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Rotors are common in nature — from rotating membrane-proteins to
superfluid-vortices. Yet, little is known about the collective dynamics of het-
erogeneous populations of rotors. Here, we show experimentally, numerically,
and analytically that at small but finite inertia, a mixed population of oppo-
sitely spinning rotors spontaneously self-assembles into active chains, which
we term gyromers. The gyromers are formed and stabilized by fluid motion
and steric interactions alone. A detailed analysis of pair interaction shows that
rotors with the same spin repel and orbit each other while opposite rotors
spin-pair and propagate together as bound dimers. Rotor dimers interact with
individual rotors, each other, and the boundaries to form chains. A minimal
model predicts the formation of gyromers in numerical simulations and their
possible subsequent folding into secondary structures of lattices and rings.
This inherently out-of-equilibrium polymerization process holds promise for

engineering self-assembled metamaterials such as artificial macroscale

proteins.

Life is too complicated to be assembled manually’. From the nano-
scopic starting point of the lipids that comprise the cell and the DNA
molecules holding the blueprints of each organism’s design, to the
final macroscale product of the organism itself, there are many length
scales and billions of molecules participating’. Life is also inherently
out of equilibrium and forms far more complex structures than the
crystals expected for atomistic systems at low temperatures’. A pro-
totypical example is proteins, which are self-assembled hierarchically
on the molecular scale, first forming chains and then folding into
secondary and tertiary structures that can function as intricate mole-
cular machines*.

A growing body of research in recent years has been devoted to
the study of self-assembly out-of-equilibrium. Yet, when the building
blocks are isotropic, most of the resulting structures have been
crystals®®. Symmetry breaking is possible with an external field, such
as electrostatic chains that align along field lines®'°, Janus particles with
electrostatic imbalance”, active shakers'>"®>, magnetic dipoles™ or pat-
chy colloids®.

Despite the fundamental role of fluid dynamics in biological sys-
tems, hydrodynamic interactions have received limited attention in
the study of active self-assembly. Notably, hydrodynamic structure
formation by rotating objects has been garnering increasing interest.
For example, synthetic rotors driven by a magnetic field"** or light”,
living rotating matter’®”, fluids or elastic materials with odd
viscosity'®**?¢, dry rotating matter”*® or rolling particles,**°. These
systems are ubiquitous in nature, ranging from the geological
immensity of hurricanes to the biological intricacies of rotating pro-
teins within cellular membranes and extending even to the quantum
realm®. Historically, the behavior of rotors has been examined under
conditions of negligible viscosity, dating back to Helmholtz*****. More
recently, studies have addressed settings of negligible inertia®>%,
notably in biological contexts like ATP synthase proteins®*°. However,
the intermediate Reynolds number regime, where both viscous and
inertial forces play significant roles, remains relatively uncharted®**.
Here, complexities arise due to the nonlinearity of the Navier-Stokes
equations, leaving our understanding of this regime limited. Within

Department of Physics and Astronomy and the Center for the Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv, Israel. 2Department of
Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel. *Optoelectronics Research Center, University of Southampton,
Southampton, United Kingdom. “These authors contributed equally: Artyom Chirko, Jonathan Kirpitch, Yahav Lavie. e-mail: naomiop@gmail.com

Nature Communications | (2025)16:10368


http://orcid.org/0009-0007-6210-690X
http://orcid.org/0009-0007-6210-690X
http://orcid.org/0009-0007-6210-690X
http://orcid.org/0009-0007-6210-690X
http://orcid.org/0009-0007-6210-690X
http://orcid.org/0009-0003-8660-6678
http://orcid.org/0009-0003-8660-6678
http://orcid.org/0009-0003-8660-6678
http://orcid.org/0009-0003-8660-6678
http://orcid.org/0009-0003-8660-6678
http://orcid.org/0000-0002-8212-3404
http://orcid.org/0000-0002-8212-3404
http://orcid.org/0000-0002-8212-3404
http://orcid.org/0000-0002-8212-3404
http://orcid.org/0000-0002-8212-3404
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65322-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65322-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65322-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65322-w&domain=pdf
mailto:naomiop@gmail.com
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-65322-w

this regime, research involving small spinning magnetic particles has
demonstrated the formation of lattice structures'®*>**, highlighting the
interesting dynamics that emerge in such systems.

