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Hundred-layer photonic deep learning

Tiankuang Zhou 1,2,4, Yizhou Jiang1,2,4, Zhihao Xu1,2, Zhiwei Xue1,2 &
Lu Fang 1,2,3

In the artificial intelligence era propelled by complex computational models,
photonic computing represents a promising approach for energy-efficient
machine learning; however, error accumulation inherent to the analog nature
limits their depth to around ten layers, restricting advanced computing cap-
abilities towards large language models (LLMs). In this study, we identify that
such error accumulation arises from propagation redundancies. By introdu-
cing perturbations on-chip to decouple computational correlations, we elim-
inate the redundancy and develop deep photonic learning with a single-layer
photonic computing (SLiM) chip that exhibits error tolerance. The SLiM chip
overcomes the depth limitations of optical neural networks, allowing for error
rates to be constrained acrossmore than 200 layers, and extends spatial depth
from millimeter to hundred-meter scale, enabling a three-dimensional chip
cluster. We experimentally constructed a neural network with 100 layers for
image classification, along with a 0.345-billion-parameter LLM with 384 layers
for text generation, and a 0.192-billion-parameter LLM with 640 layers for
image generation, all achieving performances comparable to ideal simulations
at 10-GHz data rate. This error-tolerant single-layer chip initiates the
advancement of state-of-the-art deep learning models on efficient analog
computing hardware.

Notable progress has been witnessed in the field of artificial intelli-
gence (AI), primarily driven by the advancement of deep learning1–4. It
is known that by extending the depth of neural network layers and the
complexities of the neural network structures, a renaissance of AI
debuts, and large models are developed for generating contents close
to human level5–14. However, the ever-increasing demand for deeper
models also exacerbates the speed and energy exhaustion on digital
electronic computational devices, which are unfortunately reaching
their extremes15–18.

One promising route in the saturating digital intelligence era is
physical intelligence, which computes with efficient physical media,
including photonics, electronics, spintronics19–28. Especially, exploiting
the large bandwidth and high parallelism of optics, the optical neural
network (ONN) is prosperous and haspotential in high-performanceAI
computing. In free-space lens systems and photonic integrated cir-
cuits, the spatial and temporal computing approaches have yielded

prototypes in linear ONNs29,30, multi-layer all-optical ONNs31,32, and
optoelectronic nonlinear neural networks33–36. These neural networks
facilitate sequence34,37, image38–40, video25,32, and three-dimensional
(3D) volumetric scene41,42 processing in the optical domain. Notably,
based on the evolution of integration, the silicon photonic platform
represents the most mature platform to be exploited to map neural
networks for the processing of the signals intelligently30,37,43–45. The
large bandwidth of the silicon photonic chip proves an ideal analog
machine learningmodule for high-speed signal processing in the radio
frequency domain46,47.

However, existing ONNs cannot achieve the deep structures
necessary for the advanced AI tasks. The primary reason is that, due to
the analog nature of physical computing, numerical errors accumu-
lated during deep-layer propagation cause the computed results to
deviate significantly from the ideal simulation (Fig. 1a, left). One solu-
tion is to reach precise numerical operations by carefully calibrating
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the transmission properties of the system48, or by employing multiple
steps for asymptotically approaching the high-precision results49,50.
However, these approaches would require extensive spatial and tem-
poral overhead, proving infeasible for large models containing hun-
dred layers and billion-scale parameters. In addition, even if these
approaches improve the precision of system calibration, the inherent
data noise in direct proportion to the input speed remains hardly
compensated51. As a result, it is still elusive to realize deepmodels with
a high data rate based on existing analog computing methods.

Instead of striving for ultrahigh precision operations with the
physical architecture, it is more practical to accommodate the errors
as part of the ONN and tolerate these errors during the computing52,53.
Nonetheless, realizing an error-tolerant architecture remains techni-
cally challenging. Firstly, the spread and accumulation of the noise-
induced error should be inhibited. Existing photonic chip

designs utilizing the MZI mesh, cross-bar mesh, and diffractive meta-
lines require multilayer propagation for one linear matrix-vector
multiplication37,54–56. The multi-layer structure inevitably exacerbates
the issue of error accumulation. Also, the commonly used nonlinear
layers like the rectified linear unit, sigmoid57, or optical analog activa-
tion functions33,34,58 are not resilient to the errors and amplify the noise
with detection processes, which disseminates the errors to the sub-
sequent layers. To achieve very deep neural network architectures, it
would be necessary to minimize the error propagation and bound the
error rate throughout the entire ONN.

Herewe report a single-layerphotonic computing (SLiM)chip that
removes all the error-prone propagation layers, targeting ONNs with a
hundred-layer depth working at tens of GHz data rate. To realize SLiM,
we incorporate perturbations within the photonic chip design, which
breaks the on-chip wavelength correlation to realize arbitrarymatrices

Fig. 1 | Single-layerphotonic computing. aDue to theon-chip redundancies, error
accumulation arises and precludes optical neural networks (ONNs) of large depth.
We propose single-layer photonic chip (SLiM) removing these redundancies and
realizing bounded error rate across over 100 layers. b By injecting the propagation
perturbation on chip, we decorrelate the weights for arbitrary matrices, thus
eliminating the redundant propagations to minimize the error accumulation. Per-
turbation is further injected into the detection process and decorrelate the signals

from the errors, alleviating the error-prone nonlinear layers. The single-layer pro-
pagation and detection lead to an error-tolerant photonic chip shown at the bot-
tom panel. c The single-layer computing connects chips in the three-dimensional
(3D) hundred-meter space for the execution of billion-parameter deep neural
networks, supporting advanced tasks like sentence completion, image recognition,
and image generation. NL, nonlinearity, MUX, wavelength multiplexing, Scale-
bar, 1mm.
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and decorrelates the signal from the error with the detection-based
activation function. The single-layer photonic chipminimizes the error
propagation and guarantees bounded errors regardless of the number
of network layers, surpassing the depth limit (DL) of ONNs. The arbi-
trary error-tolerant computing with single-layer propagation and
detection facilitates chip clusters with computational connections at
hundred-meter spatial depth. Experiments were conducted at 10GHz
to build 100-layer residual network, classifying the full ImageNet-1000
(photonic accuracy 85.2%, digital accuracy 85.9%). Transformer-based
error-tolerant ONNof 384 and 640 layerswith billion-scale parameters
(0.345B and 0.192B) were then experimentally evaluated to generate
prompted language (photonic loss function value 3.04, digital loss
function value 2.96) and conditioned image (photonic loss function
value 7.32, digital loss function value 7.28).

