an accurate estimate of the shear viscosity also for complex
liquids and glass forming systems? This remains to be seen.

Methods
Simulation method for 2D simple liquid-like fluids
We perform equilibrium molecular dynamics (MD) simulations of 2D
Lennard–Jones (L-J), Yukawa, and Coulomb one-component plasma
(OCP) liquid-like fluids. For all these three simple liquid-like fluids, the
equation of motion for each particle is

m€ri = � ∇Σϕij , ð17Þ

where − ∇ Σϕij is the particle-particle interaction, while ri is the
position vector for the i-th particle. In our current, we always simulate
N = 4096 particles constrained in a 2D simulation box with the length
ratio of Lx : Ly =2 :

ffiffiffi
3

p
with periodic boundary conditions.

For each simulation run, first we integrate the equation of motion
for all particles with a thermostat for N1 steps, so that the simulation
system reaches the specified conditions. Then, we turn off the
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Fig. 6 | Structural characteristics of atomic hopping.Calculated pair correlation functions g(r) of 2D Yukawa (a) and L-J (b) fluids under various conditions, as well as the
distance Δ between the first peak and first valley of g(r) (c).
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thermostat to integrate the equation of motion for the next N2 steps,
and the obtained data are used for the data analysis presented in the
main text. In our simulations, we specify the reduced temperature
value T/Tm, where T is the temperature of the simulated 2D system,
while Tm is the corresponding melting point. Also, we truncate the
interparticle potential at rc to ensure that the potential energy of the
simulation system does not change significantly with the increase of rc
any more. We also verify that, for each simulation run, our time step is
always chosen to be small enough, so that energy conservation is
adequately obeyed.

2D L-J fluids
For 2D L-J liquids, the interparticle interaction is

ϕðrÞ=4ϵ ðσ=rÞ12 � ðσ=rÞ6
h i

, ð18Þ

where ϵ and σ are the energy and distance parameters. Here, we nor-
malize the length and time using σ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
, respectively. In our

simulations of 2D L-J liquids, we specify the values of both the number
density n =N=A0 and the reduced temperature T/Tm, where A0 is the
area of the simulated box.

Here are other simulation details. In our simulations, the number
density are specified as n = 0.8, 0.85, 0.9, 0.95, and 1.00. For each
specified value of n, we vary the reduced temperature T/Tm from 2 to
20. Note, we choose the melting points of 2D L-J systems Tm for dif-
ferent n values from39. In our 2D L-J simulations, the cutoff radius is
chosen as rc = 2.5σ, while the corresponding integration steps are
specified as N1 = 2 × 106 and N2 = 109, respectively.

2D Yukawa fluids
For 2D Yukawa liquid-like fluids, the interparticle interaction is the
Yukawa repulsion

ϕðrÞ=Q2 exp �r=λD
� �

=4πϵ0r, ð19Þ

where λD is the Debye length and Q is the charge on each particle.
Besides the reduced temperature T/Tm, we also use the screening
parameter κ = a/λD to characterize the simulated 2D Yukawa liquid-
like fluids.

In order to mimic the conditions of most 2D dusty plasma
experiments, we vary the κ value from 0.75 to 2. For each κ value, we
vary the value of the reduced temperature T/Tm from 1.11 to 10, where
the values for the melting point Tm are taken from ref. 46. In our 2D
Yukawa simulations, the cutoff radius is chosen as rc = 22a, less than
one half of each side of the simulation box. The integration steps are
specified as N1 = 1 × 107 and N2 = 108, respectively.

2D Coulomb OCP fluids
For 2D Coulomb OCP liquid-like fluids, the interparticle interaction is

ϕðrÞ=Q2=4πϵ0r: ð20Þ

Unlike 2D L-J and Yukawa liquid-like fluids above, the interaction
between particles in 2D Coulomb OCP liquid-like fluids is long-range.
To avoid the Ewald summation47, we use the approximate potential48

ϕðrÞ= Q2

4πε0

erfcðα1rÞ
r

� erfc α1rc
� �
rc

+
�

erfc α1rc
� �
r2c

+
2α1ffiffiffiffi
π

p exp �α2
1 r

2
c

� �
rc

 !
r � rc
� �#

,

ð21Þ

where α1 is the “damping” parameter, rc is the cutoff radius, and erfc()
is the complementary error function. From previous studies, the
choice of α1 = 0.2 enables the energy and forces of the simulated
system to quickly converge to the long-range Coulomb system. In our
2D Coulomb OCP simulations, we choose α1 = 0.2 and rc = 10a,

respectively. Other simulation details are the same as those for 2D
Yukawa simulations described above.

Lifetime of local connectivity from simulations
In our current, to calculate the lifetime of local connectivity τLC of our
simulated 2D liquid-like fluids, we need to track the neighbor list of all
particles at eachmoment. For each studied particle i, its neighbors are
defined as its pairing particle j with their distance rij less than the
separation of the first minimum of the radial distribution function
g(r)9,38. For example, in the initial configuration, there are N(t0)
neighbors for the studied particle i. As the time goes from the initial
time t0 to t0 + t, the neighbors of the studied particle i change, i.e.,
some of the initial neighbors are not its neighbors any more. We may
use N(t0 + t) to label the number of the initial neighbors which are still
its neighbors at the time of t0 + t. Thus, the lifetime of local con-
nectivity τLC is defined as the time duration, relative to t0, for the
number of initial neighbors falls by 1 in the ensemble average, i.e.,
Nðt0Þ
� 
� Nðt0 + tÞ

� 

= 19,38, for all studied particles and varying the

different initial times of t0. In fact, if one neighbor leaves the studied
particle i for a while, then comes back as a neighbor again, it is still
regarded as a new neighbor for the studied particle i. In summary, τLC
can be regarded as the averaged time for the first of the initial neigh-
bors of one particle i goes beyond the distance of the first minimumof
g(r), i.e., the coordination number falls by 138, or equivalently a new
particle enter the range of one particle iwithin the distance of the first
minimum of g(r) while none of the initial neighbors goes beyond. An
extended analysis of the atomic connectivity networkdynamics can be
found in Supplementary Figs. 4 and 5 in the Supplementary
Information.

Data availability
All data that support the findings of this study are present in the paper
and the Supplementary Information. Any additional information may
be available from the corresponding authors upon request. Source
data are provided with this paper.

Code availability
The simulation codes that support the findings of this study are pre-
pared using LAMMPS, and are available at https://github.com/
HDDDSSAAw/Atomistic-mechanisms-of-viscosity-in-2D-liquid-like-
fluids/tree/main.
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