Common to all the aforementioned instances is that the units
creating the self-organization are driven in the same direction. A
question arises: what unique properties will be observed in a mixture
of binary rotors, where some spin clockwise while others counter-
clockwise? At intermediate Reynolds, this is still unknown. Both in
the limit of an ideal fluid with no viscosity and in the limit of purely
viscous fluids, the equations of motion have time-reversal sym-
metry. Theoretical studies of binary rotors in these two limits have
shown that the two populations separate and dense clusters of
same-spin rotors are formed***. In fact, even completely dry
opposite rotors separate’”**. The intermediate regime is qualita-
tively different from both limits since time reversal symmetry is no
longer obeyed.

Here, we show that when inertia is small but not negligible, the
resulting structures are very different — mixed-sign circular rotors
self-assemble in a hierarchical manner, reminiscent of polymeriza-
tion, but driven by fluid flow and steric interactions alone — first,
rotors spinning clockwise and counter-clockwise attract, spin-pair
and form bound dimers. Dimers then assemble into longer active
chains. The chains, which we term gyromers (gyroscopic polymers),
are stabilized by their activity (see Fig. 1 and Supplementary Movie 1).
To study the stability and origin of gyromer formation, we developed
a test bed that enables controlling both the direction of rotation and
the initial position of each individual rotor. Following Grzybowski,
Stone, and Whitesides*?, we analytically describe the velocity field of
numerous spinning bodies within an intermediate Reynolds number
regime, where viscosity remains the dominant force, and inertia is a
perturbation. We conduct numerical simulations that qualitatively
reproduce the experimental results. We determine that gyromer
stability is decreased with increasing the variance in angular velo-
cities of individual rotors.

Results

Our rotors are brushless motors enclosed in 3D-printed cylindrical
shells that allow them to float at the oil-air interface. A 3D-printed
propeller is attached to the motor’s bottom pin so that the two parts
counter-rotate (Fig. 1A). The rotation direction can be switched by
reversing the battery wiring. Rotors spinning counter-clockwise
(clockwise) are marked in cyan (pink). The resulting tangential flows
were characterized using Particle Image Velocimetry (Fig. 1B). Full
experimental details are provided in the Methods and Supplementary
Information.

The bath is continuously monitored from above by a camera.
When placed in the oil bath, the rotors spin at about 7 rpm (Q = 0.7 rad/
s). We test two viscosities — high viscosity u = 1Pa-s, and low viscosity
p = 0.06Pa-s. The Reynolds number, a measure of inertial forces
compared to viscous ones, is Re = pQa? /u ~ 0.2 for the high viscosity
and Re ~ 3 for the low viscosity. We find that, even though the Rey-
nolds number is small, inertia is not negligible in both cases. In fact, it
changes the behavior of the system qualitatively. Two rotors at zero
Reynolds number maintain a fixed distance, they do not draw nearer
nor drift apart’™***°—same-sign rotors orbit around each other, and
opposite-sign rotors propagate. When inertia is included (see also ref.
20, or activity, see ref. 37), it adds radial forces reminiscent of electrical
charges—same sign rotors orbit and also repel, tracing a growing spiral
(Fig. 1C); opposite sign rotors propagate and also attract (Fig. 1D and
Supplementary Movie 2). The dynamics are predicted by the theore-
tical model described below.

At higher numbers of rotors, we first tested self-assembly of same
signed rotors into lattices (Fig. 1E, F), reproducing the lattice formation
first observed in ref. 16, though here no magnetic interactions are
present. We then tested a mixed population of rotors. The particles
self-assemble into active chains (gyromers). Gyromers are constantly
assembled and disassembled due to interaction with other rotors or
with the boundaries. We commonly see pair-switching or companion
stealing. Even-numbered gyromers self-propel in a direction perpen-
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Fig. 1| Self assembly starting from random initial conditions. a A single rotor
floating at the air-oil interface. b PIV analysis of the flow induced by a single rotor
shows a tangential flow field. Zoom in shows velocity streamlines extracted from
imageJ (top) and from PIVIab images (bottom). ¢ Two same-sign rotors spiral out
(orbit around each other and repel). Dots are tracked trajectories. Plus (minus)
marks counter-clockwise (clockwise) rotation. d Two counter-rotors rotate