Results
Error tolerance with single-layer photonic computing
Conventionally, implementing one layer of ONN on-chip consists of
multiple layers of physical propagations and nonlinear activations,
which is formulated as Y = f ðQL

i = 1W iX Þwith X, Y, f, andWi denoting the
input, output, nonlinear, and propagation layers (Fig. 1a, left). Taking
the per-layer error into account, the final error distorted model is
expressed as Y +ΔY = f

QL
i = 1 W i +ΔW i

� �
X +ΔXð Þ

� �
, where the relative

error VarðΔY=Y Þ � PL
i = 1 VarðΔW i=W iÞ

� �
, meaning that the error is

amplifiedbya factor of L after propagation. As a result, the extra layers,
including the second to the final linear layer and the error-prone
nonlinear function, exacerbate the error accumulation. However, in
view of the computation, these layers are indispensable as the pro-
pagation layer number L in direct proportion to the output dimensions
M supports a fully tunablematrix and the nonlinear layers facilitate the
neuron activations. Here, we eliminate these error-prone ONN propa-
gations and nonlinear layers by proposing a photonic chip imple-
menting error-tolerantmatrix-vectormultiplications with only a single
propagation layer, achieving bounded error even when deeply con-
catenated (Fig. 1a, right). The detailed error model is presented in
[Supplementary Note 1 The error model of ONN].

As illustrated in the Fig. 1b, in SLiM chip, the inputs xi are assigned
to specific wavelengths λi. Multi-wavelength light is multiplexed into
a single fiber channel and coupled into an input loading chip for the
configuration of inputs xi onto corresponding light intensities. To rea-
lize the computing matrixW, the transmission channels are modulated
on chip by exerting wavefrontΦ, derived from the equationW = jGΦj2,
where G represents chip-to-chip propagation. However, because of the
spectral proximity, thewavefrontΦ and the transmissionmatrixG both
exhibit a high correlation, resulting in linear dependence on the right-
hand side of the equation that does not guarantee a solution. We
introduce on-chip perturbative noise to break the correlation, mathe-
matically represented as Φ̂k =Φk � ejn2πΔk=λi , where k symbolizes the
waveguide coordinate with corresponding noise Δk. The linearly cor-
related equations are now reformulated as

W i = G0
bΦi

�
�
�

�
�
�
2
, 1≤ i≤N ð1Þ

The set includes N linearly independent equations, enabling the
realization of arbitrary matrices. In realization of the target weight
matrix W, the modulation wavefront Φ̂i is first solved with the cali-
brated propagation matrix G, after which the corresponding modula-
tion coefficients are loaded onto the single-layer chips.

To further preclude the dissemination of these minimal errors, it
necessitates a nonlinear function todecorrelate theoutput errors from
the signals. The error-isolating function features zero gradient with
respect to the error, ∂f =0. However, the solutions easily degenerate
to trivial constant-valued functions, nullifying the contributions of
subsequent layer. We inject noise to the gradient so that signal

diversity is maintained while the errors are only transmitted to the
subsequent layer through finite positions. The solution can be for-
mulated as the Kronecker delta function through f =

R
δðx � Δf Þ,

whereΔf represents the noise position in the nonlinear function. Note
that this activation function can be implemented at the detection with
the analog-to-digital conversion ðÞD, by assigning the error-distorted
values to the nearest signal levels. As an illustration in Fig. 1b, with
single-layer computing, despite the input errors, fluctuation of the
propagation is minimized and the outputs are then pushed towards
the correct levels. It can be theoretically proved that the proposed
SLiM constrains the error rate by adhering to the following inductive
error bounding criterion,

E W +ΔWð Þ X +ΔXð Þð ÞD
� �

≤ E0, if E Xð Þ≤ E0: ð2Þ

Analysis shows that the SLiM could tolerate input error with
standard deviation (Std) as high as 44% ([Supplementary Note 3 Error-
bounding with SLiM]). We adopted the injected propagation noise as
kΔd for Δk, and Δd =20μm showed the largest rank for the 256 ele-
ments on chip, which was selected for photonic chip fabrication. The
injected detection noise Δx is data-dependent and determined during
the training process. The details of the chips are provided in [Methods
“Implementationof single-layer chips”]. For detailedderivations please
refer to [Supplementary Note 1 The error model of ONN] and [Sup-
plementary Note 2 Formulations of the SLiM].

The single-layer photonic chips lift the computational dimension
from on-chip computing to chip-to-chip connections, such that large
numbers of photonic chips can be connected to compute in the 3D
space to execute billion-parameter large models (Fig. 1c), which
enables the advanced AI tasks, including text completion, image
recognition, and image generation.

Deep matrix multiplication with single-layer computing
We first confirm that perturbation injection of the SLiM chip facilitates
matrices of any size while enabling full DOFs, which is essential for
achieving error-tolerant matrix-vector multiplication (refer to Fig. 2a).
The phase-voltage dynamics influenced by perturbation are measured
(Fig. 2b). Leveraging the symmetric structure of the designed error-
tolerant chip, an analysis was conducted on 128 spatial waveguide
channels using driving voltages with 0-4 V modulation range. Four
distinct wavelengths are highlighted, each demonstrating random
starting phases across both spatial and spectral domains. To illustrate
the decorrelated transmission properties, matrices were created using
one-hot vectors derived from the wavelength channels at 1530, 1540,
1550, and 1560nm. In Fig. 2c, the first row showcases example [e2, e1, e4,
e3], where ei symbolizes the vector with the i� th wavelength active
and the others nullified. The entries can be reconfigured flexibly, with
thefinal row representedas [e3, e4, e1, e2]. The average ratiosof active to
inactive states were determined to be 215.16 in simulations and 244.32
in experimental conditions. This independent propagation makes it
possible to implement matrices with diverse sizes and values. As illu-
strated in the upper section of Fig. 2d, various combinations of input
sizes and output channel numbers were tested, with each iteration
focusing on 100 random matrix samples. The matrices displaying full
DOFswere extracted anddisplayed in the lower section of thefigure. By
gradually increasing the input size, the normalized mean square error
(NMSE) recordedwere found tobe0.41% (with input size 2)/0.46% (with
input size 4)/0.25% (with input size 8)/0.03% (with input size 16),
respectively. In contrast, the NMSEs rose significantly to 4.59%/5.77%/
11.22%/17.57% without the perturbation incorporation.

