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C > U mutations generate immunogenic
peptides in SARS-CoV-2

Gergő Mihály Balogh1,2,3 , Balázs Koncz1,2, Leó Asztalos3, Eszter Ari1,4,5,6,
Nikolett Gémes7, Gábor J. Szebeni7,8, Benjamin Tamás Papp1,2,3,
Franciska Tóth 1,2,9, Balázs Papp1,4,6,10, Csaba Pál 1 &
Máté Manczinger 1,2,3

The rapid spread of SARS-CoV-2 worldwide has given rise to numerous var-
iants. While the impact of viral mutations on antibody escape has been
extensively studied, an unresolved issue concerns how emerging mutations
shape HLA-restricted T-cell immune responses. Here, we analyse SARS-CoV-2
genomic variants, showing that 27% of the mutations are C > U transitions, a
phenomenon common in human RNA viruses and primarily attributed to
APOBEC3 enzyme-driven mutagenesis. We find that this mutation bias gen-
erally enhances viral peptide binding to human leukocyte antigen class I (HLA-
I)molecules, producing immunogenic epitopes that trigger cytotoxic adaptive
immune responses in most individuals across diverse populations. We also
identify several HLA-I variants that are especially well-suited for presenting
viral epitopes generated by these mutations. Intriguingly, individuals carrying
these specific alleles are predominantly located in South and East Asia. Finally,
we show that carrying HLA-I molecules that are less likely to bind C > U-
induced viral peptides increases risk for severe COVID-19 disease. Our work
suggests a link between C > U hypermutation and HLA-I-based presentation of
viral epitopes, which may reflect the evolutionary outcome of ancient RNA
virus pandemics. More broadly, our findings imply that SARS-CoV-2 diversifi-
cation leads to ongoing gains of T-cell epitopes despite natural selection
favouring immune escape.

Since the onset of the COVID-19 pandemic, the SARS-CoV-2 virus has
accumulated mutations, which shape its ability to spread, enter cells,
replicate and evade the immune system1–3. It is well-established that
some of these viral mutations hinder the binding of antibodies to viral
proteins, and thereby generate immune escape variants1,4. Emerging
mutations also affect the CD8+ T cell-mediated immune responses,

but their overall impact onHLA-I-associatedpeptide presentation have
been a subject of debate. Agerer et al. found that certain mutations
prevent the binding of viral peptides to HLA-A*02:01, a prevalent allele
in the Caucasian population5. In another study, Stanevich et al.
reported the case of a non-Hodgkin’s lymphoma patient who received
rituximab, leading to a lack of neutralizing antibodies, but still had
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functional CD8 +T cell-mediated immunity6. During the more than
three hundred day-long course of her infection, 40 different nucleo-
tide mutations were detected in her viral samples, many of them
leading to decreased HLA-I binding of viral peptides. At the same time,
Hamelin et al. showed that mutations modify HLA-binding in an HLA-
supertype-dependent manner7. The authors found that HLA-B*07
alleles generally bind mutated SARS-CoV-2 peptides less effectively.
While the study focused on this potential immune escape in HLA-B*07-
positive individuals, the opposite trend was reported for several other
supertypes. Moreover, Pretti et al. showed, that some HLA-B variants
bind mutant viral epitopes more effectively. For instance, individual
mutations like SpikeN501Y andNucleocapsidD138Ywerepredicted to
exhibit a stronger affinity for HLA-I than the reference sequence across
diverse human populations8. The discrepancies in these findings may
be attributed to the limited range of viralmutations andHLA-I variants
examined.

In this study, our objective was to systematically investigate the
global impact of viral mutations on HLA-I-associated T-cell immunity.
To achieve this goal, we examined the dominating mutational patterns
in SARS-CoV-2 evolution. In line with previous research9–11, we found
that C > U transitions dominate the mutational landscape. We
demonstrate that these mutations result in amino acid substitutions in
SARS-CoV-2 proteins that generally exhibit stronger binding to com-
monHLA-I alleles than the original sequences. As a result, themutation-
driven diversification of SARS-CoV-2 leads to ongoing gains of T-cell
epitopes in most individuals across the globe. These findings bear
clinical implications, as patients carryingHLA-I alleles that are less likely
to bind C>U-related viral peptides exhibit a higher risk of severe
COVID-19 upon infection. The results indicate a functional connection
between mutagenic processes in SARS-CoV-2 and HLA-I-mediated viral
epitope presentation, suggesting their synergistic effect on the adap-
tive immune response to coronavirus infection over evolutionary time
scales. This connection may reflect selective pressure favoring HLA-I
variants that efficiently present peptides generated byC>U transitions.

Results
C>U mutations enhance HLA-binding
To gain insight into the mutations acquired by SARS-CoV-2 during the
pandemic, we examined the relative frequency of nucleotide sub-
stitutions using data acquired from the Nextstrain database. Impor-
tantly, this database employs a downsampling approach to mitigate
the overrepresentation of samples from certain geographical regions,
leading to a dataset with a seemingly modest size of 3389 strains, but
with a balanced spatiotemporal distribution12,13. In addition, the data-
set contains the phylogenetic relationship of these SARS-CoV-2 iso-
lates, allowing us to track the progression of mutations along
evolutionary trajectories. In accordance with previous results9,10,14–16,
we found the dominance of C > U nucleotide substitutions (n = 2601,
27.4%) in the set of 9493 unique mutations compared to the reference
Wuhan Hu-1 strain (NC_045512, Fig. 1A). We restricted our subsequent
analyses to the five types of nucleotide substitutions that reached at
least 10% among unique mutations (C >U, n = 2601, 27.4%; uracil to
cytosine [U >C]: n = 1551, 16.3%; adenine to guanine [A >G]: n = 1359,
14.3%, guanine to uracil [G >U]: n = 1133, 11.9%; guanine to adenine
[G > A]: n = 1112, 11.7%).

Next, we determined the average number of each nucleotide
substitution type in the isolated samples in a monthly breakdown
(Fig. 1B). As expected, a significantly higher number of C >U thanother
mutations accumulated in SARS-CoV-2 genomes (reaching an average
of 44.86 in viral strains by September 2024; standard deviation: 2.1).
Importantly, this accumulation of C >U mutations was also evident
when analyzing mutation events along evolutionary trajec-
tories (Fig. 1C).