counter-clockwise (cyan), and clockwise (pink). The rotors self-propel and attract.
e-f Nine same-sign rotors starting from a centered random configuration form a
hexagonal lattice. g, h Snapshots of seven rotors (four pluses and three minuses)
starting from a centered random configuration, a single gyromer of all seven rotors
is assembled. Once formed, the gyromer is stable and stays intact. Insets show
intermediate times. The scale bar is 3 cm in all figures.
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dicular to their axis with a speed that decreases with the number of
monomers (an infinite gyromer will be stationary). Odd-numbered
gyromers orbit around their center (see Fig. 1H), with an angular
velocity that decreases as 1/N?, where N is the number of rotors in the
gyromer, see analysis below. Small changes in the spin of the rotors
cause deviations from this ideal behavior. Gyromers are stable until
encountering other rotors or the boundaries. Odd-numbered gyro-
mers are stable for a longer duration since they are less prone to
interact with the boundaries. As demonstrated in Fig. 1, at a low con-
centration (7 rotors), all the rotors assemble into a single gyromer.
Once formed, the gyromer remains stable for the lifetime of the rotors’
batteries (-2 h).

The boundary in our system has a critical role in facilitating the
creation of self-assembled structures. Without it, assuming an infinite
space, even-numbered gyromers propagate far away. Initially, we
designed either a circular container or a flower-shaped boundary*, but
rotors were hydrodynamically attracted to the boundary and tended
to stay there*®. To eliminate attraction, we designed a boundary of an
inverse flower-like shape. This unique shape, designed by principles
outlined in refs. 47,48, creates effective repulsion and brings rotors
back into the pool.

Modeling minimal inertia

A single rotor far from boundaries stays static. When placed in a
bath with other rotors it is advected by the flow created by them. In
this region of the Reynolds number, the flow is governed mainly by
viscous forces, but not only. We account for inertia by expanding
the Navier-Stokes equations to a first order for a small but finite Re.
In this limit, the equations are linear, and we can write u = ug + u;,
where ug is the part coming from the Stokes equations and u; is
the inertial correction. The flow field of a single rotor in a viscous
fluid is*

COxi
r2

, @

Ug =

where Q is the spin of the rotor, and Cs is a prefactor of O(1). Two
identical, same-sign rotors in this viscous regime orbit around each
other with an angular velocity, 6, given by

6o Q/r3, 2

while maintaining the initial distance between the rotors, r. When
inertial effects are included, the second rotor adds a correction to the
above flow, giving a lift force resembling the Magnus effect. Solving
the Navier-Stokes equations under a small but finite Reynolds number
for a spinning disk in the shear rate created by a second, faraway disk
gives the leading order correction to a viscous flow, which is radial and
has the scaling’®*>*° (Supplementary Discussion)

"= C,-Q;Q2 ‘o .001032“6 ;, 3)
r ur
where C;is a prefactor of O(1). Due to the linearity in this regime, the
velocity of the jth particle, u;, is a superposition of the flow created
by other particles. In complex notation z; = x; + iy; (where x; and y;
donate the position of the j" rotor), and using Egs. (1) and (3) we can
compactly describe the dynamics of the rotors. Switching to
dimensionless form by taking z > z/a, Q; > Q;/Qo, where ; is the ith
rotor’s own spin, Qg is the typical magnitude, and t > (C;Qo/a®)t, we
get
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where 8= CiQ0/(aCy) = pQoa*/u is proportional to the Reynolds number
up to a multiplicative prefactor of O(1), and signifies the importance of
inertial interactions compared to viscous ones.

Two key assumptions were made here: First, we assumed that the
rotors act as rotating disks. The use of self-spinning brushless motors
in an infinite fluid results in a torque dipole along the Z-axis, as illu-
strated in Fig. 1A. It is, therefore, not immediately apparent that the
magnitude of the angular velocity of a pair of rotors should indeed
scale as Eq. (2). However, the vicinity of the propeller to the bottom of
the container dampens its decay*®, as we have verified from PIV mea-
surements (Supplementary Fig. 4). Therefore, the dynamics are gov-
erned by the upper cylinder. Second, Eq. (3) is the far distance
approximation of the flow, though in practice, often the rotors are not
far. Certainly, this is not correct for nearest neighbors in a gyromer. To
verify the validity of both assumptions when rotors are distant, we
analyze the dynamics of two same-sign rotors.