To experimentally assess error tolerance, we configured the out-
put channel number as 8 and examined all possible 256 occasions. The
findings indicate maximum mean error being 0.16% (Fig. 2e). Addi-
tionally, we evaluated temporal stability. During 10-hour measure-
ments, the mean error of W for the 8-dimensional outputs stayed less
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than 1.0%, with highest absolute deviation being 0.90% (Fig. 2f). To
verify error bounding criterion of Eq. (1), we examined the multi-
plication error across 200 layers by employing the perturbed propa-
gations and detections. The resulting error rates were analyzed under
varying levels of Gaussian noise ΔX at 5%/10%/20% (Fig. 2g). In contrast
to the perturbed single-layer outcomes, themulti-layer results without
perturbation progressively worsened, ultimately hitting 41.5%/48.8%/
50.7% due to error accumulation. Meanwhile, the errors from single-
layer multiplication remained below 0.76%/33.5%/44.5%. The peak
error rates associated with distinct system noise levels were calculated
(Fig. 2h), where the error rate with multi-layer photonic computing

reached 50% once the noise level exceeded 6.5% standard deviation,
indicating that performancedegraded to randomguessingunder high-
speed conditions. In comparison, the errors E0 resulting from error-
tolerant multiplications were effectively constrained below 33.5%/
41.3%/44.5% across noise levels of 10%/15%/20% standard deviation
over 200 layers. Statistical assessments corroborated by proof in
[Supplementary Note 3 Error-bounding with SLiM] indicate that a
standard deviation of 44.3% in the inputs leads to a 47.1% error toler-
ance in the network, which aligns with the theoretical limit of 50%
random-guess error tolerance. The implementation of single-layer
computing operations thus facilitates the functioning of deep ONNs.

Fig. 2 | Realizing arbitrary matrices towards deep layers. a The single-layer chip
realizes matrices with arbitrary dimension, with entry values fully reconfigurable.
The right subfigure exemplifies the single-layer chip after packaging. b The
experimentally calibrated dispersive characteristics of 128 channels. The pertur-
bation on chip leads to random initial phase. c Examples showing the decorrelated
outputs with dispersive perturbation. Light of different wavelengths could be
independently focusedonto arbitrarypositions. First to third rowsdesignate [e2, e1,
e4, e3], [e1, e2, e3, e4], [e4, e2, e1, e3], [e3, e4, e1, e2]. d Matrices with arbitrary
dimension and full degree-of-freedom (DOF). The relative error is quantitatively

evaluated by sweeping the input dimensions as well as the output dimensions,
where the error with full DOF as delineated with dashed lines, were plotted against
the method without redundancy elimination. With redundancy elimination, the
relative error dropped from ~10 to ~0.1%. e Experimental relative errors for matrix
multiplication with 8 outputs channels. f Analysis of the temporal stability within
10 hours. g Deep matrix multiplications across 200 layers with and without error
tolerance at varying noise levels. h Maximum error rates with varying noise levels
across 200 layers. Shaded area, 2 Stds. NMSE, normalized mean square error.
Scalebar, 3mm.
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Deep single-layer computing beyond the spatial depth limit
The interchip computing of SLiMs can be interconnected to create an
expansive ONN chip cluster (see Fig. 3a). Here we demonstrate these
chip-to-chip connections can spandistances ranging from centimeters
up to hundreds of meters. By combining K chips into a single unit, the
DOFs increase K-fold, and the spatial depth can further extend to
kilometers, making it feasible to develop an ONN chip cluster with 3D
computational connection. For illustration, a two-layer ONN was
developed to classify the MNIST dataset as a means of assessing the
spatial capabilities of the error-tolerant computing configuration

([Methods “Dataset preparation”; Methods “Network architecture and
training methods”]). This experimental setup utilized five relays to
extend the transmission distance between 0.1 and 45m (Fig. 3a, right
and Fig. S2; [Methods “Spatial depth of SLiM computing”]). The neural
network featured inputs and hidden neurons, both with 64 dimen-
sions. In Fig. 3b, we investigated the classification accuracies at various
receiver sizes, with four detectors evenly distributed. For accuracy
rates above 95%, the upper (and lower) thresholds were 8m (0.02m)/
28m (0.8m)/80m (2.5m) determined based on 5, 20, and 70mm
aperture sizes. Furthermore, Fig. 3c highlights results from three

Fig. 3 | Deep single-layer computing beyond the spatial depth limit. a The
computational connectionbetween single-layer chips enable a cluster composedof
extensive ONN chips. By assembling multiple chips, both the spatial depth and
computational capabilities become scalable. A folded-space experimental setup
was developed to assess the scalability of spatial deep computing (right panel).
b Accuracies for MNIST image classification are demonstrated across varying
spatial depth and receiver sizes using a two-layer ONN, with DL indicating the
spatial depth limit. c Experimentally measured results are showcased for spatial

depths of 0.1m/5m/45m, with accuracies of 95.75%/95.76%/95.53%.d TheDOF can
be expanded from256up to 256Kbyutilizing spatial ensemble techniques. The top
panel displays the ensemble configuration of K = 16. e The chip ensemble can be
adjustedby varying the chip ensemble sizeK and the gapdistanceH between them,
which significantly enhances accuracy from 17.05 to 95.78% when adopting
ensemble K to be 16, effectively surpassing the limitations of a single chip’s per-
formance. This framework can further support kilometer-scale distances, accom-
modating millions of error-tolerant chips. Scalebar, 2mm.
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distinct experiments at spatial depths of 0.1m/5m/45m, achieving
accuracies of 95.75%/95.76%/95.53%, which are close to the simulated
accuracy of 95.78%. It is important to note that the findings in Fig. 3b, c
are constrained by the spatial propagation depth limitations asso-
ciated with individual chips. The spatial DL is defined by the equation
DL=DinDout=λ, where Din, Dout, and DL refer to the input aperture,
output aperture, and the spatial DL, respectively. For the three aper-
ture sizes, the spatial DLs were calculated to be 17, 65, and 230m.
When the target detectors are evenly spaced within the receiver
aperture, the effective computing depth with the 4-D output is
expected to be a third of theDLs (5.7, 21.7, and 76.7m, Fig. 3b), aligning
well with the effective ranges identified during classification tests (8,
28, and 80m).