Next, we selected missense mutations from our dataset and
generated all overlapping 8–11 amino acid long peptide sequences

containing the mutated amino acid. Using the NetMHCpan-4.0
algorithm17, we predicted the binding of each mutated and original
peptide to a set of 43 common HLA-I alleles that cover 95% of the
human population18,19. For each mutation and HLA allele, we deter-
mined whether the mutation increased or decreased the total number
of bound peptides to the given allele. Then, for each HLA allele, we
counted the number of mutations resulting in a higher or lower
number of boundpeptides.We found thatC >Umutations are likely to
increase peptide binding for 37 of the 43 common HLA-I alleles
(Fig. 1D, P-value of paired Wilcoxon’s signed-rank test: 3.93 × 10−6).
Importantly, C >Umutations were associated with the largest increase
of bound peptides, followed by G >Umutations with a significant, but
much lower effect.

We also examinedmutational patterns using a separate, extensive
dataset derived from the UShER phylogenetic tree, incorporating
approximately 7 million publicly available SARS-CoV-2 genomic
samples20. Consistent with the findings from the Nextstrain dataset,
C >Umutations were observed on the highest number of independent
branches (Supplementary Fig. 1A) and were the most predominant
sources of novel HLA-I-bound peptides (Supplementary Fig. 1B, see
Methods for details).

Next, we focused on immunologically relevant regions of SARS-
CoV-2 acquired from the Immune Epitope Database (Supplementary
Fig. 2A, see Methods for details). We found the same positive effect of
C >Umutations on HLA-binding. Moreover, similar trends were found
for rubella, another positive single-stranded RNA virus (Supplemen-
tary Fig. 2B), which suggests that the phenomenon is not specific to
SARS-CoV-2. Notably, the positive effect of C >U mutations on HLA-
binding remained consistent regardless of the specific nucleotide
context (Supplementary Fig. 3).

Specific amino acid substitutions are responsible for increased
HLA-binding
HLA molecules bind specific amino acids at anchor positions of the
mutated peptides. To identify amino acid substitutions that drive
enhancedHLAbinding, we summarized the number of different amino
acid substitutions resulting from C > U nucleotide changes in our
dataset (Fig. 1E). Threonine > isoleucine (T > I, n = 332 substitutions,
25.2%) and alanine > valine (A> V, n = 265 substitutions, 20.0%) were
the most frequent substitutions, followed by proline > serine (P > S,
n = 152 substitutions, 11.6%) and leucine > phenylalanine (L > F,
n = 136 substitutions, 10.3%). As in the previous analysis, for each
amino acid substitution, we determined the number of mutations
resulting in the gain or loss of HLA-bound peptides. The trends were
dominantly positive for the mentioned substitutions except for a few
HLA allele–substitution pairs, like HLA-B*07:02 and P > S or P > L; and
HLA-A*02 alleles and L > F (Fig. 1H and Supplementary Fig. 4).

Next, we aimed to identify biochemical properties of mutated
amino acids that could explain the increased HLA-binding of peptides
carrying C >U mutations. A previous study found that C >U substitu-
tions in SARS-CoV-2 frequently cause amino acid changes resulting in
elevated levels of hydrophobicity9. We found the same tendencies
when focusing on changes in the Kyte-Doolittle hydrophobicity index
after C >U mutations21,22. Among common substitutions, the mutated
amino acids had higher hydrophobicity compared to the original ones
(Fig. 1G) except for L > F, which led to a slight decrease. Notably, it was
reported that many common HLA-I supertypes are specific to hydro-
phobic amino acids in anchor positions23. To test how general this
trend is, we quantified the specificity of each HLA-I allele for different
aminoacids, usingpublished immunopeptidomicsdata.We found that
most HLA-I variants preferentially bind epitopes enriched in hydro-
phobic amino acids (Spearman’s ρ = 0.76, two-sided correlation test
P = 1.62 × 10−4, Fig. 1F). In summary, the results suggest that the
increased HLA-binding of C >U-related peptides is driven by the
increased hydrophobicity of mutated amino acids and the overall
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Fig. 1 | C >U mutations increase HLA-binding. A Frequency of nucleotide sub-
stitutions in unique mutations. The dashed red line represents 10%, above which sub-
stitution types were further examined. B The average number of different nucleotide
substitutions in isolated strains relative to theWuhanHu-1 reference strain is shownon
a quarterly basis (number of samples are shown in Source Data Table 3). The standard
deviation values are also indicated. The frequency of C>U mutations has been sig-
nificantly higher compared to other nucleotide changes from 2020 till September
2024. Asterisks indicate a significantly higher prevalence of C>Umutations vs. others
according to Kruskal-Wallis tests (P<0.05) andDunn’s post-hoc tests (specific P values
are shown in SourceData Table 3).CAccumulation of specific nucleotide substitutions
in thephylogenetic trajectories of SARS-CoV-2. The vertical axis represents the number
of substitutions in each strain isolated at a given time point (the latter is shown on the
horizontal axis). Nodes and leaves represent common ancestors and isolates, respec-
tively, while edges represent phylogenetic relationships. Note that the transparency of
edges has been increased for visualization purposes. D The effect of different
nucleotide substitutions onHLA binding. The number ofmutations associatedwith an
increased or decreased number of bound peptides is indicated. Each point pair
represents values belonging to a given HLA allele (n=43). E Prevalence of different
amino acid substitutions in the unique C>U mutation pool. The red dashed line

represents 5% relative frequency, abovewhich theaminoacid substitution-specificHLA
binding results are shown on panel (H). FMedian specificities of frequent HLA-I alleles
towards individual amino acids. For each amino acid–HLA allele pair, we calculated the
sumof aminoacidbit scoresderived fromsequencebindingmotifs, using this sumasa
proxy for the allele’s specificity toward that amino acid. The median specificity across
41 frequentHLA-I alleleswas then calculated for each aminoacid andvisualized. Amino
acids on the vertical axis are ordered according to their corresponding Kyte-Doolittle
hydrophobicity values. Spearman’s ρ and the two-sided correlation test P-value is
shown.G The change in Kyte-Doolittle hydrophobicity is indicated for different amino
acid substitutions associated with C>U mutations. Red and blue colors indicate
increased and decreased hydrophobicity, respectively. H The number of mutations
associated with the gain or loss of bound peptides is indicated for each amino acid
substitution. Each point pair represents values belonging to a givenHLA allele (n=43).
On panels (D and H), FDR-corrected P values of two-sided paired Wilcoxon’s signed-
rank tests are shown. In these panels, blue color indicates that the allele is associated
withbindinggain formoremutations thanbinding loss.Theopposite trend is indicated
in red color. In boxplots (panels D and H), horizontal lines indicate median, boxes
indicate interquartile range, and vertical lines indicatefirst quartile – 1.5 × IQRand third
quartile + 1.5 × IQR. Source data are provided in the Source Data file.
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higher specificity of HLA-I molecules to hydrophobic residues. This is
further supported by the pattern observed for L > F substitutions,
which account for 10.3% of C >U-related amino acid substitutions.
Unlike other substitutions, they are not associatedwith increasedHLA-
binding as they lead to a slight decrease in hydrophobicity (Fig. 1G, H).