Solving analytically Eq. (4) for two rotors gives

r*=8ByQ’t+A 5)
9 — ()/ +31)Q , (6)
r

where we have chosen Q; = Q and Q, = yQ. Note that the dimensionless
distance between rotors only depends on the inertial term since the
distance stays constant when S = 0. The distance grows for same-sign
rotors (y > 0) and decreases for opposite-sign rotors (y < 0).
Conversely, the orbiting angular velocity over time only depends on
the viscous term (it is independent of f), and is inversely proportional
to the distance between the rotors to the 3" power. We experimentally
tested the dynamics of several two same-sign rotors with y = 1.
Figure 2A shows the angular velocity of the pair with a power law of
three for both the high viscosity bath, and the low viscosity bath in the
inset, as predicted by Eq. (6). Figure 2B shows that the separation
distance to the fourth power is linear with time, as predicted by Eq. (5).
Equations (5) and (6) were used in order to extract the experimental
value of B from the graphs presented in Fig. 2 (Supplementary
Discussion). This resulted in g = 0.323 + 0.057 for u = 1Pa-s, and
S =471+ 0.42 for u=0.06 Pass.

As we advance to study the interaction involving multiple rotors,
we will compare our system to two well-known equilibrium systems.
The first is charged particles, which also repel (same sign) or attract
(opposite sign) and are prone to form ionic crystals®. The second
system that bears a resemblance to ours is that of magnetic dipoles,
which are known to form chains and rings***>. For more than two
rotors, solving Eq. (4) analytically becomes challenging. Instead, we
will leverage the insights gained from the two-rotor scenario and
introduce the four-rotor and six-rotor interaction experimentally,
numerically and use linear stability analysis.

Four rotors

Two rotors of opposite sign attract and propagate in space. In fact, in
our experiments, spin pairing is very common. Once the rotors make
contact, they advance in space as a bound dimer. To study the inter-
action between four rotors, we initilized two rotor-dimers such that
they advance toward each other, as shown in Fig. 3A. The two pairs
collide in a formation resembling an ionic crystal of plus and minus
charges (Fig. 3B). However, unlike static ionic crystals, in our experi-
ments, these lattice formations are never stable and quickly break into
two new pairs of rotor-dimers (Fig. 3C). This effect is purely due to the
dynamic nature of the interactions. Unlike static lattices, the forces
governing the system include not only attraction and repulsion
between particles but also angular forces that break the symmetry
causing the crystal to disperse. The pairs reorient due to interaction
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Fig. 2 | Scaling of flows of two same-sign rotors. Main plots (insets) are from the
high (low) viscosity bath. a Orbit angular velocity as a function of distance for two
same-sign rotors in a log-log plot. Overlay of five (two) experiments at different
shades of gray. Solid red lines mark the analytical prediction of 8 o 1/r3 (Eq. (6)).
b Distance to the fourth power versus time for the same experiments of two same-
sign rotors. The red solid lines are linear fits, verifying Eq. (5). Source data are
provided as a Source Data file.

with each other or with the walls (Fig. 3E) until reforming into a 4-rotor
gyromer (Fig. 3F). Once formed, the gyromer is stable for a long time
(-half an hour, Supplementary Movie 3). Simulations of rotors were
performed by propagating Eq. (4) using either a 5" or a 2" order
Runge-Kutta scheme in Python (Supplementary Discussion). The
simulations reproduce the experimental results taking 5 to be either
0.8 (Fig. 3J, L) or 80 (Fig. 3K). The arrows overlaying Fig. 3K are the
analytical solution for the velocities initially and at steady-state. Notice
how the viscous forces drive the outer and inner pairs apart, but the
inertial forces have a stabilizing downward component.

Ring formation

Rotor-dimers are a common and relatively stable feature of our
system. We therefore wanted to compare it to another system that
forms chains — magnetic dipoles. To that end, we examined an initial
ring formation, as depicted in Fig. 3G-1. The ring quickly disperses
into smaller “building blocks" of rotor-dimers. Subsequently, these
dimers attract and eventually create larger gyromers. This behavior is
starkly different from static magnetic dipolar systems, where ring
formations remain stable (as seen in the inset of Fig. 3G). At the lower
viscosity, we observe that rings still disperse but are stable for longer
durations.