Since the SLiM operates with spatial-spectral propagation, it
facilitates the integration of multiple chips to perform computational
tasks with greater DOFs and extended operational range. As illustrated
in Fig. 3d, inputs can be loaded onto numerous chips, which are
interconnected and function as a single computational unit. By com-
bining K chips, the DOFs increase by a factor of K, resulting in a total
computing capability that is K times greater. The upper section of
Fig. 3d displays an ensemble comprising 16 chips post-fabrication and
packaging, with inter-chip gaps of 30mm. Consequently, the cumu-
lative DOFs rise to 4096, resulting in a computing performance of
335.54 PetaOPS. Spatial propagation depth was also enhanced by
optimizing the emission aperture via a tunable configuration. The
diffraction resolution can be expressed as DL= EDinDout=λ, where E
represents the tunable enhancement factor, which can be adjusted by
modifying the inter-chip distance (H). By assembling 2/4/8/16 chips,

the classification accuracies improved to 85.27%/94.67%/95.34%/
95.78%, respectively (Fig. 3e). The tunable ensemble increased the
accuracies further to 93.80%/95.78%/95.78%/95.78%, which extends
the spatial depth to kilometers. Given that each chip is on a millimeter
scale, such an ensemble could create an ONN chip cluster comprising
chips towards million scale, elevating performance to ZettaOPS.

Reaching ONNs beyond the depth limit for advanced artificial
intelligence
The error-tolerant SLiM computational propagations were then inte-
grated to form deep ONNs with over 100 layers (see Fig. 4a). For
demonstration purposes, we created deep networks aimed at image
classification using the full ImageNet-1000 dataset ([Methods “Dataset
preparation”;Methods “Network architecture and trainingmethods”]).
Both error-tolerant (single-layer computing) and non-error-tolerant
(multi-layer computing) ONNs with residual connections were devel-
oped at depths of 18/34/100 layers, with detailed structural informa-
tion outlined in Fig. S3. Figure 4b illustrates the parameter
convergence for the error-tolerant ONNs with downsampling for
visualization. To assess error tolerance, varying levels of noise were
introduced as the layer depth increased, and the classification
accuracies under these conditions are presented (Fig. 4c). In a scenario
without noise (where noise-distorted layers were configured to zero),
both single-layer and multi-layer networks obtained top-5 accuracies
as high as 85.9% and 93.0%, respectively. However, when 5%-Std
Gaussian noise was introduced, the accuracy of multi-layer networks
plummeted to 37.0%. Increasing the noise standard deviation to 10%/
20% further reduced their accuracies to 2.2%/1.2% at the 2nd/10th

Fig. 4 | 100-layer error-tolerant ONN. a Deep ONNs were constructed using inter-
chip computational propagation. High-speed inputs, organized into an 8-channel
modulator array, were directed to the transmitter (inset) and loaded onto the
single-layer chip. b Deep ONNs were trained for the complete ImageNet-1000
classification, with parameters including perturbed weights and perturbed non-
linearity downscaled to a 120-dimensional representation here. The grids in white/
gray represent weights +1/−1, respectively. c Analysis was conducted for the deep
ONNs involved in classifying the ImageNet-1000dataset. The networks were tested
against various levels of Gaussian noise featuring different standard deviations

(Stds), focusing on both the ONNs with single-layer and multi-layer chip imple-
mentation as noise gradually distorted the layers. d Experiments with different
depths and operational frequencies. The results indicate consistent improvements
in performancewith increasednetworkdepth for theONNbasedon the single-layer
chip, in stark contrast to the significant decline in classification accuracy seen in
multi-layer ones at elevated frequencies. Error bars represent twice the Stds., with
detailed values provided in [Supplementary Note 4 Computing capabilities of
single-layer photonic chip]. A.u., arbitrary unit.
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layers, respectively. In contrast, the single-layer networks exhibited
accuracies of 85.5%/85.6%/81.2%. Notably, a significant decline in
accuracy for the single-layer networks to 16.4% was only recorded
when the noise reached a 50% standard deviation.

Utilizing error tolerance, we assessed the performance of the
developed deep ONNs at high speeds. In the experiments, the opera-
tions in ONN were decomposed to 8 × 8 matrix computations, with
inputs being loaded onto an 8-channel input array before being sent to
the transmitter array ([Methods “Deep neural network with SLiM
chips”]). Figure S11 illustrates the measured high-speed characteriza-
tion with eye diagrams, covering frequency ranges from 1 to 10GHz.
From Fig. 4d, we observe that the error-tolerant ONNs with 18/34/100
layersoperate at 1/5/10GHz, stably achieving high accuracies of 80.9%/
83.8%/85.9% and 80.7%/83.8%/85.7% at the 1 and 5-GHz settings,
respectively. Even at the maximum speed of 10GHz, the accuracies
remained relatively high at 80.4%/83.2%/85.4%, showing only a slight
decline by up to 0.48% from the ideal simulations. In contrast, the
multi-layer ONNs experienced significant performance degradation,
recording accuracies of only 3.6%/10.6%/15.5% at 1 GHz, with further
declines to 0.58%/1.2%/1.4% and 0.46%/0.62%/0.34% at 5 and 10GHz,
respectively. Intermediate activation results are provided in Fig. S3.
The error evaluation throughout the entire deep ONN indicated that
the analog noise at the highest frequency of 10GHz is equal to Gaus-
sian noise with Stds ranging from 20 to 50%. This noise could be
effectively mitigated in the single-layer photonic chip.

To illustrate the SLiM chips in larger AI models, we developed
several variations of ONN models akin to GPT (generative pretrained
transformer), featuring parameters of 5 million/30 million/60 million/
0.117 billion/0.345 billion, which correspond to network depths of 8/
16/32/48/96 layers and the error-tolerant matrix multiplications were
employed (Fig. S4, [Methods “Dataset preparation”; Methods “Net-
work architecture and training methods”]). Figure 5a presents the
experimental outcomes from 356 token samples from the evaluation
dataset ([Methods “Deep neural network with SLiM chips”]). As the
model size increased, the average loss (with standard deviation)
decreased from 4.91 (0.4108) for the 5-million-parameter model to
4.10 (0.4844)/3.72 (0.4950)/3.34 (0.5753)/3.04 (0.5864) for the
30-million/60-million/0.117-billion/0.345-billion-parameter models,
respectively. Concurrently, the token prediction accuracies improved
significantly, rising from 28.58 to 34.51%/37.29%/40.14%/43.92%. To
further assess the predictable performance enhancements realized by
enlarging themodel size, we examined the trend of the scaling law.We
specifically fitted the number of parameters (in millions) and their
corresponding loss values to the function L=βN�α. The analysis
revealed a strong Pearson correlation of 0.9956, with parameters β as
5.97 andα as0.116.We alsoprovided standard inputprompts thatwere
not included in the training or testing datasets to the languagemodel,
which in turn generated human-like responses (Fig. 5b). At each gen-
eration step, the error-tolerant single-layer chips produce a token pool
with top 80% probability threshold (highlighted in green) and a token
was generated. The full sentence was constructed based on four
recursive generations. The output token closely matched the ideal
simulations, displaying only minor variations in individual prob-
abilities. Figure S4 provides a comprehensive overview of the para-
meters in the whole network along with the intermediate activations
for the tested sentences.