Alongside C >U mutations, G >U mutations also contribute to
amino acid changes in epitopes that enhance their binding affinity to
HLA-I molecules. However, we did not observe a consistent increase in
hydrophobicity among these amino acid substitutions, suggesting that
alternative mechanisms may underlie the generation of novel HLA-
bound peptides in this mutation type (Supplementary Fig. 5).

C > Umutations increase the number of HLA-bound peptides in
most individuals
We next sought to assess the impact of C >U mutations on HLA
binding when considering the HLA genotypes of individuals in the
population. Similarly to a previous report7, we found that some com-
mon HLA variants (HLA-A*30:01, HLA-A*31:01, HLA-A*33:01, HLA-
B*07:02, HLA-B*27:05, HLA-B*35:01, HLA-B*53:01) are less likely to bind
viral peptides produced by C >U mutations (Supplementary Fig. 6).
However, the potential negative effect of these variants might be
counterbalanced by others at the level of individual genotypes. To test
this, we examined the HLA-I genotypes of 2599 participants (Supple-
mentary Table 1) involved in the 1000 Genomes Project24. This dataset
offers a comprehensive characterization of human genetic variation,
sampling from 26 populations across five continents. For each indivi-
dual, we calculated the average number of peptide-HLA complexes
lostor gainedwhen aC >Umutation is generated. Specifically, for each
C >Umutation in our previous analysis, we determined the number of
peptide-HLA complexes formed with the original and the mutated
peptides. We then subtracted the number of original complexes from
the number of mutated ones and calculated the mean of these
mutation-specific values. To assess the individual contribution of each
HLA locus, we performed independent analyses on the HLA-A, HLA-B,
and HLA-C loci. The HLA-B locus showed the highest variability: ~ 30%
of the individuals were predicted to lose peptide-HLA complexes after
acquiring C >Umutations (Fig. 2A and Table 1). At the same time, HLA-
A and HLA-C loci were associated with an increase in the number of
predicted peptide-HLA complexes in most individuals. Moreover,
when we considered all loci, C >U mutations had a positive effect on
peptide binding inmore than 99% of individuals worldwide. This result
suggests that the negative effect of specific HLA-I alleles is compen-
sated by others on the genotype level of individuals.

We next investigated whether the continuous accumulation of
C >Umutations in SARS-CoV-2 samples increased the number of HLA-
bound peptides, considering the complete HLA-I genotypes of indivi-
duals. For this purpose, we tracked viral substitutions along evolu-
tionary trajectories and assessed their average impact on HLA binding
in the analyzed individuals. Reassuringly, we observed a temporal
increase in the number of HLA-bound peptides compared to the initial
viral isolate (Fig. 2B), a trendpotentially explainedby the accumulation
of C >U mutations (Fig. 2C).

We next aimed to identify geographical regions where individuals
carry HLA-I variants with particularly high gains of HLA-bound pep-
tides (Fig. 2D). We used a linearmixedmodel to compare HLA binding
gains among individuals from the 1000 Genomes Project while con-
trolling for potential confounding due to genetic ancestry (see
“Methods” for details). After accounting for ancestry, we found sig-
nificant differences across individuals from different geographical
regions. Themost notable increase in HLA binding gains was observed
in individuals from East Asia, followed by those from South Asia
(P = 0.00893 and P = 0.0094, respectively, t tests using Satterthwaite’s
method). This patternmay reflect the genomic imprint from recurrent
epidemics caused by RNA viruses in this region (see Discussion). To

delve deeper into the underlying factors of these binding gains, we
investigated key alleles driving these trends. By sequentially removing
carriers of specific HLA-I variants from the dataset, we assessed their
impact on the average binding gains across the population. As illu-
strated in Fig. 2E, alleles HLA-A*24:02, HLA-C*14:02, and HLA-B*51:01
were found to be the strongest contributors to the pronounced
binding gains observed in individuals from these regions.

Contribution of C >U mutations to SARS-CoV-2 epitopes after
viral spillover to humans
We investigatedwhetherwell-knownepitopes in theWuhanHu-1 strain
of SARS-CoV-2 might have been generated by C >Umutations after its
transmission to humans. The bat coronavirus RaTG13, which is con-
sidered the closest relative to SARS-CoV-2, is a likely candidate for its
natural origin25. The genomes of the two viruses show 96.2% identity25

with discrepancies primarily due to C >U mutations26. We hypothe-
sized that these mutations have generated novel HLA-bound immu-
nogenic peptides in SARS-CoV-2. To test this, we collected SARS-CoV-2
epitopes from the Immune Epitope Database27. We focused on
sequences with only one (n = 81) or two (n = 15) amino acid differences
compared to the corresponding RaTG13 proteins, and analyzed the
coding nucleotide sequences of both the RaTG13 and the Wuhan Hu-1
reference strains. We identified 21 instances where amino acid sub-
stitutions, likely due to C >U mutations, could account for the emer-
gence of immunogenic epitopes in the Wuhan Hu-1 strain
(Supplementary Table 2, see Methods for details).

C>U mutations generate immunogenic viral epitopes
To confirm the above results, we aimed to experimentally validate that
C >U mutations are associated with the emergence of immunogenic
peptides, expecting that mutated peptides are more likely to activate
CD8 + T cells. We compiled two sets of peptides for analysis: one
consisting of original and mutated peptide pairs based on the RaTG13
– Wuhan Hu-1 comparison (n = 15 pairs, Supplementary Table 2) and
another consisting of original Wuhan Hu-1 sequences alongside their
mutated counterparts that have emerged due to C >Umutations since
the start of the pandemic (n = 7 pairs). We assessed the binding
strength of both original and mutated peptides to common HLA-I
alleles using ProImmune REVEAL assays. Notably, the predicted bind-
ing strength of these peptides agreed well with the actual binding
outcomes observed in the in vitro assays (Fig. 3A). In addition, we
examined whether the selected C >U mutations led to an overall gain
or loss of bound peptides across the complete HLA-I genotypes of
individuals in the 1000 Genome Project dataset. We selected partici-
pants (n = 79) whose allele sets were comprehensively covered by the
ProImmune REVEAL assays. Similarly to our earlier analysis (Fig. 2A),
we calculated the average gains in peptide binding for each subject.
Our results indicate that C >U mutations generally increased the
number of HLA-bound peptides in most individuals (Supplemen-
tary Fig. 8).