The self assembly of multiple rotors

Up to this point, we have discussed simple and engineered cases of
rotors. We now seek to discover general and statistical properties of
gyromer formation, starting from random initial conditions. First, we
find that the angular velocity of gyromers in the high viscosity bath
scales as 1/N?, where N is the number of rotors in the gyromer as seen in
Fig. 4A. In this regime, gyromers are straight, and inertial interactions
maintain the structural integrity of the chain without contributing to

its angular velocity (similar to the two-rotor case, see Egs. (5) and (6)).
The angular velocity is thus governed by the viscous interactions, and
s06~1 /r3. Let us consider the angular velocity of the rotor next to the
center (all rotors have the same angular velocity, so we can choose the
rotor that is most convenient). In a long gyromer, velocities of its left
and right nearest neighbors cancel exactly, and so do next-nearest, etc.
(see gray ellipse in cartoon inset in Fig. 4A), and all that is left are the
two most distant rotors, at a distance L ~ N/2. Of these two, the closer
one is more dominant, determining the direction and magnitude of
rotation, giving 8 oc 1/N>.

Second, with increasing concentration, more monomers are
available, enabling longer chains to form more rapidly—but also to
dissociate more quickly (Supplementary Movie 4). It is, therefore,
unclear a priori what concentrations will produce longer gyromers. We
conducted experiments with increasing numbers of rotors, and ana-
lyzed gyromer lengths in each frame. We observe that, after reaching
steady state, in the high-viscosity regime (8= 0.3), the average gyromer
length first increases, see Fig. 4B. At low concentrations, for odd
numbers of rotors, a steady state is reached with a single gyromer; for
even numbers, the gyromer breaks when reaching the boundary. At
higher concentrations, the system enters a dynamic steady state where
gyromers continuously collide and reassemble, but the average gyro-
mer length is constant N ~ 2. In contrast, at lower viscosity (8 = 5), a
single long gyromer tends to form even at higher concentrations (see
snapshots in Fig. 4D), although the resulting structure is notably less
straight. In this regime, where inertial interactions are stronger, we
observe the emergence of new structures—both in simulations and in
experiments—that are absent in the high-viscosity case. These include
branched polymers and intermediate ring-like formations, Supple-
mentary Movie 5. The size of the gyromers in this regime can be
characterized by their radius of gyration, analogous to molecular

polymers, defined as R, = /> [r; — Yeml?/N /a, where ¥c, denotes the

center of mass.

Comparing experimental results to simulations at different con-
centrations shows similarities and differences (Supplementary
Movies 6, 7). Using inertial values in the range (g € [0.8, 1]), we start to
observe gyromers in simulation, though they are less stable and more
quickly dissociate into dimers and trimers. There can be several rea-
sons for deviations from the simplified model — (a) at short distances,
our theoretical model is no longer expected to hold. Indeed, experi-
mentally, we observe deviations even for a pair of opposite rotors as
they approach distances of = 3a from one center to another (Sup-
plementary Fig. 9). (b) Since the Reynolds number is not negligible,
there may be deviations from simple pair interactions such that
superposition does not strictly apply. (c) The three-dimensional nature
of the flow at close proximity may play a role. (d) Other interactions,
though weaker, come into play, such as attraction due to capillary
forces (Supplementary Fig. 8). In the future, full, 3D simulations of the
flow around adjacent rotors may assist in better understanding the
stability of gyromers.

Figure 4C shows a phase-space of the formed structures in the
simulations. A phase’s type is determined by the most prevalent
structure (Supplementary Discussion). At small § ~ 0.1 the Stokes
regime dominates and gyromers do not form at all tested area frac-
tions [¢ € (0.02, 0.2)]. At slightly higher values, 8 -~ 0.3, we start to
observe dimers as the most stable configuration. Going to 8 - 1, we
observe gyromers up to ¢ = 20%. At higher values of § - 10 - 30, and
for low and intermediate concentrations, there are mixed states of
gyromers, lattices, and occasional rings. The steady state configura-
tions are sensitive to initial conditions and to the total number of
rotors. At 8 =100, up to ¢ = 15% there is a re-entrant to a stable
gyromer phase. In these high values of inertial interactions, dipolar-
like interactions dominate, and gyromers are more stable to per-
turbations. At higher concentrations, stable structures are
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new pairs of dimers, advancing in ninety degrees compared to the initial pairs.

d The two dimers advance in space until reaching the boundary. e The dimers turn
due to the shape of the boundary and advance towards each other. f The dimers
meet each other in a way that enables the formation of a 4-gyromer (tetramer)
which self-propels in space. g Ring initial formation. The inset shows a static
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magnetic ring. h The ring breaks into three dimers that propagate forward (i) until
they reach the boundary (later forming longer gyromers). j Simulation of two
dimers colliding and switching pairs with § = 0.8. k Simulation of a 4-gyromer
advancing through space (8 = 80). Arrows are analytic solutions of the velocity field
initially and at steady-state. Blue arrows indicate the viscous part, and yellow the
inertial part. I Simulations of an initial ring structure of six rotors with = 0.8 break
into three dimers as in the experiment. The scale bar is 4 cm in all figures.

predominantly lattices. Experimental values are plotted on the
phase-space as ‘x’s, where a broader stability regime for the gyromers
can be observed.