An error-tolerant SLiM model containing 16 blocks and 64 layers
was then developed to produce conditional images each with
256× 256 pixels, utilizing the ImageNet dataset for training (see
Fig. S5). After the training phase, the error-tolerant chips generated
images across six categories (Fig. 5c). In the experiments, the error
rates remained within 37.2%/38.6%/40.2%/38.8%/42.1%/39.1% for these
categories (Fig. 5d). For the assessment of the fidelity of these gener-
ated images against the actual dataset, we randomly evaluated 24,000
images from the trained model across three noise conditions

numerically: zero, 0.2-Std (akin to thenoise level observed from the 10-
GHz experiments, [Supplementary Note 3 Error-bounding with SLiM],
Fig. S3), and 0.5-Std (strongly distorted inputs). Following standard
procedures, FID (Fréchet inception distance) features with 2048-D
were computed for each input image.We then compared the averaged
features exhibiting different noise levels to those from the actual
ImageNet dataset. The average errors for the models with zero noise
and 0.2-Std noise were 0.019/0.012, with Stds of 0.027/0.028,
respectively (Fig. 5e). In comparison, the model with 0.5-Std noise
showed a larger average error of −0.078 with a Std of 0.089. This
indicates that while the outputs from the noise-free and low-noise
models remain close to the ideal simulation, the absence of error tol-
erance results in significant divergence in output features when higher
noise levels are encountered.

Discussion
In summary, we introduce deep error-tolerant SLiM, which benefits
from both scalable reconfigurability and robust error correction cap-
abilities. Given that current optical computing systems still struggle
with shallow depths, the approach of SLiM represents a significant
advancement toward practical applications of physics-based analog
machine learning systemsbyenabling deepONNswith over 100 layers.
Our findings demonstrate a substantial model comprising billion-level
parameters for general-purpose generation in diverse modalities with
similar performances to the digital implementations, which aligns well
with the requirements of sophisticated machine learning frameworks.
The SLiM could use universal data transmission channels, allowing the
chip to harness the inherent computational capacity of physical pro-
cesses with extra modulators for matrix construction. With a cali-
brated modulation efficiency of 1.7 µW/π (VπL =0.753 V-cm, as
elaborated in [Methods “Low-power phase modulation”] and Fig. S6),
the chip could realize competitive energy efficiency. Additional cal-
culations are detailed in [Supplementary Note 4 Computing cap-
abilities of single-layer photonic chip]. See [Supplementary Table S1
Comparisons of deep AI performances] for comparison with existing
techniques.

The introduction of the error-tolerant single chip breaks the
spatial barriers and represents a pivotal step toward universal com-
puting. In essence, we introduce the photonic version of chiplets with
SLiM, where the error-tolerant chip eliminates spatial limitations
through post-manufacturing ensembles. The showcased setup of 16-
chiplets ensemble is capable of executing Peta operations per second
at a frequency of 10GHz. Remarkably, the system’s error tolerance can
endure input noise levels of at least 20% standard deviation, and even
up to 44% standard deviation, as confirmed in [Supplementary Note 3
Error-bounding with SLiM]. This resilience aligns well with the signal
fluctuations encountered in sub-THz optoelectronic devices, sug-
gesting the potential to enhance the computing capabilities of each
chip by 10 up to 100 times through faster data transmission59. Addi-
tionally, the ensemble of chips supports scalable computing over
distances ranging from centimeters up to kilometers, with the poten-
tial to develop ZettaOPS (1021 operations per second) supercomputing
cluster with million-scale chips. This evolution moves beyond the
limitations of existing chiplet technologies mostly with planar con-
nections. By capitalizing on the widespread nature of data propaga-
tion, the single-layer chip can leverage the inherent computational
capacity of physical processes, potentially integrating trillions of
physical nodes, thus transforming into a ubiquitous intelligent com-
puting network.

Methods
Implementation of single-layer chips
Chip fabrication. The SLiM chips were designed and produced using a
silicon-on-insulator platform to showcase their capabilities effectively.
The primary single-layer chip integrated both transmitter and emitter
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functions, serving a critical role in propagation-based data processing.
Light was input through waveguide edge couplers, then split via multi-
modal interferometers and subsequently routed to a 256-element
array. During the propagation of signals on chip, dispersive pertur-
bation was introduced by progressively extending guided-wave dis-
tances. Thermal-optical phase shifters enabled independent phase
adjustments for each element in the array, with routing made possible
by a grating coupler array. The receiver component comprised 256on-
chip germanium photodiodes, each individually connected to the
printed circuit board (PCB). The circuit diagram of the SLiM chip is

displayed in Fig. S14. A separate low-power modulator chip was fab-
ricated using the same process, which featured an 8 × 8 transmitter
array. Each modulator was designed as an all-pass carrier-based ring
structure associated with an emission grating. To optimize the effi-
ciency of phase modulation while minimizing energy consumption,
themodulators operated in an over-couplingmode. The input-loading
chip included interconnected ring modulators arranged in a cascade,
linked through a sharedbuswaveguide. Eachmodulatordemonstrated
a 3-dB bandwidth exceeding 35 GHz as confirmed by process control
monitoring assessments; however, due to the limitations of the testing

Fig. 5 | Billion-parameter error-tolerant ONNs with single-layer photonic chip.
a The scaling behavior of the large language ONNmodels constructed with single-
layer computing is illustrated alongside experimental results. As the network size
increases from 5 million to 30 million, 60 million, 0.117 billion, and up to 0.345
billion parameters, there is a noticeable decrease in loss from 4.91 down to 3.04,
accompanied by a rise in accuracy from 28.58% up to 43.92%, with error bars
measuring half the Std derived from the experiments, while the scaling law is
described by the solid line indicating the fitting power function. b The generated
outputs based on sentence prompts were chosen from the token pool, which was

created by the language models, maintaining the top 80% probability; individual
probabilities are indicated in brackets. A complete sentence consists of four output
steps. c In the conditional image generation, two examples were drawn from six
categories, all produced via the single-layer photonic chip. d The bounded error
rate across 640 layers during a 10-step image generation process. e The FID (Fré-
chet inception distance) features of the images generated was analyzed, with
numerical calculations made to measure the feature distances from the true Ima-
geNet distribution for the single-layer photonic computing models under noise-
free conditions, as well as under 0.2-Std and 0.5-Std noise distortions.
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equipment, measurements indicated a bandwidth of only 10GHz.
Tapered edge couplers were utilized to facilitate input and output
connections.