To investigate the immune response to peptides generated by
C >Umutations, we selected 13 pairs of original andmutated peptides
that demonstrated a significant increase in HLA-binding in the
ProImmune REVEAL assays (Supplementary Table 2). We evaluated
their potential to activate T-cells using peripheral blood mononuclear
cells (PBMCs) from HLA-matched donors. We prepared two sets of
peptide pools: one with the original 13 peptides and another with their
13 mutated counterparts. We then exposed ex vivo PBMCs from 14
individuals to these peptide pools and measured CD25 expression on
CD8 + T cells as an indicator of activation. Remarkably, the peptides
altered by C >U mutations showed a higher propensity to activate
CD8 + T cells compared to the original ones (Fig. 3B). These findings
underscore the potential of C >U mutations to generate highly
immunogenic viral peptides.
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Fig. 2 | C > U mutations lead to more HLA-bound peptides on the genotype-
level. A The average change in the number of peptide-HLA complexes on the level
of whole genotypes and different HLA loci after one C>U mutation. The histo-
grams indicate the number of subjects belonging to different groups characterized
by certain ranges of peptide-HLA complex gain. Dashed red lines indicate a neutral
effect (zero complex gained per mutation). B, C The accumulation of HLA class
I-bound peptides over time. The average number of HLA class I–bound peptides
across all individuals analyzed is shown relative to theWuhanHu-1 reference strain
over time. The analysis was carried out for all mutation types (B) and for different
nucleotide substitutions (C) separately. The vertical axis represents the change
between the average number of peptide-HLA complexes in different isolates
relative to the root. The horizontal axes indicate the date of isolation. Nodes and
leaves represent common ancestors and isolates, respectively, while edges repre-
sent phylogenetic relationships. Note that the transparency of edges has been
increased for visualization purposes. D The coefficients of a linear mixed model

predicting the mean genotype-level binding gains of individuals based on their
geographical regions of origin (n = 686, 358, 532, 518 and 514 individuals from
Africa, America, East Asia, Europe and South Asia, respectively). The models
include the genomic background of individuals as random terms (see Methods).
Higher values indicate that people from a particular region carry HLA alleles that
are showing higher binding gains compared to HLA genotypes of individuals from
Africa. Two-sided P-values calculated by t tests using Satterthwaite’s method are
shown.Red colormarks significant terms, thewhiskers indicate the 95%confidence
interval. E The magnitude of reduction in mean genotype-level binding gains in
populations of South and East Asia after excluding individuals carrying specific
HLA-alleles. The blue and red colors represent a decrease and an increase inmean
binding gain, respectively. Alleles are ordered based on their effect on mean
binding gain (alleles on the right side have the most significant positive influence
on the observed trend). Source data are provided in the Source Data file.
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Enhanced capacity to present C >U mutant peptides shapes
COVID-19 severity
Early detection of SARS-CoV-2 infection by the immune system is cri-
tical to prevent severeCOVID-19outcomes28–31. Numerous studies have
emphasized the role of CD8 +T cell-mediated immunity in combating
the virus32–34. Our findings suggest that C >Umutations could enhance
the likelihood of recognition by the cellular adaptive immune system,
potentially leading to less severe disease. Consequently, we hypothe-
sized that COVID-19 patients carrying HLA-I molecules that are less
capable of binding C >U-mutated viral peptidesmay experienceworse
disease outcomes.

To test our hypothesis, we analyzed data from the UK Biobank
cohort — a large-scale, prospective study encompassing over half a
million participants from the United Kingdom. This cohort offers a
comprehensive dataset, including individuals’ genetic profiles, medi-
cal histories, and lifestyle factors, making it a valuable resource for
examining COVID-19 disease severity risk factors. First, we calculated
the genotype-level gain of HLA-bound peptides for each participant
with a documented positive COVID-19 test in the UK Biobank database
(baseline characteristics are provided in Supplementary Table 3). We
then investigated whether participants with HLA-Imolecules less likely
to bind C>U-mutated viral peptides had an increased risk of devel-
oping severe COVID-19, as indicated by hospitalization. We developed
a multivariate logistic regression model that incorporated variables
known to affect COVID-19 outcomes, such as age (median: 65), gender,
Townsend Deprivation Index, body mass index (BMI), medical history
including hypertension, hyperlipidemia, diabetes, immune-related
disorders, and respiratory conditions. We also considered the frac-
tionof theUKpopulation vaccinated at the timeof thepositive test as a
covariate35,36. Consistent with the hypothesis, individuals with HLA-I
alleles capable of binding fewer viral peptides showed a higher like-
lihood of severe disease (odds ratio = 1.12, P =0.0056, P-value of two-
sided Z statistics, Fig. 4). The effect remained significant when con-
trolling for HLA alleles that are associated with disease severity and
where C >U mutations exert only minor influence on HLA binding
(Supplementary Fig. 9, see Methods for details). This result suggests a
potential interplay between C >Umutations and HLA class I-mediated
immune presentation of SARS-CoV-2 peptides in influencing disease
severity.

Discussion
The rapid global spread of SARS-CoV-2 has led to the emergence of
numerous variants, raising critical questions about howviralmutations
influence the HLA-I-associated T-cell immune response. It is well-
established that some mutations in SARS-CoV-2 facilitate immune
escape, potentially leading to more severe infections31 and reduced
vaccine efficacy37–39. These mutations can impair both the antibody
binding to the virus and the recognition of HLA-presented viral pep-
tides by CD8 +T cells on the surfaces of infected cells5,40. Specifically,
escape mutations often reduce CD8 +T cell recognition by interfering
with the HLA presentation of viral peptides5,6. Despite the focus on
escapemutations that decrease viral immune detection, less attention

has been given to mutations that might enhance immune recognition
of the virus.