Snapshots from the experiments for the two viscosities (8 = 0.3,
and B = 5) are presented in Fig. 4D. Comparable snapshots from
simulations are presented below in Fig. 4E. For the higher viscosity
bath, we present the dimensionless radius of gyration R; (more on R, in
the Supplementary Discussion). In Fig. 4F, G, we show that the theo-
retical flow lines for §§ ~ 100 resemble magnetic interactions, and for
S~ 0.8, flow lines resemble a torque dipole but with a component that
breaks left-right and top-bottom symmetry.

We have experimentally tested many initial configurations—
random, ring, lattice, line—and all resulted in gyromer formation (see
Fig. 5A). Once formed, isolated gyromers were stable. In Fig. 5B, we
show the stability of a 7-gyromer by plotting the maximal formation
as a function of time in both the high viscosity bath (8 = 0.3), the low
viscosity bath (8 = 5), and in simulations (with 8 = 10). The dynamics
are more rapid in the low viscosity bath and in the simulation. In all
cases, once the gyromer forms, it stays stable. A key ingredient to the

stability of the gyromers is the spin of individual rotors. Gyromers
are stable for up to a couple of hours when no free monomers are
present. A question arises: what makes the gyromer break after such
a long time of stability? (Supplementary Movie 8). From the analysis
of the rotor’s spin, it can be seen that there are always deviations in
frequencies of up to 10% (see Fig. 5C). In fact, in simulations, we see
that adding noise to the spins increases gyromer stability (Supple-
mentary Fig. 7). However, once the difference is greater than around
20%, gyromers dissociate. In experiments, this happens when one of
the batteries starts to fail. A typical instance of gyromer breakage is
shown in Fig. 5C along with the failure of one of the rotors, marked
in green.

Discussion

In this work, we have revealed the novel dynamic self-assembly of
mixed-sign rotors, demonstrating that due to the combination of
viscous and inertial forces, oppositely spinning elements attract and
propagate to form active structures termed gyromers. Unlike
homogeneous rotor systems that lead to the formation of hexagonal
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gyromers as a function of 1/N?, where N is the number of monomers in the gyromer.
Error bar is the standard deviation across the run. b Average chain length (in units
of rotor diameter), after reaching steady-state, as a function of the total number of
rotors in the bath. At low viscosity (8 = 5, blue squares), and for lower concentra-
tions of the high viscosity (8 = 0.3, circles), a linear trend is shown. At higher
concentrations for = 0.3, the average decreases considerably. Red triangles are
engineered initial conditions, starting from a line; circles and squares indicate
random initial conditions. Two typical snapshots from experiments are shown. Red
dotted lines link values obtained for random I.C. with those of line I.C. ¢ Phase-space
of formations from simulations showing a disordered state in the viscous limit
(cyan), lattices at higher area fractions and inertial forces (blue), and gyromers in
the intermediate regime (red) and at low and intermediate area fractions for high .
Experimental values are plotted as “x’s on top (in red since they are all gyromers).

The background color is according to the average gyration length of the formations
in simulations divided by the total number of rotors, N, in each formation. For
gyromers, Rg > N (red), whereas for lattices we expect R, VN, and indeed get
lower values (blue). Snapshots from simulations are on the right, showing the
different phases. d Snapshots from experiments starting from random initial con-
ditions with 11 and 20 rotors in the high viscosity (8 = 0.3). Highlighted are the
formed gyromers (the scale bars are 4 cm). Middle panels are snapshots from
experiments in the low viscosity (8 = 5). e Simulations with inertial to viscous ratio
comparable to the experimental ones (8 = 0.8 or = 2) show gyromer formations
highlighted in colors for = 0.8, and branched and curved gyromers are observed
at §=2.f, g Analytic streamlines around a gyromer of six rotors, showing flow lines
along which a positive rotor would be advected. Two values of 8 are shown, 100 and
0.8. Source data are provided as a Source Data file.