Chip packaging. Electrical packaging. PCB boards were designed
and manufactured to serve as the interface for the chip. By employing
gold wire bonding technology, electrical connections were formed
between the chip bond pads and the pins on the PCB board. This setup
facilitated the interface for the 256-channel phase shifter and receiver
arrayon each chip. Sevenmultichannel connectors (Samtec ERF8-040-
05.0) were mounted on the PCB bottom layer to enhance electrical
connectivity. The input-loading chip was wire-bonded onto a high-
frequency PCB (Rogers RO3006) to minimize gold wire lengths and
reduce parasitic inductance. This high-frequency PCB utilized a
grounded coplanar waveguide structure to maintain a transmission
line impedance of 50 ohms. Additionally, a grounding structure and
shielding vias were incorporated between channels to ensure elec-
tromagnetic shielding. Multi-channel signals were subsequently
interfaced through side-mountedhigh-speed connectors (GwaveSMA-
KHD7) (see Fig. S8b). Die Bonding: the assembly of the PCB and metal
substrate was secured using M2.5 screws. The error-tolerant chip and
NTC thermistor were then affixed to the metal substrate with silver
epoxy, finalizing the die bonding process after curing the epoxy at 110
degrees Celsius. Optical Packaging: for optical signal transmission, an
8-channel fiber array (FA) with a 127μm pitch was employed, formed
by fusing single-mode fibers with ultra-high numerical aperture (NA)
fibers to convert the mode field diameter from 3 to 9μm. The optical
interface of the error-tolerant chip featured a 7-channel edge coupler
array with pitches aligned to the FA. Straight waveguides were added
on both ends, serving as the alignment aids, ensuring precise coupling
between the error-tolerant chip and the FA through motorized 6-axis
stages. Themeasured alignment loss between the chip and the FA was
3.1 dB per facet, and the FA was securely attached to the chip with UV
curing. The input-loading chip utilized single-lensed fibers for edge
coupling, resulting in an alignment loss of 1.5–2.0 dB per facet.
Packaging was conducted using a 1550-nm light source. Thermal
Control: to effectivelymanageheat dissipation, thermal siliconegrease
(Thermalright TF8) was applied to attach the Peltier cooler and heat
sink fins to the metal substrate of the error-tolerant chip. The Peltier
cooler and NTC thermistor (B3950 10K) were connected to a TEC
controller, enabling precise temperature regulation through
proportional–integral–derivative control. Furthermore, a fanmounted
on the heat sink enhanced heat dissipation from the chip module.

Chip calibration. To evaluate the modulation characteristics of the
phase modulation array, we implemented an on-axis interference
system. As shown in Fig. S9a, b, the input laser beam was split using a
fiber splitter, with one path directed to the chip and the other colli-
mated to serve as the reference beam. The interference pattern
resulting from this setup was captured using an infrared sensor
(ARTCAM-991SWIR), as illustrated in Fig. S9c. We then applied a con-
trol voltage to each individual phase shifter, varying it from 0 to 4
volts. By fitting the resulting data to a sinusoidal function, as demon-
strated in Fig. S9d, we extracted the initial phase values and the rela-
tionship between phase and voltage. The modeling of the modulators
is based on the recognition that the phase shift, Δϕ, induced by the
grating is influenced by the refractive index change, n, which is pro-
portional to the applied voltage V from the Ohm’s law. This relation-
ship can be expressed as Δϕ / Δn / ΔV 2. Furthermore, the phase
variation is related to the intensity of interference between the signal
and reference beams, represented by a sinusoidal function. The
detected intensity is parameterized as IðϕÞ=p1 sin p2V

2 +p3

� �
+p4,

where these four parameters, p1,p2,p3,p4 denote the signal ampli-
tude, modulation coefficients, the initial phase, and background light,
respectively. After measuring interference intensities at various

voltages, an iterative fitting process employing the nonlinear least
squares method was applied to determine all parameters, enabling us
to calculate the phase terms fromp2 to p3. This calibration processwas
conducted repeatedly for all wavelengths analyzed in the study using a
tunable laser (TSL-570, Santec). The experiments spanned a wave-
length range from 1480 to 1640nm, with 10 nm stepsize to demon-
strate performance across a broad spectrum.Modulation curves for 24
wavelengths spanning ITU channels C13 to C59 were measured for
these experiments (as illustrated in Fig. S13). High-speed calibration to
assess the on-chip signal quality across various input frequencies, we
calibrated optical signals within the range of 1–10GHz. A 25-GHz
waveform generator (Keysight M8195A) produced non-return-to-zero
signal sequences, which were fed into the ring modulator. Signal
detection was performed using a germanium photodetector from an
error-tolerant chip and a commercial InGaAs photodetector. The
resulting photocurrents were recorded with a 10-GHz oscilloscope
(Tektronix MSO64B). To ensure the modulator and detectors were
appropriately biased, we employed 40-GHz bias tees (Anritsu K251) for
high-speed signals transmission and detection. Figure S11 displays the
eye diagrams obtained from the experiments. Both the on-chip pho-
todetector and the germanium photodetector showcased distinctly
defined open eye patterns at frequencies of 1, 5, and 10GHz. However,
at the frequency of 10GHz, some distortion in the eye pattern was
noted, which was due to the limitations of the testing setup. Never-
theless, the system effectively demonstrated signal transmission and
detection capabilities up to 10GHz. Following detailed bandwidth
evaluations, deep neural networks were studied, designed for tasks
including image classification and general-purpose generation (Figs. 4,
5 and S1).

Dedicated control board
To demonstrate the integration of control and detection-based non-
linear functionalities, we developed a specialized application-specific
integrated circuit (ASIC) interface that links the modules and per-
forming the detection perturbation and perturbed weight loading.
Upon receiving signals, an analog-to-digital converter (ADC) transition
the analog signals into the digital domain. The detected signals are the
perturbed with biases implemented on board with parallel access to
registers, effectively implementing the nonlinear functions and
bypassing the need for memory read/write operations. Figure S10
presents an illustrative example of the packaged chip featuring the
ASIC interface.

Specifically, the ADC, equipped with 256 channels, digitized the
detected analog signals after they pass through 249-K gain tran-
simpedance amplifiers. The resulting digital signals are subsequently
processed by the application-specific unit, capable of executing non-
linear activation functions. These functionalities are tailored for the
detection perturbations, with the perturbation data stored directly on
the board, thus facilitating processing tasks while minimizing the
memory access. The results from detection perturbation are then
converted again to analog regime for the driving of the subsequent
propagation modules. The controller board is designed with two
driving arrays: one array drives the propagation modulators using 256
digital-to-analog converters (DACs) for perturbed weight loading,
while theotherDACsmanage the ringmodulators, transmitting signals
to subsequent processing layers.