In this study, we focused on C>U mutations, which are pre-
dominant in the genetic landscape of SARS-CoV-2 variants. The origin
of these mutations remains a topic of debate. Several in silico10,11,16 and
experimental41,42 studies suggest that APOBEC enzymes are important
driving forces in generating C >U hypermutation. APOBEC proteins
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Table 1 | The distribution of HLA-bound peptide gain and loss
on the genotype level

Locus Loss (%) Neutral (%) Gain (%)

All 0.42 0 99.58

HLA-A 6.69 0.08 93.23

HLA-B 29.55 0.35 70.1

HLA-C 0 0 100

Thepercentageof subjectswith a higher, unchanged, or a lower number ofHLA-boundpeptides
after C >U mutations are indicated. The results for the three HLA-I loci are shown separately.
Source data are provided in the Source Data file.
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are integral to the innate immune defense against viruses and retro-
transposons, and induce hypermutation in viral genomes. These
enzymes have been shown to offer protective effects against several
viruses, including the hepatitis B43,44, human papillomavirus45,46, and
herpesviruses47,48. In HIV, the role of APOBEC3-associatedmutagenesis
in the adaptive immune recognition of viral peptides remains con-
troversial. Some studies have reported reduced immune activation by
APOBEC3-mutated epitopes49–51, while other research suggests that
APOBEC3 mutagenesis can enhance viral immunogenicity in certain
patient subsets52,53. In SARS-CoV-2, the lack of the characteristic
nucleotide context linked to APOBEC3 around C>U mutations indi-
cates that alternative mechanisms may also be responsible for their
occurrence. For instance, Bradley et al. proposed that replication
errors play a dominant role in the accumulation of these mutations54.
Notably, while viral genomes isolated from Vero E6 cell lines indeed
showed a lack of APOBEC3 context around C >U substitutions, muta-
tion data from clinical isolates suggested an enrichment of nucleotide
changes at APOBEC3A target sites. Importantly, we found that the
effect of C >U mutations on HLA binding is independent of the sur-
rounding sequence context (Supplementary Fig. 3), suggesting that
our findings are not influenced by the source of the mutations.

We found that C >U mutations in human cells potentially coun-
teract viral immune escape by generating novel HLA-bound viral epi-
topes at high frequencies (Fig. 1). In addition, numerous
experimentally verified SARS-CoV-2 epitopes were most likely gener-
ated through these mutations after human transmission. Conse-
quently, we found that individuals carrying HLA variants that can
effectively present C >U-associated peptides are less likely to have
severe infection (Fig. 4). Notably, a recent study indicated that the
HLA-B*15:01 allele is prevalent among individuals with asymptomatic

infections55. According to our analyses, this allele has the highest affi-
nity for C >U-mutated peptides among the HLA-B variants (Supple-
mentary Fig. 6).

Asymptomatic carriers—who typicallymount strong virus-specific
immune responses56—play a key role in transmission57–60, suggesting
that the virus may, paradoxically, benefit from enhanced immune
recognition. This raises the possibility that accumulation of C >U
mutations in the viral genome could offer an evolutionary advantage
by enhancing immune responses while maintaining asymptomatic
infection. However, our analysis does not support this hypothesis.
Using UShER-based phylogenetic analysis20, we assessed the strength
and direction of selection on C >U mutations. We found no positive
association between the gain of HLA-bound peptides and the fitness
effect of C >U mutations (Supplementary Fig. 10). In fact, most C >U
mutations predicted to increaseHLA binding were found to negatively
impact viral fitness. These findings are consistent with prior studies,
showing that C >U mutations fix at a lower rate than other nucleotide
changes61, likely due to their deleterious effects on fitness55. Thus, the
accumulation of C >U mutations is likely driven by mutational pres-
sure rather thanpositive selection, supporting the idea thatmutational
pressure can outweigh weak selection and result in suboptimal gen-
ome composition62.

A similar trend for C >U hypermutation and increased binding by
HLA-I molecules was found in the rubella virus suggesting that this
phenomenon may be more general (Supplementary Fig. 2B). More-
over, C > U hypermutation is widespread in other human RNA viruses,
too63. Theseviruses havebeen associatedwith frequent host switching,
providing novel emergent pathogens in the human population64–66, as
well as exhibiting a strong selective pressure during host-pathogen co-
evolution67. Given the amino acid substitution bias introduced byC >U

> 50% of the UK population vaccinated

25-50% of the UK population vaccinated

0-25% of the UK population vaccinated

BMI ≥ 35

Respiratory disorders

Immune-related disorders

Medication for high BP or cholesterol

Diabetes

High deprivation index

Sex: male

Age > 65

Low net binding gain

0.25 0.75 1.25 1.75 2.25

Odds Ratio (95% CI)

1.124 (1.03-1.22)

2.434 (2.25-2.63)

1.336 (1.24-1.44)

1.232 (1.13-1.34)

1.734 (1.51-1.99)

1.433 (1.32-1.56)

1.739 (1.5-2.02)

1.654 (1.48-1.85)

1.513 (1.34-1.7)

0.71 (0.65-0.77)

0.249 (0.19-0.31)

0.274 (0.2-0.36)

Odds Ratio (95% CI)

0.006

4.54 x 10−111

9.65 x 10−15

6.41 x 10−7

7.52 x 10−15

5.46 x 10−17

5.51 x 10−13

7.08 x 10−19
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2.03 x 10−14

1.68 x 10−30
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P

Fig. 4 | HLA-binding gain after C >U mutations is associated with COVID-19
severity. Patients gaining a lower number of HLA-bound peptides/mutation (1st
quartile,n = 4240 individuals) aremore likely to have severe disease (n = 4549; total
number of individuals: 16,974). The forest plot summarizes covariates of the
logistic regression model, including sociodemographic and clinical factors that
potentially affect COVID-19 disease outcome. The vaccination prevalence

categories indicate the percentage of fully vaccinated individuals in the UK popu-
lation at the time when the first positive test was reported for the patient; the odds
ratios are calculated compared toCOVID-19 cases of the dataset prior to the start of
mass vaccination. See Methods for detailed information on the variables. BP
represents blood pressure, and BMI indicates bodymass index. The odds ratio with
a 95% confidence interval is indicated. P-values of two-sided Z statistics are shown.
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mutations and the increased affinity of HLA-I molecules for hydro-
phobic residues inC >U-mutatedpeptides, we speculate that theHLA-I
systemevolved to enhance the recognition of hydrophobic amino acid
residues, thereby optimizing immune responses against viral C >U
mutations (Fig. 5).