lattices, our mixed-sign rotors orchestrate themselves into linear
assemblies driven purely by hydrodynamic and steric interactions.
When two counter-rotors form a dimer, this dimer acts as a dipole
moment. Since the interactions are dipolar, just like in magnets, the
formed structures also resemble magnetic formations such as
chaining®. However, our system is active, and has in addition to the
radial, dipolar-like, interactions, also tangential interactions, which
change the nature of the resulting dynamical states. That is, unlike
magnetic particles, after gyromers are formed, they are not static. In
the high viscosity bath, we observe strictly straight, linear chains; in
the lower viscosity bath, gyromers can be branched, and are more
curved and fluctuating. Simulations indicate that when increasing
inertial forces further, gyromers fold into tertiary structures of
square lattices and rings, which remain stable. At the microscale,
inertia becomes negligible, but similar radial interactions may arise
from viscoelastic forces. In such cases, however, additional effects,
such as memory, may play a role.

These findings not only enhance our understanding of active
matter systems but also lay a foundational step towards engineering
advanced materials and devices harnessing the self-organizing princi-
ples observed in natural and synthetic active systems, presenting
opportunities for future explorations of the complex interplays of
force, motion, and structure.

Methods

Experimental setup

Each rotor consists of a brushless motor (80 rpm) powered by a
LIR2477 battery and enclosed in a 3D-printed cylindrical shell (radius
a = 1.8 cm and height 7.5 cm). The shell design was created in “Tin-
kercad" with a circular profile and a square base compatible with the
motor attachment. The model was printed using a 3D printer (Bumba
lab-1-Carbon). A stand to securely hold the battery in place was printed
separately. The printed models can be seen in Fig. 1 in the Supple-
mentary Information. Thin 3D-printed belts were added to reduce
friction between rotors and with the bounding walls. A 3D-printed
propeller attached to the bottom pin of the motor ensured counter-
rotation of the rotor and propeller, and both were immersed in oil to
ensure similar resistance. All rotors were carefully balanced with
Plasticine to prevent precession. The experiments were performed in a
cylindrical silicone-oil bath (diameter 60 cm, height 9.5 cm, density
p =10°kg/m?) of two viscosities: u = 1 Pa-s and = 0.06 Pa-s. Each rotor
was marked with a green off-centered dot in order to track its spin. The
experiment was continuously monitored from above using a Sony
camera (a7s_3, lens FE 4/24-105 G-OSS), capturing snapshots at one-
second intervals. Rotors trajectories and spins were extracted in
Python with OpenCV. Particle Image Velocimetry (PIV) of the flow field
was performed using Thorlabs-HNLO5SOL laser and PIVIab software
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Fig. 5 | Gyromer stability and breakage. a All tested initial conditions resulted in
the formation of a gyromer. b The number of rotors in the longest gyromer, [y,
divided by the total number of rotors, N, as a function of time normalized by

average spin. Results are presented for N = 7, with additional results for a 5-gyromer
(8 =0.3) and a 14-gyromer (8 = 5). ¢ The moment of breakage of a 9-gyromer. The
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gyromer broke into a dimer and a 7-gyromer. Analysis of the spin of the rotors
shows that when the spin is decreased by more than twenty percent, the gyromer
starts to disintegrate. Snapshots at three points in time are shown. Source data are
provided as a Source Data file.

Numerical simulations

Molecular dynamics simulations were written in Python using a fifth-
order Runge-Kutta scheme (free-space) or a second-order scheme
(periodic boundary conditions). We have tested values of the inertial-
viscous ratio f ranging from 0.01 to 1000. Gaussian noise (typically
10%) was added in some runs. The timestep was dt = 107. Soft-core
steric interactions between particles were included in the form of
purely repulsive harmonic springs with strength ws = 5:10*. Interac-
tions vanish beyond r; > 2a, and for ry; < 1.8a the radial hydrodynamic
term was set to zero to avoid unphysical overlap. This stabilization
allowed larger timesteps without changing the dynamics.

Data availability
Data supporting the findings of this study are available within the
paper and its Supplementary Information files and movies. Source data
are provided with this paper. All further processed data are available
from the corresponding author upon request. Source data are pro-
vided with this paper.

Code availability
Code used for the simulations is available on Code Ocean DOI
10.24433/C0.1616623.v1.
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