Low-power phase modulation
To achieve minimized energy consumption, we introduced a strategy
that employs ring resonators alongwith electricalmodulation-induced
carrier plasma dispersion. This design capitalizes on resonance within
the ring cavity to improve phase modulation effectiveness while
simultaneouslyminimizing amplitudemodulation via over-coupling of
the ring structure. The approach involves the application of electro-
optical modulation for phase shifting. A chip featuring an array of ring
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resonators was fabricated to conduct experiments on electro-optic
modulation. The assembled chip, as shown in Fig. S6, underwent both
electrical and optical packaging processes. Noteworthy elements of
modulation, especially the NP-doped ring structure, are illustrated in
Fig. S6b. The emitted pattern from the chip, captured through a focal
plane arrangement (Fig. S6c), illustrated the phase modulation pro-
cess, which was further analyzed through interference patterns in
conjunction with a reference beam (Fig. S6d). By varying the input
voltage from 0 to 4.0V, we attained a phase shift of 0.07 radians,
registering a power consumption of about 18.96 nW at an input of
4.0 V. Through mode-coupling analysis, it was determined that a π-
phase shift would correspondingly consume approximately 1.7 µW.

Dataset preparation
Language corpus dataset. The language corpus dataset was derived
from a selection of text pages from the Wikipedia dump dated
20240220 (available at https://dumps.wikimedia.org/enwiki/
20240220/). Sentences shorter than 64 characters were omitted, and
the tokenized dataset consists of a vocabulary of 8000 tokens. This
dataset was divided into training and evaluation sets, containing
2,172,312 and 241,370 sentences, respectively. During the training
process, initial tokens from the training sentences were input to pre-
dict subsequent tokens. The predicted tokens were then compared
with the actual tokens to compute losses, which guided the model’s
training. For evaluation, a total of 356 samples from ten different
sentences were utilized, and the average accuracies, loss values, and
standard deviations of loss are presented in Fig. 5a.

ImageNet-dataset. The ImageNet dataset60 comprises labeled images
that encompass 1000 different object categories. It contains a training
set of 1,281,167 samples and a testing set of 50,000 samples, with each
image having 224× 224 pixels. Data augmentation techniques applied
to the training set include random resizing, cropping, horizontal flip-
ping, and color adjustments (brightness, contrast, and saturation
variations of 0.4). For the testing set, a center crop was used. In the
context of 1000-category recognition, each sample was encoded into
multi-wavelength light input. The categories were grouped into 10 sets
of 100, each having 500 testing samples. Figure 4d presents the
average accuracies alongside their corresponding standard deviations.
For the image generation experiments, six data categories were uti-
lized for training. The dataset includes 7800 training samples and 300
testing samples, with each resized to an image of 256× 256 pixels,
serving as the ground truth of training.

MNIST-dataset. The MNIST dataset comprises handwritten digits
across ten categories, containing 60,000 samples for training and
10,000 samples for testing. Each image, with a resolution of 28 × 28
pixels, was converted into 64 dimensions through principal compo-
nent analysis. For the evaluation of deep single-layer chip cluster, each
sample from the ten categorieswas transformed into an input encoded
with multi-wavelength light intensity. The findings from this analysis
are documented in Fig. 3.

Network architecture and training methods
ImageNet classification. To tackle the ImageNet classification task,
we developed a deep neural network architecture comprising up to
100 layers. This architecture, which includes 18-layer, 34-layer, and
100-layer networks, is based on a residual connection framework. Each
of these networks contains four blocks with sizes structured as [3, 8,
35, 3] for the 100-layer version (and [2, 2, 2, 2] for the 18-layer version,
and [3, 4, 6, 3] for the 34-layer version). Each block is equipped with
two error-tolerant convolutional layers, eachutilizing a kernel size of 3,
in addition to the residual connections. The convolutional operations
are decomposed into fundamental matrix-vector multiplications,
which are executed by encoding the input vector onto light intensity

across eight different wavelengths. Subsequently, the light at these
wavelengths is modulated with pre-trained arbitrary weight matrices.
The combined effect of these multiplications facilitates the required
convolution operations within the deep learning framework. We
employed a cross-entropy loss function together with a stochastic
gradient descent (SGD) optimizer, initializedwith a learning rate of 0.4
(whichwas reducedby a factor of 10 every 30epochs), amomentumof
0.9, and a weight decay of 2 × 10−5, to train the networks over a span of
90 epochs across all three architectures. We also evaluated digital
models of the same size to the 100-layer SLiM network. For both net-
works with 11.475 MegaByte parameters, the SLiM network reached
85.4% accuracy, while the network of same size with 32-bit floating
point weights reached 79.19% accuracy.

Large language model. The foundational components of the deep
neural networks utilized in the language models were built on trans-
formers, organized into four error-tolerant linear layers and one
attention block. The attentionmechanismwas structured intomultiple
heads, enabling multi-head attention. We closely adhered to the spe-
cifications of the GPT-2 model regarding the number of layers,
dimensions, and attention heads, assigning configurations of 2, 4, 8, 12,
and 24 attention blocks, with dimensions set to 256, 512, 640, 768,
1024, and head counts of 4, 8, 10, 12, 16, resulting in a total of 4, 16, 32,
48, and 96 layers, respectively. The training employed a cross-entropy
loss function alongside the SGD optimizer, initialized at a learning rate
of 0.001 (which decayed proportionally to the current step relative to
the total steps) and aweight decay value of 1 × 10−2. The networks were
trained until convergence, requiring 11, 18, 79, 132, and 240 GPU hours
for their respective configurations.

Conditioned image generation. The ONN designed for conditioned
generation was based on a transformer architecture, comprising four
error-tolerant linear layers alongside the attention block. This network
specifically featured 16 attention blocks, each with 1024-D inputs and
16 heads. The vocabulary for image generation was segmented into
4096 words using VQ-VAE61, while a GPT training methodology was
utilized to generate subsequent tokens in the following scale. Com-
mencing with one token with a class-conditioned embedding at the
1 × 1 scale, the network processes this through all 16 blocks to predict
the generation of subsequent tokens, following a scaling order of 1, 2,
3, 4, 5, 6, 8, 10, 13, and 16. The resultant 16 × 16 tokens were decoded
into an image with a resolution of 256× 256× 3. The employed loss
function was cross-entropy, and the AdamW optimizer was utilized
with parameters β1 = 0.9, β2 = 0.95, learning rate set to 0.0005
(decreasing proportionally to the ratio of current steps to total steps),
and batch size set to 128. The training process took around 576 GPU-
hours to reach convergence.