If we considerAPOBEC3 as a sourceof C >Umutations, our results
raise the intriguing possibility that these enzymes have a dual role in
antiviral immune defense. In addition to inducing lethal mutagenesis
of viral genomes, APOBEC3 could give rise to immunogenic viral epi-
topes by increasing their hydrophobicity, an established feature of
HLA-I antigen presentation and immunogenicity68. Analogously,
tumors carrying APOBEC3 mutational signatures contain more
hydrophobic neoantigens, are more immunogenic, and are associated
with positive response to immunotherapy21,69–74. Given that APOBEC3
enzymes emerged with the appearance of placental mammals
~ 65–100 million years ago75,76, well before the evolution of HLA-I-
mediated antigen presentation, it is unlikely that they were selected to
enhance viral peptide recognition. Instead, we propose that the
increased hydrophobicity of peptides resulting fromAPOBEC-induced
mutations may represent an evolutionary by-product.

Interestingly, while enhanced binding of C >U-generated epi-
topes is observed globally, its magnitude varies across geographical
regions, with the highest levels found in South and East Asia (Fig. 2D).
This area hasbeen a hotspot for viral epidemicsboth historically and in
the present. The frequent emergence of novel pathogens in this region
is driven by a combination of ecological and social factors. Historical
records spanning the past 2200 years indicate that SouthChina’swarm
and humid climate, rich vegetation, and densely populated settle-
ments created ideal conditions for pathogen emergence and spread77.
Another epidemiological study linked outbreaks primarily to agrarian
societies and rising population densities78. In addition, Souilmi et al.
identified genomic imprints of selective sweeps in human genes,
interacting with coronavirus species, suggesting an ancient cor-
onavirus epidemic in the region approximately 20,000 years ago79.
Similarly,Morris et al. found stronger signals of past selectionevents in
individuals from the China Kadoorie Biobank compared to those in the
UK Biobank80. Further research should explore the evolutionary

selection pressure on C >U mutagenesis and HLA genes in these
regions, potentially shedding light on a long-standing interplay
between these two systems.

Methods
Statistical analysis and visualization
We used R version 4.5.181 in RStudio version 2024.09 environment for
statistical analyses; the ggplot282, ggpubr83, forestplot84, pheatmap85,
pROC86 and cowplot87 R libraries for visualization. Dunn’s post-hoc test
was performed using the DunnTest function of the FSA R library88.
Linear mixed models were created using the lmer function of the
lmerTest library89 and further processed using functions from
the dotwhisker90 and broom.mixed91 R libraries. Friedman and Con-
over tests were performed using friedman_test and frdAllPairsCono-
verTest functions from the rstatix92 and PMCMRplus93 libraries,
respectively.

Source of viral mutation data
We acquired phylogenetic data of SARS-CoV-2 genomic isolates
(including the date of isolation for each sample and the putative date
of intermediate nodes) from the Nextstrain Global Analysis website on
17th October 2024. We excluded isolates from non-human origins and
extracted all nucleotide single-base substitutions in each viral sample
and each node of the phylogenetic tree relative to the Wuhan Hu-1
reference strain (NCBI Reference Sequence database ID: NC_045512.2,
https://www.ncbi.nlm.nih.gov/nuccore/1798174254).

In addition, we utilized a further dataset published by Bloom and
Neher20, which contains information on the number of independent
occurrences of each mutation throughout the phylogeny. We applied
the ntmut_fitness_all.csv file downloaded from their GitHub repository
(https://github.com/jbloomlab/SARS2-mut-fitness) to generate all
possible SARS-CoV-2 peptide variants carrying single amino acid sub-
stitutions. For this dataset, instead of focusing on unique mutations,
we considered each mutation for the number of times it was found
independently throughout the phylogeny.

To examine the effects of APOBEC3-generated nucleotide chan-
ges in another positive single-stranded RNA virus, rubella, we used a

A AC CAC UU U UGG A ACAC UU U UGGU

Original viral RNA Mutated viral RNA

Original peptide Mutated peptide

HLA-I

Placental 
mammals

Homo sapiens

65-100 MYa ~0.3 MYA Today

HLLLLLAAAA-I

AA hydrophobicity

hydrophobic AA

AA substitution bias

C>U hypermutation

Human-pathogen coevolution

Fig. 5 | C >U hypermutation drives the evolution of HLA-I specificity. Based on our results, we speculate that HLA-I molecules were selected for binding hydrophobic
amino acids that are generated by C >U hypermutation in RNA viruses. Created in BioRender. Manczinger, M. (2025; https://BioRender.com/kmbfy4n).
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dataset published by Klimczak et al.94, containing 790 nucleotide
changes overall, of which 226 were missense mutations.

Generation of mutated peptide fragment sequences
We used the genome of the Wuhan Hu-1 isolate (NC_045512) as a
reference. We generated two types of datasets using custom R scripts.
Thefirst dataset contained information aboutmutations.We identified
all unique mutations in the Nextstrain dataset. For each mutation, we
changed the nucleotide in the reference genome and translated them
to amino acid sequences. Here, our goal was to investigate the effects
of individual nucleotide changes.Weperformed the same steps for the
rubella mutation set, as well as for the SARS-CoV-2 dataset by Bloom
and Neher.

The second dataset contained information about samples. For
each node or isolate, we applied all nucleotide changes in its genome
and translated the modified coding sequences into amino acid
sequences. In the case of both datasets, we split all protein sequences
into 8–11 amino acid long fragments as suggested previously95. In the
sample-specific dataset, we excluded original-mutated peptide pairs
that would have been located after nonsense (premature stop) muta-
tions in the given protein.

Calculation of HLA-I binding gain and loss
We predicted the binding of each 8–11-mer peptide by common HLA-I
alleles using the NetMHCpan-4.0 algorithm17. We carried out the pre-
diction for 16 HLA-A and 13 HLA-B alleles, collected from a reference
set with maximal population coverage18. In addition, since the list did
not include data for HLA-C, wepredicted HLA-binding by the first four-
digit allele in each two-digit HLA-C allele class (n = 14)19.

We defined a given peptide as HLA-bound if the predicted
“binding rank percentile” was under 0.5. We used this strict binding
threshold value to minimize false positive hits. A binding gain event
was defined as a change of binding rank value from ≥ 2 (not bound) to
<0.5 (strong binding), while the opposite direction was considered a
binding loss. Net binding gain (NBG) was defined as the difference
between the number of gained and lost peptides. Practically, this
metric describes the increase/decrease in the number of HLA-bound
viral peptide segments after mutations. We calculated the net binding
gain value for each HLA-I allele by calculating the mean of NBG values
for all unique C >U mutations from the Nextstrain dataset. As two-
sided pairedWilcoxon’s signed-rank tests wereperformed formultiple
types of nucleotide and amino acid substitutions (Fig. 1D, H and Sup-
plementary Figs. 1, 2, 3 and 5), P-values were corrected using the
method by Benjamini and Hochberg96. In case of the Bloom and Neher
dataset, for each allele - instead of using absolute counts - we calcu-
lated the fraction of unique mutations associated with binding gain or
loss, weighted with the number of times they appear in the phylogeny.

To investigate the effect of missense mutations on HLA-binding
on the whole genotype level, we downloaded HLA-I genotype data of
2618 subjects in the 1000 Genome Project24. After excluding subjects
carrying alleles that are unsupported by the prediction algorithm, we
examined the HLA-binding for 2599 individuals. For each individual,
we calculated the average binding gain/loss associated with C >U
mutations by taking the mean of NBG values specific for the unique
HLA-I variants they carry. In Fig. 2E, we investigated the effects of
alleles on NBG that were present in at least 5% of individuals in all
countries of the South and East Asian regions.

We performed analyses shown in Fig. 1D separately for T-cell
epitope regions (Supplementary Fig. 2A). We downloaded data on
epitope sequences from the Immune Epitope Database (IEDB) on 22nd

November 2021. We selected HLA-I-presented linear epitopes of SARS-
CoV-2 with at least one positive T-cell assay in human hosts.

To assess the specificity of HLA-alleles for different amino acids,
we determined peptide binding motifs for 41 of 43 reference HLA-I
alleles using on the immunopeptidomics dataset published by

Sarkizova et al.97. We created information contentmatrix-basedmotifs
by the universalmotif R library98. We defined the specificity of a given
HLA-I allele for a given amino acid as the sumof amino acid-specific bit
scores at positions 2 and 9.

Comparing HLA-I binding gain between populations
We used a linear mixed model (implemented via the lmer function in
the lmerTest R package89) to examine differences in average binding
gains among individuals from different geographical regions. To
account for genetic similarities between individuals, we utilized the
PCs_1000G dataset from the PCAmatchR R package99. This dataset
contains data for the first 20 genetic principal components (PCs) of
2423 individuals from the 1000 Genome Project. We classified indivi-
duals into genetic clusters based on genetic PCs. To determine the
optimal number of clusters, we applied the NbClust R function from
theNbClust package (method: “ward.D2”, index: “ch”), which identified
15 optimal clusters. The resulting grouping was incorporated as a
random effect in the linear mixed model, using the following formula:

binding gain � Region+ ð1jclusterÞ ð1Þ

Measurement of HLA-I binding and T-cell activation
To experimentally verify in silico results, we assembled a set of original
viral peptides and their mutated counterparts carrying C >U nucleo-
tide changes (Supplementary Table 2). The final peptide set consisted
of (i) T-cell epitopes of SARS-CoV-2 potentially generated by C >U
mutations from RaTG13 sequences and ii) mutated Wuhan Hu-1
sequences affected by homoplasic C >U mutations in epitope-coding
regions of the SARS-CoV-2 genome100. The selected peptides were
synthesized, and their binding affinity levels towards a set of 19 HLA-I
variants were examined with ProImmune REVEAL HLA class I binding
assays, which determine binding strength based on the ability of test
peptides to stabilize the peptide-HLA complex.

For the measurement of differences in T-cell activation, we
selected 13 peptide pairs, where the mutated peptides showed a sig-
nificant binding gain to certain HLA alleles according to experimental
results (see Source Data Table 13). We generated peptide pools from
the original and the mutated sequences.

We performed experimental tests following established
methods101,102. Briefly, peripheral venous blood was collected in our
laboratory from three HLA-matched healthy volunteers using lithium
heparin-treated tubes (BD Vacutainer, Becton Dickinson, Sunnyvale,
CA, USA). Peripheral blood mononuclear cells (PBMCs) were isolated
by Ficoll density gradient centrifugation using Leucosep tubes (Grei-
ner Bio-One, Kremsmünster, Austria). To increase the set of samples,
commercially available HLA-characterized PBMCs (11 cases, identified
with subject codes starting with “LP”) were also purchased (CTL Eur-
ope GmbH, Bonn, Germany; Source Data Table 14). The sex and age of
the three healthy volunteers were self-reported, while information on
the source individuals of the 11 PBMC samples was provided to us by
the company.

Cells were pelleted by centrifugation at 800g without braking for
20minutes. The ring of PBMCs was harvested by pipetting and diluted
with 15ml PBS, then centrifuged at 350× g for 5min. The supernatant
was removed. If necessary, red blood cells were lysed by 2ml ACK
solution (prepared in our laboratory: 0.15M NaH4Cl, 10mM KHCO3,
0.1mM Na2EDTA, pH7.4, Merck, USA) at room temperature (RT) for
2min. Cells were washed with 15ml PBS and centrifuged at 350× g for
5min, and then were frozen in 90% FCS/10% DMSO (v/v%). Cells were
thawed into 10ml 37 °C RPMI-1640 cell culture media (Capricorn Sci-
entific, Ebsdorferung, Germany) and pelleted using centrifugation at
350× g for 5min at RT. Cells were washed with complete RPMI-1640
(cRPMI) cell culture media containing 100 U/ml penicillin sodium salt
and 100μg/ml streptomycin sulfate salt (Merck, USA), 10 % FCS
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(Euroclone, Milan, Italy), 2mM glutamine (200mM 100x diluted
Capricorn Sc.). Afterward, cell counts were determined using the
Bürker-chamber and trypan blue dye (Sigma-Aldrich, Hungary).

PBMCs (5 × 105) were divided in 180 µl of cRPMI/well into 96 well
plate (Greiner Bio-One, Kremsmünster, Austria) (flat-bottom TC-trea-
ted) as follows: samples (1-2) untreated, (3-4) CytoStim (Miltenyi Bio-
tec, Bergisch Gladbach, Germany) stimulated, (5-6) peptide pool 1
(original), (7-8) peptide pool 2 (mutated). Cells were left untreated for
1 h resting period. All samples were incubated with 10 ng/ml IL-2/well.
Stimulating agents were added according to the followings: (1-2) 20 µl
media to the unstimulated; (3-4) 20 µl media plus 2 µl CytoStim; (5-6)
themixture of 13 “original” peptides (peptide pool 1); (7-8) themixture
of 13 “mutated” peptides (peptide pool 2).