Scalable photonic neural network. For the centimeter- to hundred
meter-scale photonicAI computing experiment, we constructed a two-
layer fully connected (FC) network composed of fault-tolerant matri-
ces sized (64, 64) and (64, 10). The output from this network is a 10-
dimensional classification result. Implementing the error-tolerant two-
layer FC structure required the decomposition of matrix-vector mul-
tiplications into smaller groups of 4 × 4 matrix units. Each unit was
encoded by modulating the input’s intensity across multi-wavelength
light, which was then adjusted according to pre-trained weights to
achieve the necessary arbitrarymatrixmultiplications. A cross-entropy
loss function was utilized, and the SGD optimizer, configured with an
initial learning rate of 0.01 and a momentum of 0.9 was employed for
60 epochs to fine-tune the network parameters.

Spatial depth of SLiM computing
In our demonstration of a deep single-layer chip cluster (Fig. S2), we
utilized a packaged chip that was connected to a specialized control
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board, facilitating rapid electrical adjustments. After modulation, the
emitted light was directed through a grating, which featured unique
initial phases and amplitudes. A plano-convex cylindrical lens
(LJ1636L2-C, Thorlabs) was employed to collimate the divergent light
from a one-dimensional array of 128 emitters, maintaining a consistent
horizontal separation of 15mm between the chip and the lens, corre-
sponding to the lens’s focal length. This configuration effectively
reduced light divergence in the transverse direction, thereby con-
centrating energy along the grating array.

The setup incorporated a series of five mirrors (PF20-03-G01,
Thorlabs) with reflectance greater than 95%, allowing for wireless
transmission through five successive reflections, which significantly
extended the propagation distance. This enabled long-range experi-
ments covering distances from centimeters to nearly one hundred
meters. Upon propagation, the light was captured by a camera lens
(Nikon 50mm 1.8D) aimed at the detector array to analyze the
resulting propagation outcomes across various receiving ranges, ran-
ging from 5 to 70mm. Figure S12 presents four distinct matrices
observed at propagation distances of 0.5, 5.0, and 45m before lens
imaging, all demonstrating relative errors within 2% (0.97%, 1.14%, and
0.86%, respectively).

The integration ofmultiple SLiM chips using an ensemblemethod
significantly enhances both the spatial depth and scale, as well as the
computational flexibility. The maximum spatial scale, identified as
the spatial DL, can be deduced by examining the diffraction behavior.
The diffraction limit of the system’s receiver aperture, denoted asDout,
is mathematically represented as Dout = 0:5 � λ=N:A:, where N.A. sig-
nifies the NA derived from the emission aperture, De, and the propa-
gation distance, represented as N.A. = (1/2)Din=DL. Therefore, the
relationshipDL=DinDout=λ, is established. Implementing the ensemble
method with integrated chips not only broadens the spatial scale by
increasing aperture sizes but enhances the DOFs as well, thus aug-
menting the overall computational capacity. This scalable spatial and
computational ability paves the way for the development of extensive
computing clusters utilizing error-tolerant chips. As illustrated in
Fig. 3, an ensemble of 16 chips demonstrates a computing capability of
335.54 Peta OPS, and the potential incorporation of millions of chips
over distances spanning kilometers could elevate the system’s per-
formance into the ZettaOPS domain.

Deep neural network with SLiM chips
During the construction of the deep network, to avoid the non-
differentiable issue of the perturbed nonlinear activations, in the gra-
dient propagation phase, gradients for weights exceeding an absolute
value of one were clipped, while gradients within bounds navigated
past the nonlinear layers. Specifically, the forward nonlinear function is
delineated as (x)D = 1 for x ≥0 and −1 for x < 0. The adjusted gradient
for thisprocedure is expressed as (x)’D = 1 for−1 ≤ x ≤ 1 and0otherwise.
This tailored gradient descent framework proficiently facilitates the
training of deep ONNs through the noise perturbed nonlinearities.
After training to determine the neural network parameters, we
decompose the inference processes into elementary matrix-vector
multiplications. We segment extensive matrix operations into a series
of smaller operational units. During the experimental phase, the net-
work was executed using 8 × 8 elemental matrix cores (Figs. 4 and 5),
with input data allocated across eight ITU wavelength channels (multi-
channel lasers CBDX-NC-NC-NC-NC, Fig. S13) facilitated by a dense
wavelength division multiplexing multiplexer, across a propagation
distance of 0.5m. The phase terms for realizing each matrix are rea-
lized by trained offline, taking 0.167 s on one 3090 Ti GPU. High-speed
input and output signals were managed and detected using arbitrary
waveform generators (Keysight M8195A) and oscilloscopes (Tektronix
MSO64B), with perturbed weights loaded by the controller board. The
illustration of the experiment system is presented in Fig. S1. The

outputs are captured and activated by feeding the result to the dedi-
cated control board.

In our deep network evaluations, the standard deviations of the
observed errors ranged from 6% to 20% of signal intensity; however,
due to SLiM operations, the error-affected inputs transformed into
noise-reduced activations, facilitating their transfer to subsequent
layers. This error mitigation occurs at each layer, enhancing the resi-
lience of the network within the context of a 100-layer deep neural
network. As depicted in Fig. 4d, the experimentalmeasurements reveal
standard deviations at operational frequencies of [1 G/5 G/10G] cor-
responding to values of [5.757%/5.845%/6.240%], [5.182%/5.331%/
5.893%], and [4.454%/4.352%/4.776%] for 18-layer, 34-layer, and 100-
layer SLiM networks, respectively. Conversely, the standard deviations
for multi-layer chips were recorded at [1.482%/0.494%/0.482%],
[2.432%/1.071%/0.533%], and [2.922%/0.660%/0.297%]. The inter-
mediate outputs from the 100-layer neural network and the ideal
simulated results are illustrated in Fig. S3. These intermediate results
are rescaled by a factor of 110 and adjusted for uniform columnwidths
for presentation. The per-layer error rates are detailed in the
upper sectionof Fig. S3b, indicating that the experimental outcomes at
speeds of 1, 5, and 10G achieved average error rates of 9.04%, 9.22%,
and 10.34%, respectively. These error rates align within the established
error assessment range influenced by Gaussian noise standard devia-
tions, as presented in the lower section of Fig. S3b, yielding error rates
of 10.48%, 11.56%, and 18.78% under 15%, 20%, and 50% standard
deviations of noise, respectively.

Data availability
Source data are provided with this paper.

Code availability
The code related to this research can be retrieved from https://github.
com/Yheechou/SLiM.
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