In the case of (5-8), each peptide was dissolved in DMSO (Sigma-
Aldrich) at 4mg/ml. We prepared the mixtures of the 13 peptides
pipetting 1 µl from each peptide into 87 µl cRPMI. The amount of the
peptide mixture was 52 µg in one pool. Cells were treated with a 20 µl
peptide pool (10.4 µg).

The stimulation period lasted 24h. 100 µl PEB buffer (PBS-EDTA-
BSA) was added to each well (0.5% BSA, 2mM EDTA in PBS, Miltenyi).
Cells were pipetted into 12 × 75mm FACS tubes (VWR International,
USA), and centrifuged at 350G at RT for 5min. Afterward, cells were
suspended in 50 µl PBS containing 0.5 µl of the Viobility™ Fixable
Dye (Ex.: 405 nm, Em.: 452 nm; 100 x diluted of the stock). After 15min
of incubation in the dark at RT, 1ml PEB was added to each sample.
Cells were centrifuged at 350× g at RT for 5min. Next, cells were
suspended in 100 µl PEB, then 100 µl 3.7% formaldehyde was added to
each sample. Subsequently, cells were incubated in the dark at RT
for 20min.

1ml PEB was added to each sample before cells were centrifuged
at 500 × g at RT for 5min. The batch of the antibody cocktail was
prepared in PEB as the followings: anti-CD3 APC 100x diluted (clone
REA613, catalog number: 130-113-135), anti-CD4 VioBright B515 100x
diluted (clone REA623, catalog number: 130-114-535), anti-CD8 Vio-
Green 50x diluted (clone REA734, catalog number: 130-110-684), anti-
CD25 APCVio770 100x diluted (clone REA570, catalog number: 130-
123-469). Antibodies were purchased fromMiltenyi Biotec. Cells were
incubated in 50 µl of the antibody cocktail at RT for 30min. Afterward,
they were washed with 1ml PEB and centrifuged at 500 g at RT for
5minutes. Cells were resuspended in 300μl PEB, and 1 × 105 live single
cells were acquired on Cytoflex S fluorescence-activated cell sorter
(FACS; Beckman Colter, USA). Manual gating was used to determine
CD8 + T cells within live CD3 + lymphocytes in CytExpert (Beckman
Colter; Supplementary Fig. 7). Reactive cells were gated as CD25 +
CD8 + T cells. Finally, reactive cells are shown in relation to the per-
centage of the parental CD8 +T cells.

Analyzing the effects of binding gain on COVID-19 outcome
We downloaded detailed sociodemographic, clinical and COVID-19
outcome data from the UK Biobank database on 19th October 2021103.
Similarly to other studies104,105, we investigated subjects who had been
tested positive for SARS-CoV-2 infection at least once, and whose full

HLA-I genotype was known (n = 16,974). We considered patients who
died of COVID-19 or tested positive in an inpatient setting as severe
cases (n = 4549), while the remaining patients were classified as mild
cases (n = 12,425).

We built a logistic regressionmodel containing a set of important
confounding factors associated with COVID-19 outcome105. We deter-
mined the age of the subjects by calculating the difference between
the first positive COVID-19 test and the year of birth of the subject. We
defined individualswith “Highdeprivation index” as the ones in the top
quartile of the Townsend Deprivation Index variable. We considered a
patient to have a certain disease based on the ICD10 codes in the
dataset (UK Biobank Data Fields 41202 and 41204) according to
Table 2. We considered a positive “Medication for high blood pressure
and/or high cholesterol levels were used” variable as a proxy for car-
diovascular disease105. We defined vaccination rates based on the
percentages of fully vaccinated individuals in the United Kingdom
according to Our World in Data106. We stratified patients into different
classes based on the time of their first COVID-19 positivity using the
following cutpoints: 10th January 2021 (vaccination program started),
7th May 2021 (25% of the population is fully vaccinated), 5th July 2021
(50% of the population is fully vaccinated).

We built additional models, also including the presence/absence
of specific HLA alleles as a covariate, that are associated with disease
outcome.We classifiedHLA-I variants according to a systematic review
by Dobrijevic et al.107, especially focusing on alleles that affect hospi-
talization status. We only included alleles in the model that had an
absolute binding gain value lower than 0.05.

Ethics
The study was carried out in compliance with the Declaration of Hel-
sinki, and the protocol (‘Molecular phenotyping in chronic respiratory
inflammation and SARS-CoV-2 infected patients’) was approved by the
Ethics Committee of the National Public Health Center (Project ID:
52792-5/2021/EÜIG).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
NC_045512.2 [https://www.ncbi.nlm.nih.gov/nuccore/1798174254] was
used as the reference genome for the analyses presented. HLA geno-
types for individuals from the 1000 Genomes Project were down-
loaded from: https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
collections/HLA_types/20181129_HLA_types_full_1000_Genomes_
Project_panel.txt. SARS-CoV-2 genomic and phylogenetic data were
obtained from the Nextstrain website on 17th October, 2024 (the spe-
cific JSON file is shared on ourGitHub repository). Additionalmutation
data were downloaded from theGitHub repository associatedwith the
Bloom and Neher article: https://github.com/jbloomlab/SARS2-mut-
fitness/blob/main/results/nt_fitness/ntmut_fitness_all.csv. The
individual-level data used for the COVID-19 outcome analyses (Fig. 4
and Supplementary Fig. 9) were obtained from UK Biobank under
Application ID 44917. The authors are not authorized to distribute
these data. Interested researchers may apply for access via the UK
Biobank Access Management System [https://www.ukbiobank.ac.uk/
register-apply/]. The source data files required to reproduce the fig-
ures and tables are available in the project’s GitHub [https://github.
com/lhgergo/covid-apobec] and Zenodo repositories108. Source data
are provided in this paper.

Code availability
All code necessary to reproduce the results presented in this study is
available in the project’s GitHub [https://github.com/lhgergo/covid-
apobec] and Zenodo repositories108.

Table 2 | ICD10 codes representing clinical conditions, ser-
ving as covariates in the logistic regression model presented
in Fig. 4

Condition ICD10 codes

Diabetes E10, E11

Immune-related
disorders

B20, C81-97, D80-84, G35, G61, G70, H20, K50,
K51, L10, L12, L40, M05, M06, M08, M30-36, M45

Respiratory disorders A15, A16, E84, J41-81

We considered a condition to be associated with a certain patient if any of the corresponding
ICD10 codes were present in the historical data for the subject.
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